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A MOORE BOUND FOR SIMPLICIAL COMPLEXES

ALEXANDER LUBOTZKY and ROY MESHULAM

Abstract

Let X be a d-dimensional simplicial complex with N faces of dimension d− 1. Suppose that every
(d−1)-face of X is contained in at least k ≥ d+2 faces of X of dimension d. Extending the classical
Moore bound for graphs, it is shown that X must contain a ball B of radius at most dlogk−d Ne
whose d-dimensional homology Hd(B) is non-zero. The Ramanujan Complexes constructed by
Lubotzky, Samuels and Vishne are used to show that this upper bound on the radius of B cannot
be improved by more than a multiplicative constant factor.

1. Introduction

Let G = (V,E) be a graph on n vertices, and let δ(G) denote the minimal degree
of a vertex in G. The girth g(G) = g is the minimal length of a cycle in G. An easy
counting argument (see e.g. Theorem IV.1 in [2]) shows that if δ(G) = k ≥ 3 then

n ≥

{
1 + k

k−2 ((k − 1)
g−1
2 − 1) g odd

2
k−2 ((k − 1)

g
2 − 1) g even .

(1.1)

This implies the classical Moore bound

Theorem A. g(G) < 2 logk−1 n + 2.

Let dG(u, v) be the distance between the vertices u and v in the graph metric
and let Br(v) = {u ∈ V : dG(u, v) ≤ r} denote the ball of radius r around v.
Define the acyclicity radius rv(G) of G at the vertex v to be the maximal r such
that the induced graph G[Br(v)] is acyclic. Let r(G) = minv∈V rv(G), then r(G) =
b g(G)

2 c− 1. The asymptotic version of Moore’s bound is equivalent to the following

Theorem A1. If δ(G) = k ≥ 3 then for every v ∈ V

rv(G) ≤ blogk−1 nc . (1.2)

The best lower bound for the girth of k-regular graphs is given by the Ramanujan
graphs of Lubotzky, Phillips and Sarnak [6]. For a fixed prime p, the construction
in [6] provides a sequence of (p + 1)-regular graphs Gi = (Vi, Ei) with |Vi| → ∞
such that g(Gi) ≥ 4

3 logp |Vi| −O(1). A similar result was obtained by Morgenstern
[9] for any prime power q. In terms of the acyclicity radius we therefore have:
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Theorem B1. For every prime power q, there exists a sequence of (q+1)-regular
graphs Gi = (Vi, Ei) with |Vi| → ∞ such that for every v ∈ V

rv(Gi) ≥
2
3

logq |Vi| −O(1) .

In this note we extend Theorems A1 and B1 to higher dimensional simplicial
complexes. Let X be a d-dimensional simplicial complex on the vertex set V .
Let Hi(X) denote the i-dimensional homology group of X with some fixed field
coefficients. For 0 ≤ i ≤ d let X(i) = {σ ∈ X : dim σ = i} and let fi(X) = |X(i)|.
For a subset of vertices S ⊂ V let X[S] denote the induced subcomplex on S. The
degree of a (d− 1)-simplex σ ∈ X(d− 1) is

deg(σ) = |{τ ∈ X(d) : σ ⊂ τ}| .

Let δ(X) = min{deg(σ) : σ ∈ X(d − 1)} . A complex X is called k-regular if
deg(σ) = δ(X) = k for every σ ∈ X(d − 1). Denote by Br(v) the ball of radius
r around v with respect to the graph metric on the 1-dimensional skeleton of X.
Extending the notion of acyclicity radius to the higher dimensional setting we define
rv(X) as the maximal r such that Hd(X[Br(v)]) = 0, and r(X) = minv∈V rv(X).
The following result extends Theorem A1 to d-dimensional complexes.

Theorem Ad. Let X be a d-dimensional complex with δ(X) = k ≥ d+2. Then
for any vertex v ∈ V which is contained in some (d− 1)-face

rv(X) ≤ blogk−d fd−1(X)c .

For the lower bound, we use the Ramanujan Complexes presented by Lubotzky,
Samuels and Vishne in [8] to show:

Theorem Bd. For d ≥ 1 and q a prime power, there exists a sequence of d-
dimensional (q + 1)-regular complexes Xi on vertex sets Vi with |Vi| → ∞, such
that for any v ∈ V

rv(Xi) ≥
logq |Vi|

2d2(d + 2)
− 1 .

Theorem Ad is proved in Section 2, while Theorem Bd is established in Section
3. Note that Theorem Ad reduces to Theorem A1 when d = 1. On the other hand,
specializing theorem Bd for the case d = 1, yields a somewhat weaker version of
Theorem B1 (The constant is 1

6 rather than 2
3 ). In Section 4 we discuss some open

problems and suggestions for further research. One such challenge is to improve the
constant in Theorem Bd.

2. The Upper Bound

Proof of Theorem Ad. First note that if Y is a d-dimensional complex such that
fd(Y ) > fd−1(Y ) , then Hd(Y ) 6= 0. Indeed, let Ci(Y ) denote the space of simplicial
i-chains of Y . Then dim Cd(Y ) = fd(Y ) > fd−1(Y ) = dim Cd−1(Y ) implies that
the boundary map ∂ : Cd(Y ) → Cd−1(Y ) has a non-trivial kernel.
Let v be a vertex which is contained in a (d − 1)-simplex. Abbreviate Bt = Bt(v)
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and write α(t) = fd−1(X[Bt]) , β(t) = fd(X[Bt]). Let

γ(t) = |{(σ, τ) : σ ∈ X[Bt](d− 1) , τ ∈ X(d) , σ ⊂ τ}| .

Then

γ(t) =
∑

σ∈X[Bt](d−1)

deg(σ) ≥ fd−1(X[Bt]) · δ(X) ≥ α(t) · k . (2.1)

For a d-simplex τ ∈ X(d) let s(τ) denote the number of (d− 1)-simplices in X[Bt]
that are contained in τ . Then

s(τ) =
{

d + 1 τ ∈ X[Bt]
0 τ 6∈ X[Bt+1]

and s(τ) ≤ 1 if τ ∈ X[Bt+1]−X[Bt]. Thus

γ(t) =
∑

τ∈X(d)

s(τ) ≤ (d + 1)β(t) + (β(t + 1)− β(t)) =

dβ(t) + β(t + 1) . (2.2)

Let m = rv(X). Combining (2.1) and (2.2) we obtain that for all t < m

kα(t) ≤ dβ(t) + β(t + 1) ≤ dα(t) + α(t + 1) .

Hence

α(t + 1) ≥ (k − d)α(t) ≥ . . . ≥ (k − d)tα(1) .

Since v is contained in a (d− 1)-face, it follows that α(1) ≥ kd + 1. Thus

(kd + 1)(k − d)m−1 ≤ α(m) ≤ fd−1(X)

and m ≤ blogk−d fd−1(X)c.

3. The Lower Bound

The proof of Theorem Bd depends on certain finite quotients of affine buildings
constructed by Lubotzky, Samuels and Vishne [8], based on the Cartwright-Steger
group [4] (see also [11] for a similar construction, as well as [3, 5, 7] for related
results). In Section 3.1 we recall the definition and some properties of affine buildings
of type Ãd−1. In Section 3.2 we describe the relevant finite quotients and show that
they have a large acyclicity radius.

3.1. Affine Buildings of Type Ãd−1

Let F be a local field with a valuation ν : F → Z and a uniformizer π. Let O
denote the ring of integers of F and O/πO = Fq be the residue field. A lattice
L in the vector space V = F d is a finitely generated O-submodule of V such
that L contains a basis of V . Two lattices L1 and L2 are equivalent if L1 = λL2

for some 0 6= λ ∈ F . Let [L] denote the equivalence class of a lattice L. Two
distinct equivalence classes [L1] and [L2] are adjacent if there exist representatives
L′1 ∈ [L1] , L′2 ∈ [L2] such that πL′1 ⊂ L′2 ⊂ L′1. The affine building of type Ãd−1

associated with F is the simplicial complex B = Bd(F ) whose vertex set B0 is
the set of equivalence classes of lattices in V , and whose simplices are the subsets
{[L0], . . . , [Lk]} such that all pairs [Li], [Lj ] are adjacent. It can be shown that
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{[L0], . . . , [Lk]} forms a simplex iff there exist representatives L′i ∈ [Li] such that

πL′k ⊂ L′0 ⊂ . . . ⊂ L′k . (3.1)

It is well known that B is a contractible (d − 1)-dimensional simplicial complex
and that the link of each vertex is isomorphic to the order complex Ad−1(Fq) of
all non-trivial proper linear subspaces of Fd

q (see e.g. [10, 7]). This implies that
δ(B) = q + 1. The type function τ : B0 → Zd is defined as follows. Let Od be
the standard lattice in V . For any lattice L, there exists g ∈ GL(V ) such that
L = gOd. Define τ([L]) = ν(det(g))(mod d). Let dist([L], [L′]) denote the graph
distance between [L], [L′] ∈ B0 in the 1-skeleton of B. Let dist1([L], [L′]) denote the
minimal t for which there exist [L] = [L0], . . . , [Lt] = [L′] such that [Li] and [Li+1]
are adjacent in B and τ([Li+1])− τ([Li]) = 1 for all 0 ≤ i ≤ t− 1.

Claim 3.1. For two lattices L1, L2

dist1([L1], [L2]) ≤ (d− 1)dist([L1], [L2]) . (3.2)

Proof. This follows directly from (3.1). Alternatively, let v1, . . . , vd be a basis
of V and let a1, . . . , ad be integers such that L1 = ⊕d

i=1Ovi and L2 = ⊕d
i=1π

aiOvi.
Then

dist([L1], [L2]) = max
i

ai −min
i

ai (3.3)

and

dist1([L1], [L2]) =
d∑

i=1

ai − d min
i

ai . (3.4)

Now (3.2) follows from (3.3) and (3.4).

3.2. Finite Quotients of Affine Buildings

Let q be a prime power and let F be the local field Fq((y)) with local ring
O = Fq[[y]]. The construction of finite quotients of B = Bd(F ) in [8], depends on
the remarkable Cartwright-Steger group Γ < PGLd(F ) (see [4]). We briefly recall
the construction of Γ and some of its properties.

Let φ : Fqd → Fqd denote the Frobenius automorphism. Extend φ to Fqd(y) by
defining φ(y) = y. Then φ is a generator of the cyclic Galois group Gal(Fqd(y)/Fq(y)).
Let D be the d2-dimensional Fq(y)-algebra given by D = Fqd [σ] with the relations
σa = φ(a)σ for all a ∈ Fqd(y), and σd = 1 + y.
D is a division algebra that splits over the extension field F = Fq((y)). Denote
D(F ) = D ⊗ F , then there is an isomorphism D(F ) ∼= Md(F ) which in turn
induces an isomorphism

D(F )×/Z(D(F )×) ∼= PGLd(F ) . (3.5)

Let b1 = 1−σ−1 ∈ D×, and for u ∈ F∗qd let bu = u−1b1u. Let gu ∈ D(F )×/Z(D(F )×)
denote the image of bu under the quotient map. The Cartwright-Steger group Γ is
the subgroup of D(F )×/Z(D(F )×) generated by {gu : u ∈ F∗qd}. Utilizing the
isomorphism (3.5), we also regard Γ as a subgroup of PGLd(F ). We shall use the
following properties of Γ.
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Theorem 3.2. (Cartwright and Steger [4])
a) Γ acts simply transitively on the vertices of B.
b) Let L0 = Od. Then for g ∈ Γ

dist1(g[L0], [L0]) = min{t : g = gu1 . . . gut
for some u1, . . . , ut ∈ F∗qd}.

The action of D upon itself by conjugation gives rise to a representation

ρ : D(F )× → GLd2(F )

which factors through D(F )×/Z(D(F )×). Let ξ0, . . . , ξd−1 be a normal basis of Fqd

over Fq, then {ξiσ
j}d−1

i,j=0 is a basis of D(F ) over F . An explicit computation (see
Eq. (9) on page 975 in [8]) shows that

bu(ξσk)b−1
u = ξσk + fu,k(ξ)

k−1∑
i=0

u

φi(u)
σi +

1
y
fu,k(ξ)

d−1∑
i=0

u

φi(u)
σi

for every 0 ≤ k < d and ξ ∈ Fqd , where fu,k(ξ) = (φku/u)ξ−(φk−1u/φ−1u)φ−1ξ. It
follows that with respect to the above basis, ρ(bu) is a d2×d2 matrix whose entries
are linear polynomials in 1

y over Fq. Let h(λ) ∈ Fq[λ] be an irreducible polynomial
which is prime to λ(1 + λ), and let f = h( 1

y ) ∈ R0 = Fq[ 1y ] and I = fR0. Write 1d2

for the d2 × d2 identity matrix. Let

Γ(I) = { γ ∈ Γ : ρ(γ) ≡ 1d2(mod f) } .

This subgroup coincides with the congruence subgroup Γ(I) as defined in Eq. (15)
on p.979 in [8]. In particular Γ/Γ(I) is isomorphic to a subgroup of PGLd(R0/fR0).
Let BI = Γ(I)\B denote the resulting quotient complex. The vertex set B0

I of BI is
the set of orbits of B0 under Γ(I), i.e.

B0
I = { Γ(I)[L] : [L] ∈ B0 } .

A subset {Γ(I)[L0], . . . ,Γ(I)[Lk]} forms a simplex in BI iff there exist g0, . . . , gk ∈
Γ(I) such that {g0[L0], . . . , gk[Lk]} is a simplex in B.
Note that

|B0
I | = (Γ : Γ(I)) ≤ |PGLd(R0/fR0)| .

Let L be a lattice, and let

`I = min{ dist([L], g[L]) : 1 6= g ∈ Γ(I) } .

Clearly `I is independent of L since Γ is transitive and Γ(I) / Γ.

Proposition 3.3.

`I ≥
logq |B0

I |
(d− 1)(d2 − 1)

. (3.6)

Proof. Let t = dist1(g[L0], [L0]). By Theorem 3.2b) there exist u1, . . . , ut ∈ F∗
qd

such that g = gu1 . . . gut
. Let C = (cij) = ρ(bu1) . . . ρ(but

). The cij ’s are polynomials
in Fq[ 1y ] of degree at most t in 1

y . By assumption g ∈ Γ(I), hence C = 1d2 + fE
for some E ∈ Md2(R0). If cij 6= 0 for some i 6= j, then t ≥ deg1/y(cij) ≥ deg1/y(f).
Otherwise C is a diagonal matrix. If it is a scalar matrix, then it must be the
identity as Γ, being a lattice in PGLd(F ), has trivial center. Thus we can assume C is
diagonal and non-scalar. Choose i, j such that cii 6= cjj , then t ≥ deg1/y(cii−cjj) ≥
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deg1/y(f). Thus, by (3.2)

dist([L0], g[L0]) ≥
1

d− 1
dist1(g[L], [L]) ≥

deg1/y(f)
(d− 1)

≥

logq |PGLd(R0/fR0)|
(d− 1)(d2 − 1)

≥
logq |B0

I |
(d− 1)(d2 − 1)

.

Proof of Theorem Bd−1. Choose a sequence of irreducible polynomials hi(λ) ∈
Fq[λ] such that (hi, λ(1 + λ)) = 1 and deg hi → ∞. Let Ii = hi( 1

y )R0 and let
Xi = BIi

. The quotient map B → Xi is clearly an isomorphism on balls of radius
at most `Ii

2 − 1 in B. Since B is contractible, it follows from Proposition 3.3 that
for any vertex v ∈ X0

i

rv(Xi) ≥
`Ii

2
− 1 ≥

logq |X0
i |

2(d− 1)(d2 − 1)
− 1 .

We complete the proof by noting that if i is sufficiently large then `Ii ≥ 4, hence
Xi is (d− 1)-dimensional and δ(Xi) = δ(B) = q + 1.

4. Concluding Remarks

We proved a higher dimensional extension of the Moore bound, and showed that
the Ramanujan Complexes constructed in [8] imply that this bound is tight up to
a multiplicative factor. We mention several problems that arise from these results.

(1) In Section 3.2 it is shown that for appropriately chosen ideals Ii / Fq[ 1y ], the
(d− 1)-dimensional quotient complexes Xi = BIi satisfy

rv(Xi) ≥ C(d− 1) logq |X0
i | − 1

with C(d − 1) = 1
2(d−1)(d2−1) . It seems likely that a more careful choice of

the Ii’s will lead to an improved bound on the constant. (Recall that in
the 1-dimensional case, Ramanujan graphs [6] give the constant 2

3 , while
C(1) = 1

6 ).
(2) While the construction of Ramanujan Graphs and the proof of Theorem

B1 depend on number theoretic tools, there is an elementary (but non-
constructive) argument due to Erdős and Sachs (see e.g. Theorem III.1.4 in
[1]) that shows the existence of a sequence of k-regular graphs Gi = (Vi, Ei)
with |Vi| → ∞ such that r(Gi) ≥ 1

2 logk−1 |Vi|−O(1). It would be interesting
to obtain a similar result in the higher dimensional setting.
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