104114 Lecture Notes

Roy Meshulam

February 10, 2021

1 Euclidean Geometry

An Euclidean Space is an n-dimensional linear space V over the field \mathbb{R} of real numbers, together with a inner product $\langle\cdot, \cdot\rangle$. Recall that this means that $\langle\cdot, \cdot\rangle$ is symmetric bilinear form such that $\langle u, u\rangle \geq 0$, where equality implies that $u=0$. The form $\langle\cdot, \cdot\rangle$ induces a norm $\|\cdot\|$ on V given by $\|u\|=\sqrt{\langle u, u\rangle}$. Any n-dimensional Euclidean space V is isomorphic to \mathbb{R}^{n} with its standard inner product defined on $u=\left(a_{1}, \ldots, a_{n}\right), v=\left(b_{1}, \ldots, b_{n}\right)$ by $\langle u, v\rangle=\sum_{i=1}^{n} a_{i} b_{i}$. The angle α between two nonzero vectors $u, v \in V$ is given by $\alpha=\arccos \frac{\langle u, v\rangle}{\|u\| \cdot\|v\| \|}$. An affine combination of $u_{0}, \ldots, u_{k} \in V$ is a vector of the form $\sum_{i=0}^{k} \lambda_{i} u_{i}$ where $\sum_{i=0}^{k} \lambda_{i}=1$. The affine span of $A \subset V$ is

$$
\operatorname{aff}(A)=\left\{\sum_{i=0}^{k} \lambda_{i} u_{i}: u_{i} \in A, \sum_{i=0}^{k} \lambda_{i}=1\right\}
$$

The vectors $u_{0}, \ldots, u_{k} \in V$ are affinely independent if $\sum_{i=0}^{k} \lambda_{i} u_{i}=0$ together with $\sum_{i=0}^{k} \lambda_{i}=0$, imply that $\lambda_{i}=0$ for all $0 \leq i \leq k$. An equivalent condition (check!) is that $u_{j} \notin$ aff $\left(\left\{u_{i}\right\}_{i \neq j}\right)$ for all $0 \leq j \leq k$. A subset $F \subset V$ is a flat if aff $(F)=F$. Check that F is a flat iff $F=v+U$, for some $v \in V$ a linear subspace U of V. The subspace U is uniquely determined by F (check!), and is called the direction of F. We define $\operatorname{dim} F=\operatorname{dim} U$.

A set $K \subset \mathbb{R}^{n}$ is convex if for any $u, v \in K$, the segment $[u, v]:=\{t u+(1-t) v: 0 \leq t \leq 1\}$ is contained in K. The standard k-simplex in \mathbb{R}^{k+1} is the set

$$
\Delta_{k}=\left\{\lambda=\left(\lambda_{0}, \ldots, \lambda_{k}\right) \in \mathbb{R}^{k+1}: \lambda_{i} \geq 0, \sum_{i=0}^{k} \lambda_{i}=1\right\} .
$$

A convex combination of u_{0}, \ldots, u_{k} is a vector of the form $\sum_{i=0}^{k} \lambda_{i} u_{i}$ where $\left.\left(\lambda_{0}, \ldots, \lambda_{k}\right) \in \Delta_{k}\right\}$. The convex hull of a set $A \in \mathbb{R}^{n}$ is

$$
\operatorname{conv}(A)=\left\{\sum_{i=0}^{k} \lambda_{i} u_{i}: u_{0}, \ldots, u_{k} \in A,\left(\lambda_{0}, \ldots, \lambda_{k}\right) \in \Delta_{k}\right\}
$$

$\operatorname{conv}(A)$ is the inclusion-wise minimal convex subset of \mathbb{R}^{n} that contains A (check!).
In the following sections we will recall some classical results from plane Euclidean geometry, and discuss their higher dimensional counterparts.

1.1 Ceva's Theorem in n-Space

A Cevian in a triangle is a segment that connects a vertex to a point in the opposite edge. In plane geometry we encounter several results that assert that certain three Cevians from the three vertices are concurrent (i.e. intersect in a point). For example:

Theorem 1.1. In a triangle $\Delta=A B C$
(i) The three medians are concurrent.
(ii) The three altitudes are concurrent.
(iii) The three angle bisectors are concurrent.

It turns out that Theorem 1.1 and similar results can be proved as a consequence of the following

Figure 1: Three collinear Cevians

Theorem 1.2 (Ceva). Let $\triangle A B C$ be a triangle in the plane and consider three points $C_{1} \in \overline{A B}, A_{1} \in \overline{B C}$, and $B_{1} \in \overline{C A}$. Then the segments $\overline{A A_{1}}, \overline{B B_{1}}, \overline{C C_{1}}$ intersect in a point P iff

$$
\begin{equation*}
\frac{\left|A C_{1}\right| \cdot\left|B A_{1}\right| \cdot\left|C B_{1}\right|}{\left|B C_{1}\right| \cdot\left|C A_{1}\right| \cdot\left|A B_{1}\right|}=1 . \tag{1}
\end{equation*}
$$

Proof of Theorem 1.1. Let $\alpha=\angle B A C, \beta=\angle A B C$ and $\gamma=\angle A C B$. Let $a=|B C|, b=|A C|$ and $c=|A B|$.
(i) Let $A A_{1}, B B_{1}, C C_{1}$ be the three medians of Δ. Then $\left|A C_{1}\right|=\left|B C_{1}\right|=\frac{c}{2},\left|B A_{1}\right|=\left|C A_{1}\right|=\frac{a}{2}$ and $\left|C B_{1}\right|=\left|A B_{1}\right|=\frac{b}{2}$. It follows that (1) is satisfied and hence $A A_{1}, B B_{1}, C C_{1}$ are concurrent.

Figure 2: Medians
(ii) Let $A A_{1}, B B_{1}, C C_{1}$ be the three altitudes of Δ. Then $\left|B A_{1}\right|=c \cos \beta,\left|C B_{1}\right|=a \cos \gamma$ and $\left|A C_{1}\right|=$ $b \cos \alpha$. Similarly $\left|C A_{1}\right|=b \cos \gamma,\left|A B_{1}\right|=c \cos \alpha$ and $\left|B C_{1}\right|=a \cos \beta$. It follows that

$$
\frac{\left|A C_{1}\right| \cdot\left|B A_{1}\right| \cdot\left|C B_{1}\right|}{\left|B C_{1}\right| \cdot\left|C A_{1}\right| \cdot\left|A B_{1}\right|}=\frac{b \cos \alpha \cdot c \cos \beta \cdot a \cos \gamma}{a \cos \beta \cdot b \cos \gamma \cdot c \cos \alpha}=1,
$$

and hence $A A_{1}, B B_{1}, C C_{1}$ are concurrent.
(iii) Let $A A_{1}, B B_{1}, C C_{1}$ be the three angle bisectors of Δ. By the sines theorem

$$
\frac{\left|B A_{1}\right|}{\sin \frac{\alpha}{2}}=\frac{c}{\sin \angle A A_{1} B}
$$

and

$$
\frac{\left|C A_{1}\right|}{\sin \frac{\alpha}{2}}=\frac{b}{\sin \angle A A_{1} C} .
$$

Figure 3: Altitudes

It follows that $\frac{\left|B A_{1}\right|}{\left|C A_{1}\right|}=\frac{c}{b}$. Similarly $\frac{\left|A C_{1}\right|}{\left|B C_{1}\right|}=\frac{b}{a}$ and $\frac{\left|C B_{1}\right|}{\left|A B_{1}\right|}=\frac{a}{c}$. Therefore

$$
\frac{\left|A C_{1}\right| \cdot\left|B A_{1}\right| \cdot\left|C B_{1}\right|}{\left|B C_{1}\right| \cdot\left|C A_{1}\right| \cdot\left|A B_{1}\right|}=\frac{b}{a} \cdot \frac{a}{c} \cdot \frac{c}{b}=1,
$$

and hence $A A_{1}, B B_{1}, C C_{1}$ are concurrent.

Figure 4: Angle Bisectors

For the sequel it will be useful to formulate Ceva's theorem in a different but equivalent form. Fix an arbitrary origin O in \mathbb{R}^{2}, and let $u_{A}=\overrightarrow{O A}, u_{B}=\overrightarrow{O B}$ and $u_{C}=\overrightarrow{O C}$. Let $v_{A}=\overrightarrow{O A_{1}}, v_{B}=\overrightarrow{O B_{1}}$ and $v_{C}=\overrightarrow{O C_{1}}$.

Claim 1.3. The Cevians $A A_{1}, B B_{1}, C C_{1}$ satisfy (1) iff there exist $\left(\lambda_{A}, \lambda_{B}, \lambda_{C}\right) \in \Delta_{2}$ such that

$$
\begin{align*}
v_{A} & =\frac{1}{1-\lambda_{A}}\left(\lambda_{B} u_{B}+\lambda_{C} u_{C}\right), \\
v_{B} & =\frac{1}{1-\lambda_{B}}\left(\lambda_{A} u_{A}+\lambda_{C} u_{C}\right), \tag{2}\\
v_{C} & =\frac{1}{1-\lambda_{C}}\left(\lambda_{A} u_{A}+\lambda_{B} u_{B}\right) .
\end{align*}
$$

Proof. If (2) holds then

$$
\frac{\left|A C_{1}\right|}{\left|B C_{1}\right|}=\frac{\lambda_{B}}{\lambda_{A}}, \quad \frac{\left|B A_{1}\right|}{\left|C A_{1}\right|}=\frac{\lambda_{C}}{\lambda_{B}}, \quad \frac{\left|C B_{1}\right|}{\left|A B_{1}\right|}=\frac{\lambda_{A}}{\lambda_{C}} .
$$

Hence

$$
\frac{\left|A C_{1}\right| \cdot\left|B A_{1}\right| \cdot\left|C B_{1}\right|}{\left|B C_{1}\right| \cdot\left|C A_{1}\right| \cdot\left|A B_{1}\right|}=\frac{\lambda_{B}}{\lambda_{A}} \cdot \frac{\lambda_{C}}{\lambda_{B}} \cdot \frac{\lambda_{A}}{\lambda_{C}}=1 .
$$

Conversely, suppose that (1) holds. Let

$$
S=\left|C B_{1}\right| \cdot\left|B C_{1}\right|+\left|A C_{1}\right| \cdot\left|C B_{1}\right|+\left|A B_{1}\right| \cdot\left|B C_{1}\right|
$$

and let

$$
\lambda_{A}=\frac{\left|C B_{1}\right| \cdot\left|B C_{1}\right|}{S}, \quad \lambda_{B}=\frac{\left|A C_{1}\right| \cdot\left|C B_{1}\right|}{S}, \quad \lambda_{C}=\frac{\left|A B_{1}\right| \cdot\left|B C_{1}\right|}{S} .
$$

Then

$$
\frac{\lambda_{B}}{\lambda_{A}}=\frac{\left|A C_{1}\right| \cdot\left|C B_{1}\right|}{\left|C B_{1}\right| \cdot\left|B C_{1}\right|}=\frac{\left|A C_{1}\right|}{\left|B C_{1}\right|}
$$

and

$$
\frac{\lambda_{C}}{\lambda_{A}}=\frac{\left|A B_{1}\right| \cdot\left|B C_{1}\right|}{\left|C B_{1}\right| \cdot\left|B C_{1}\right|}=\frac{\left|A B_{1}\right|}{\left|C B_{1}\right|} .
$$

Moreover, by (1)

$$
\frac{\lambda_{B}}{\lambda_{C}}=\frac{\left|A C_{1}\right| \cdot\left|C B_{1}\right|}{\left|A B_{1}\right| \cdot\left|B C_{1}\right|}=\frac{\left|C A_{1}\right|}{\left|B A_{1}\right|} .
$$

hence (2) holds.

In view of Claim 1.3, Ceva's Theorem 1.2 is equivalent to the following
Theorem 1.4. The Cevians $\overline{A A_{1}}, \overline{B B_{1}}, \overline{C C_{1}}$ are concurrent iff there exists a point $\left(\lambda_{A}, \lambda_{B}, \lambda_{C}\right) \in \Delta_{2}$ such that (2) holds.

This version of Ceva's theorem admits a straightforward high dimensional extension. As in the planar case, define a Cevian in a simplex $\sigma=\operatorname{conv}\left\{u_{i}: 0 \leq i \leq k\right\}$ as a segment $\left[u_{j}, v_{j}\right]$ where $0 \leq j \leq k$ and $v_{j} \in \operatorname{conv}\left\{u_{i}: 0 \leq i \leq k, i \neq j\right\}$.

Theorem 1.5 (Landy). Let $\sigma=\operatorname{conv}\left\{u_{0}, \ldots, u_{n}\right\}$ be a nondegenerate n-simplex in \mathbb{R}^{n}, and for $0 \leq i \leq n$ let $v_{i} \in \operatorname{conv}\left\{u_{j}: 0 \leq j \leq n, j \neq u\right\}$. Then

$$
\begin{equation*}
\bigcap_{i=0}^{n}\left[u_{i}, v_{i}\right] \neq \emptyset \tag{3}
\end{equation*}
$$

iff there exist $\lambda=\left(\lambda_{0}, \ldots, \lambda_{n}\right) \in \Delta_{n}$ such that for all $0 \leq i \leq n$

$$
\begin{equation*}
v_{i}=\frac{1}{1-\lambda_{i}} \sum_{j \neq i} \lambda_{j} u_{j} . \tag{4}
\end{equation*}
$$

Proof. For the direction (4) $\Rightarrow(3)$, note that if (4) holds then for all $0 \leq i \leq n$

$$
\begin{aligned}
p & :=\sum_{j=0}^{n} \lambda_{j} u_{j}=\lambda_{i} u_{i}+\left(1-\lambda_{i}\right)\left(\frac{1}{1-\lambda_{i}} \sum_{j \neq i} \lambda_{j} u_{j}\right) \\
& =\lambda_{i} u_{i}+\left(1-\lambda_{i}\right) v_{i} \in\left[u_{i}, v_{i}\right] .
\end{aligned}
$$

For the other direction, suppose $\left\{\left[u_{i}, v_{i}\right]\right\}_{i=0}^{n}$ are Cevians such that $\{p\}=\cap_{i=0}^{n}\left[u_{i}, v_{i}\right]$. For $0 \leq i \leq n$ let $v_{i}=\sum_{j=0}^{n} \lambda_{i j} u_{j}$ where $\lambda_{i j} \geq 0, \sum_{j=0}^{n} \lambda_{i j}=1$ and $\lambda_{i i}=0$, and let $p=\theta_{i} u_{i}+\left(1-\theta_{i}\right) v_{i}$. Let $p=\sum_{j=0}^{n} \mu_{j} u_{j}$ where $\mu_{i} \geq 0$ and $\sum_{i=0}^{n} \mu_{i}=1$. Fix $0 \leq i \leq n$. Then

$$
\begin{align*}
\sum_{j=0}^{n} \mu_{j} u_{j}=p & =\theta_{i} u_{i}+\left(1-\theta_{i}\right) v_{i} \\
& =\theta_{i} u_{i}+\left(1-\theta_{i}\right) \sum_{j=0}^{n} \lambda_{i j} u_{j} \tag{5}\\
& =\theta_{i} u_{i}+\sum_{j \neq i}\left(1-\theta_{i}\right) \lambda_{i j} u_{j} .
\end{align*}
$$

It follows that $\theta_{i}=\mu_{i}$ and $\left(1-\theta_{i}\right) \lambda_{i j}=\mu_{j}$ for $j \neq i$. Thus

$$
v_{i}=\sum_{j \neq i} \lambda_{i j} u_{j}=\frac{1}{1-\mu_{i}} \sum_{j \neq i} \mu_{j} u_{j} .
$$

The barycenter of a simplex $S=\operatorname{conv}\left\{u_{0}, \ldots, u_{k}\right\}$ is $\frac{1}{k+1} \sum_{i=0}^{k} u_{i}$. The median from u_{i} is the Cevian connecting u_{i} to the barycenter $v_{i}=\frac{1}{n} \sum_{j \neq i} u_{j}$ of the face $\operatorname{conv}\left\{u_{j}: 0 \leq j \leq k, j \neq i\right\}$. Taking $\left(\lambda_{0}, \ldots, \lambda_{n}\right)=\left(\frac{1}{n+1}, \ldots, \frac{1}{n+1}\right)$ in Theorem 1.5 we obtain the following

Claim 1.6.

$$
\bigcap_{i=0}^{n}\left[u_{i}, v_{i}\right]=p=\frac{1}{n+1} \sum_{i=0}^{n} u_{i} .
$$

An n-simplex $S=\operatorname{conv}\left\{u_{0}, \ldots, u_{n}\right\}$ is orthocentric if all altitudes in S intersect in a point, called the orthocenter. For $n>2$, not every n-simplex is orthocentric.
Proposition 1.7. S is orthocentric iff there exists a constant c such that $\left(u_{i}-u_{0}, u_{j}-u_{0}\right)=c$ for all $i \neq j \in\{1, \ldots, n\}$.

Proof. Suppose S is orthocentric with orthocenter p. then for any distinct nonzero i, j

$$
0=\left(p-u_{0}, u_{i}-u_{j}\right)=\left(p-u_{0},\left(u_{i}-u_{0}\right)-\left(u_{j}-u_{0}\right)\right) .
$$

Therefore $\left(p-u_{0}, u_{i}-u_{0}\right)=c$ for all $i \neq 0$. Hence

$$
\left(u_{i}-u_{0}, u_{j}-u_{0}\right)=\left(\left(p-u_{0}\right)-\left(p-u_{i}\right), u_{j}-u_{0}\right)=\left(p-u_{0}, u_{j}-u_{0}\right)=c .
$$

Conversely, suppose $\left(u_{i}-u_{0}, u_{j}-u_{0}\right)=c$ for all distinct nonzero i, j. Let $\left\{v_{i}\right\}_{i=1}^{n}$ be a basis dual to the basis $\left\{u_{i}-u_{0}\right\}_{i=1}^{n}$, i.e. $\left(v_{i}, u_{j}-u_{0}\right)=\delta_{i j}$. We claim that $p=u_{0}+c \sum_{i=1}^{n} v_{i}$ is the orthocenter of S. Indeed, if $k \neq \ell$ are nonzero, then

$$
\left(p-u_{0}, u_{k}-u_{\ell}\right)=c\left(\sum_{i=1}^{n} v_{i}, u_{k}-u_{\ell}\right)=c(1-1)=0 .
$$

On the other hand

$$
\begin{aligned}
\left(p-u_{k}, u_{0}-u_{\ell}\right) & =\left(\left(u_{0}-u_{k}\right)+c \sum_{i=1}^{n} v_{i}, u_{0}-u_{\ell}\right) \\
& =\left(u_{0}-u_{k}, u_{0}-u_{\ell}\right)-c\left(\sum_{i=1}^{n} v_{i}, u_{\ell}-u_{0}\right) \\
& =c-c=0
\end{aligned}
$$

1.2 Heron's Formula in n-Space

We start with some remarks on volumes in \mathbb{R}^{n}. Let A be a bounded set in \mathbb{R}^{n} and let 1_{A} be the indicator function of A, i.e. $1_{A}(u)=1$ if $u \in A$ and $1_{A}(u)=0$ otherwise. Assume that the boundary ∂A has measure 0 . Then 1_{A} is Riemann integrable and we define $\operatorname{vol}(A)=\int_{\mathbb{R}^{n}} 1_{A}(x) d x$. For u_{1}, \ldots, u_{n} let

$$
P\left(u_{1}, \ldots, u_{n}\right)=\left\{\sum_{i=1}^{n} x_{i} u_{i}: 0 \leq x_{i} \leq 1\right\}
$$

denote the parallelogram generated by u_{1}, \ldots, u_{n}. The volume of $P\left(u_{1}, \ldots, u_{n}\right)$ is given by

$$
\begin{equation*}
\operatorname{vol}\left(P\left(u_{1}, \ldots, u_{n}\right)\right)=\left|\operatorname{det}\left(u_{1}, \ldots, u_{n}\right)\right| . \tag{6}
\end{equation*}
$$

Let $S=\operatorname{conv}\left\{u_{0}, \ldots, u_{n}\right\}$. Then

$$
\begin{align*}
\operatorname{vol}(S) & =\frac{1}{n!} \operatorname{vol}\left(P\left(u_{1}-u_{0}, \ldots, u_{n}-u_{0}\right)\right) \\
& =\frac{1}{n!}\left|\operatorname{det}\left(u_{1}-u_{0}, \ldots, u_{n}-u_{0}\right)\right| . \tag{7}
\end{align*}
$$

As an example of volume computation, let us evaluate the volume of a ball $B(0, r)=\left\{x \in \mathbb{R}^{n}:|x| \leq r\right\}$. First note that by homogeniety, $\operatorname{vol}(B(0, r))=\operatorname{vol}(B(0,1)):=w_{n}$. The gamma function defined on $x>0$ is given by $\Gamma(x)=\int_{t=0}^{\infty} t^{x-1} e^{-t} d t$. The beta function defined on $x>0, y>0$ is given by $B(x, y)=\int_{t=0}^{1} t^{x-1}(1-t)^{y-1} d t$.

Claim 1.8.

(i) $B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$ For all $x, y>0$
(ii) $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
(iii) $\Gamma(x+1)=x \Gamma(x)$
(iv) $w_{n}=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}$.

Let $\triangle A B C$ be a triangle in the plane with sides $a=|B C|, b=|A C|, c=|A B|$, and let $s=\frac{a+b+c}{2}$ be its semiperimeter. Heron's formula for the area of the triangle is the following

Theorem 1.9 (Heron, Archimedes).

$$
\begin{equation*}
\operatorname{area}(\triangle A B C)=\sqrt{s(s-a)(s-b)(s-c)} \tag{8}
\end{equation*}
$$

Let $S=\operatorname{conv}\left\{u_{0}, \ldots, u_{n}\right\}$ be a n-simplex in \mathbb{R}^{n}. For $0 \leq i, j \leq n$, let $d_{i j}=\left|v_{i}-v_{j}\right|$. define a symmetric $(n+2) \times(n+2)$ matrix

$$
D=\left[\begin{array}{cccccc}
0 & d_{0,1}^{2} & \cdots & d_{0, n-1}^{2} & d_{0, n}^{2} & 1 \tag{9}\\
d_{1,0}^{2} & 0 & \cdots & d_{1, n-1}^{2} & d_{1, n}^{2} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
d_{n-1,0}^{2} & d_{n-1,1}^{2} & \cdots & 0 & d_{n-1, n}^{2} & 1 \\
d_{n, 0}^{2} & d_{n, 1}^{2} & \cdots & d_{n, n-1}^{2} & 0 & 1 \\
1 & 1 & \cdots & 1 & 1 & 0
\end{array}\right] .
$$

The following high dimensional extension of Heron's formula expresses the volume of S in terms of the pairwise distances of its vertices.

Theorem 1.10 (Cayley-Menger).

$$
\begin{equation*}
\operatorname{vol}(S)=\left(\frac{(-1)^{n+1}}{2^{n}(n!)^{2}} \operatorname{det} D\right)^{\frac{1}{2}} \tag{10}
\end{equation*}
$$

Proof. Let

$$
\begin{gather*}
A=\left[\begin{array}{ccccccc}
- & - & u_{0}^{T} & - & - & 1 & 0 \\
- & - & u_{1}^{T} & - & - & 1 & 0 \\
- & \vdots & & & & \vdots & \vdots \\
0 & - & u_{n}^{T} & - & - & - & 1 \\
0 & \cdots & 0 & 0 & 0 & 1
\end{array}\right], \tag{11}\\
B=\left[\begin{array}{ccccc}
\mid & \mid & \cdots & \mid & \mid \\
\mid & \mid & \cdots & \mid & \mid \\
u_{0} & u_{1} & \cdots & u_{n} & 0 \\
\mid & \mid & \cdots & \mid & \mid \\
\mid & \mid & \cdots & \mid & \mid \\
0 & 0 & \cdots & 0 & 1 \\
1 & 1 & \cdots & 1 & 0
\end{array}\right] . \tag{12}
\end{gather*}
$$

Claim 1.11.

$$
\begin{aligned}
\operatorname{det} A & =(-1)^{n} \operatorname{det}\left(u_{1}-u_{0}, \ldots, u_{n}-u_{0}\right), \\
\operatorname{det} B & =(-1)^{n+1} \operatorname{det}\left(u_{1}-u_{0}, \ldots, u_{n}-u_{0}\right),
\end{aligned}
$$

and

$$
A B=\left[\begin{array}{cccccc}
\left(u_{0}, u_{0}\right) & \left(u_{0}, u_{1}\right) & \cdots & \left(u_{0}, u_{n-1}\right) & \left(u_{0}, u_{n}\right) & 1 \\
\left(u_{1}, u_{0}\right) & \left(u_{1}, u_{1}\right) & \cdots & \left(u_{1}, u_{n-1}\right) & \left(u_{1}, u_{n}\right) & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\left(u_{n-1}, u_{0}\right) & \left(u_{n-1}, u_{1}\right) & \cdots & \left(u_{n-1}, u_{n-1}\right) & \left(u_{n-1}, u_{n}\right) & 1 \\
\left(u_{n}, u_{0}\right) & \left(u_{n}, u_{1}\right) & \cdots & \left(u_{n}, u_{n-1}\right) & \left(u_{n}, u_{n}\right) & 1 \\
1 & 1 & \cdots & 1 & 1 & 0
\end{array}\right] .
$$

Now,

$$
\left(u_{i}, u_{j}\right)=\frac{1}{2}\left(\left|u_{i}\right|^{2}+\left|u_{j}\right|^{2}-d_{i j}^{2}\right) .
$$

Thus, by subtracting $\frac{\left|u_{j}\right|^{2}}{2}$ times of the last column from the j-th column, and then subtracting $\frac{\left|u_{i}\right|^{2}}{2}$ times of the last row from the i-th row, it follows that

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det}\left[\begin{array}{cccccc}
0 & -\frac{d_{0,1}^{2}}{2} & \cdots & -\frac{d_{0, n-1}^{2}}{2} & -\frac{d_{0, n}^{2}}{2} & 1 \\
-\frac{d_{1,0}^{2}}{2} & 0 & \cdots & -\frac{d_{1, n-1}^{2}}{2} & -\frac{d_{1, n}^{2}}{2} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-\frac{d_{n-1,0}^{2}}{2} & -\frac{d_{n-1,1}^{2}}{d_{n}^{2}} & \cdots & 0 & -\frac{d_{n-1, n}^{2}}{2} & 1 \\
-\frac{d_{n, 0}^{2}}{2} & -\frac{d_{n, 1}^{2}}{2} & \cdots & -\frac{d_{n, n-1}^{2}}{2} & 0 & 1 \\
1 & 1 & \cdots & 1 & 1 & 0
\end{array}\right] \\
& =4 \cdot\left(-\frac{1}{2}\right)^{n+2} \operatorname{det} D=\frac{(-1)^{n}}{2^{n}} \operatorname{det} D .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
(n!)^{2} \operatorname{vol}(S)^{2} & =\operatorname{vol}\left(P\left(u_{1}-u_{0}, \ldots, u_{n}-u_{0}\right)\right)^{2} \\
& =\operatorname{det}\left(u_{1}-u_{0}, \ldots, u_{n}-u_{0}\right)^{2} \\
& =-\operatorname{det}(A B)=\frac{(-1)^{n+1}}{2^{n}} \operatorname{det} D .
\end{aligned}
$$

The radius of the circumscribed circle of a triangle is given by

$$
\frac{a b c}{4 \sqrt{s(s-a)(s-b)(s-c)}} .
$$

The high dimensional extension is as follows. Let R be the radius of the sphere circumscrbing the simplex $S=\operatorname{conv}\left\{u_{0}, \ldots, u_{n}\right\}$ and let

$$
D_{0}=\left[\begin{array}{ccccc}
0 & d_{0,1}^{2} & \cdots & d_{0, n-1}^{2} & d_{0, n}^{2} \tag{14}\\
d_{1,0}^{2} & 0 & \cdots & d_{1, n-1}^{2} & d_{1, n}^{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
d_{n-1,0}^{2} & d_{n-1,1}^{2} & \cdots & 0 & d_{n-1, n}^{2} \\
d_{n, 0}^{2} & d_{n, 1}^{2} & \cdots & d_{n, n-1}^{2} & 0
\end{array}\right]
$$

Theorem 1.12. $R^{2}=-\frac{\operatorname{det}\left(D_{0}\right)}{2 \operatorname{det}(D)}$.
Proof. Let u_{n+1} denote the center of the circumscribing sphere of S. By adding an $(n+1)$ fixed coordinate, we may view $\left\{u_{i}\right\}_{i=0}^{n+1}$ as points in \mathbb{R}^{n+1}. Let

$$
\tilde{D}=\left[\begin{array}{ccccccc}
0 & d_{0,1}^{2} & \cdots & d_{0, n-1}^{2} & d_{0, n}^{2} & R^{2} & 1 \tag{15}\\
d_{1,0}^{2} & 0 & \cdots & d_{1, n-1}^{2} & d_{1, n}^{2} & R^{2} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
d_{n-1,0}^{2} & d_{n-1,1}^{2} & \cdots & 0 & d_{n-1, n}^{2} & R^{2} & 1 \\
d_{n, 0}^{2} & d_{n, 1}^{2} & \cdots & d_{n, n-1}^{2} & 0 & R^{2} & 1 \\
R^{2} & R^{2} & \cdots & R^{2} & R^{2} & 0 & 1 \\
1 & 1 & \cdots & 1 & 1 & 1 & 0
\end{array}\right] .
$$

The simplex $\tilde{S}=\operatorname{conv}\left\{u_{i}\right\}_{i=0}^{n+1}$ is degenerate and thus has volume 0 . Noting that $d_{i, n+1}^{2}=R^{2}$ for all $0 \leq i \leq n$, it follows from Theorem 1.10 that $\operatorname{det} \tilde{D}=0$. Subtracting R^{2} times the ($n+3$)-rd column from the $(n+2)$-nd column, and then subtracting R^{2} times the $(n+3)$-rd row from the $(n+2)$-nd row, it follows that $0=\operatorname{det} \tilde{D}=\operatorname{det} E$, where

$$
E=\left[\begin{array}{ccccccc}
0 & d_{0,1}^{2} & \cdots & d_{0, n-1}^{2} & d_{0, n}^{2} & 0 & 1 \tag{16}\\
d_{1,0}^{2} & 0 & \cdots & d_{1, n-1}^{2} & d_{1, n}^{2} & 0 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
d_{n-1,0}^{2} & d_{n-1,1}^{2} & \cdots & 0 & d_{n-1, n}^{2} & 0 & 1 \\
d_{n, 0}^{2} & d_{n, 1}^{2} & \cdots & d_{n, n-1}^{2} & 0 & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 & -2 R^{2} & 1 \\
1 & 1 & \cdots & 1 & 1 & 1 & 0
\end{array}\right] .
$$

Expanding $\operatorname{det} E$ by the ($n+2$)-nd row we obtain

$$
0=\operatorname{det} \tilde{D}=\operatorname{det} E=-\operatorname{det} D_{0}-2 R^{2} \operatorname{det} D,
$$

hence $R^{2}=-\frac{\operatorname{det} D_{0}}{2 \operatorname{det} D}$.

1.3 Touching Spheres

Let $C_{1}=S\left(a_{1}, r_{1}\right), \ldots, C_{n+2}=S\left(a_{n+2}, r_{n+2}\right)$ be pairwise touching (i.e. tangent) spheres in \mathbb{R}^{n}. The following result was proved by Descartes for $n=2$ and by Gosset for general n.
Theorem 1.13 (Descartes, Gosset).
(i) If all C_{i} 's touch externally then

$$
\begin{equation*}
\left(\sum_{i=1}^{n+2} r_{i}^{-1}\right)^{2}=n \sum_{i=1}^{n+2} r_{i}^{-2} . \tag{17}
\end{equation*}
$$

(ii) If C_{1}, \ldots, C_{n+1} touch externally among themselves, and all touch C_{n+2} internally, then

$$
\begin{equation*}
\left(\sum_{i=1}^{n+1} r_{i}^{-1}-r_{n+2}^{-1}\right)^{2}=n \sum_{i=1}^{n+2} r_{i}^{-2} \tag{18}
\end{equation*}
$$

Proof. (i) The assumption that the C_{i} 's are externally touching implies that for all $1 \leq i, j \leq n+2$

$$
\begin{equation*}
\left|a_{i}-a_{j}\right|^{2}=\left(r_{i}+r_{j}\right)^{2}-4 \delta_{i j} r_{i} r_{j} . \tag{19}
\end{equation*}
$$

The $a_{1}, \ldots, a_{n+2} \in \mathbb{R}^{n}$ are affinely dependent, i.e. there exists a $0 \neq\left(\beta_{1}, \ldots, \beta_{n+2}\right) \in \mathbb{R}^{n+2}$ such that $\sum_{i=1}^{n+2} \beta_{i}=0$ and $\sum_{i=1}^{n+2} \beta_{i} a_{i}=0$. Multiplying (19) by β_{i} and over all i 's we obtain

$$
\begin{equation*}
\sum_{i=1}^{n+2} \beta_{i}\left|a_{i}\right|^{2}=\sum_{i=1}^{n+2} \beta_{i} r_{i}^{2}+2\left(\sum_{i=1}^{n+2} \beta_{i} r_{i}\right) r_{j}-4 \beta_{j} r_{j}^{2} \tag{20}
\end{equation*}
$$

Let

$$
A=\sum_{i=1}^{n+2} \beta_{i} r_{i} \quad, \quad B=\sum_{i=1}^{n+2} \beta_{i}\left(r_{i}^{2}-\left|a_{i}\right|^{2}\right)
$$

Then (20) implies that for all $1 \leq j \leq n$

$$
\begin{equation*}
4 r_{j}^{2} \beta_{j}=2 A r_{j}+B \tag{21}
\end{equation*}
$$

Dividing (21) by r_{j} and summing over all j 's we obtain

$$
\begin{equation*}
4 A=2(n+2) A+B \sum_{j=1}^{n+2} \frac{1}{r_{j}}, \tag{22}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
A=-\frac{B}{2 n} \sum_{j=1}^{n+2} \frac{1}{r_{j}} \tag{23}
\end{equation*}
$$

Dividing (21) by r_{j}^{2} and summing over all j 's we obtain

$$
\begin{equation*}
0=4 \sum_{j=1}^{n+2} \beta_{j}=2 A \sum_{j=1}^{n+2} \frac{1}{r_{j}}+B \sum_{j=1}^{n+2} \frac{1}{r_{j}^{2}} \tag{24}
\end{equation*}
$$

If $B=0$ then $A=0$ and hence $\beta_{j}=0$ for all j 's, a contradiction. Hence $B \neq 0$. Substituting (23) in (24) we obtain

$$
\begin{equation*}
0=-\frac{B}{n}\left(\sum_{j=1}^{n+2} \frac{1}{r_{j}}\right)^{2}+B \sum_{j=1}^{n+2} \frac{1}{r_{j}^{2}} \tag{25}
\end{equation*}
$$

Dividing by B we obtain (17).

1.4 Inversion

Inversion is the map $\phi: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}$ given by $\phi(x)=\frac{x}{|x|^{2}}$. Clearly, ϕ is an involution, i.e. $\phi^{2}=I$. In this section we will study some properties of this map. For $a \in \mathbb{R}^{n}$ and $r>0$, let $S(a, r)=$ $\left\{x \in \mathbb{R}^{n}:|x-a|=r\right\}$ be the sphere of radius r and center a. For $0 \neq u \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$ let $H_{u, \alpha}=\left\{x \in \mathbb{R}^{n}:(x, u)=\alpha\right\}$ be the hyperplane orthogonal to u that passes through the point $\frac{\alpha u}{|u|^{2}}$.

Claim 1.14.

(i) ϕ maps $H_{u, 0} \backslash\{0\}$ bijectively onto itself.
(ii) If $\alpha \neq 0$ then ϕ map $H_{u, \alpha}$ bijectively onto $S\left(\frac{u}{2 \alpha}, \frac{|u|}{2|\alpha|}\right) \backslash\{0\}$.
(iii) Let $S(a, r)$ be a sphere that contains 0 . Then ϕ maps $S(a, r) \backslash\{0\}$ onto the hyperplane $H_{\frac{a}{\left.2|a|\right|^{2}}, \frac{1}{4|a|^{2}}}$.
(iv) Let $S(a, r)$ be a sphere with $|a|>r$. Then ϕ maps $S(a, r)$ bijectively onto the sphere $S\left(\frac{a}{|a|^{2}-r^{2}}, \frac{r}{|a|^{2}-r^{2}}\right)$.
(v) Let $S(a, r)$ be a sphere with $|a|<r$. Then ϕ maps $S(a, r)$ bijectively onto the sphere $S\left(\frac{a}{|a|^{2}-r^{2}}, \frac{r}{r^{2}-|a|^{2}}\right)$.

Proof. (i) is clear. (ii) Let $v \in H_{u, \alpha}$. Then

$$
\begin{align*}
\left|\phi(v)-\frac{u}{2 \alpha}\right|^{2} & =\left|\frac{v}{|v|^{2}}-\frac{u}{2 \alpha}\right|^{2} \\
& =\frac{1}{|v|^{2}}+\frac{|u|^{2}}{4 \alpha^{2}}-2\left(\frac{v}{|v|^{2}}, \frac{u}{2 \alpha}\right) \tag{26}\\
& =\frac{|u|^{2}}{4 \alpha^{2}} .
\end{align*}
$$

(iii) follows from (ii). To show (iv), suppose that $|a|>r$ and $x \in S(a, r)$. Then

$$
\begin{align*}
\left|\phi(x)-\frac{a}{|a|^{2}-r^{2}}\right|^{2} & =\left|\frac{x}{|x|^{2}}-\frac{a}{|a|^{2}-r^{2}}\right|^{2} \\
& =\frac{1}{|x|^{2}}+\frac{|a|^{2}}{\left(|a|^{2}-r^{2}\right)^{2}}-\frac{2(x, a)}{|x|^{2}\left(|a|^{2}-r^{2}\right)} \\
& =\frac{|a|^{2}-r^{2}-2(x, a)}{|x|^{2}\left(|a|^{2}-r^{2}\right)}+\frac{|a|^{2}}{\left(|a|^{2}-r^{2}\right)^{2}} \tag{27}\\
& =\frac{|a|^{2}}{\left(|a|^{2}-r^{2}\right)^{2}}-\frac{|a|^{2}-r^{2}}{\left(|a|^{2}-r^{2}\right)^{2}} \\
& =\left(\frac{r}{|a|^{2}-r^{2}}\right)^{2} .
\end{align*}
$$

The proof of (v) is essentially the same.

2 Projective Geometry

2.1 The n-Dimensional Projective Space

Let V be an $(n+1)$-dimensional vector space over a field \mathbb{F}. The projective space $P(V)$ associated with V is defined as follows. The points of $P(V)$ are the 1-dimensional linear subspaces of V. Given a nonzero $u \in V$, let $[u]=\operatorname{span}\{u\}$ denote the line spanned by u. A projective subspace (or flat) of $P(V)$ is the set $[U]=\{[u]: 0 \neq u \in U\}$, where U is a linear subspace of V. The dimension of $[U]$ is $\operatorname{dim}[U]=\operatorname{dim} U-1$. When $V=\mathbb{F}^{n+1}$ and $0 \neq u=\left(a_{0}, \ldots, a_{n}\right) \in V$, we denote $[u]$ by its homogenous coordinates $\left[a_{0}, \ldots, a_{n}\right]$. The projective space $P\left(\mathbb{F}^{n+1}\right)$ is denoted by $\mathbb{F} P^{n}$. Let V^{*} denote the dual space of V. This is the space of linear functionals of V. The dual of $P(V)$ is $P\left(V^{*}\right)$. The duality map Φ is the bijective map from the
set of projective subspaces of $P(V)$ to projective subspaces of $P\left(V^{*}\right)$, that assigns to a subspace $P(U)$ of $P(V)$, the subspace $P\left(U^{\circ}\right)$, where

$$
U^{\circ}=\left\{\phi \in V^{*}: \phi(u)=0 \text { for all } u \in U\right\}
$$

is the annihilator of U. Note that $\Phi^{2}=$ Identity, and $\operatorname{dim} \Phi P(U)=\operatorname{dim} P(V)-\operatorname{dim} P(U)$. For example, if $\operatorname{dimV}=3$ then Φ maps points to lines, and lines to points. Furthermore, $P\left(U_{1}\right) \subset P\left(U_{2}\right)$ iff $\Phi P\left(U_{1}\right) \supset \Phi P\left(U_{2}\right)$. This leads to the following
Duality Principle: Any true statement concerning incidence in $P(V)$ gives rise to a true statement in $P\left(V^{*}\right)$ obtain by replacing any $P(U)$ by its dual $\Phi P(U)$. Consider, for example, the statement: any two distinct points in $\mathbb{F} P^{2}$ are contained in a unique line. The dual statement is: Any two distinct lines in $\mathbb{F} P^{2}$ intersect in a single point.

Let $G L(V)$ denote the general linear group of V, i.e. all invertible linear transformations of V. Let $Z(V)=\{c I: c \neq 0\}$ be the normal subgroup consisting of all nonzero multiples of the identity. The projective linear group is defined as $P G L(V)=G L(V) / Z(V)$. The action of $P G L(V)$ on $P(V)$ is given as follows. Let $g \in G L(V)$ and let \bar{g} be its image in $P G L(V)$. Let $0 \neq u \in V$. Then $\bar{g}[v]=[g v]$. Clearly, if $[U]$ is a projective subspace of $P(V)$, then $T[U]$ is a projective subspace and $\operatorname{dim} T[U]=\operatorname{dim}[U]$ for any $T \in P G L(V)$. A set $A \subset P(V)$ is in general position such that C is linearly independent for any $C \subset A$ of cardinality $|C| \leq n+1$.

Claim 2.1. Let $A=\left\{p_{1}, \ldots, p_{n+2}\right\}$ and $B=\left\{q_{1}, \ldots, q_{n+2}\right\}$ be two sets in general position in $P(V)$. Then there exists a unique projective transformation $T \in P G L(V)$ such that $T p_{i}=q_{i}$ for all $1 \leq i \leq n+2$.

Proof. For $1 \leq i \leq n+2$ write $p_{i}=\left[u_{i}\right]$ and $q_{i}=\left[v_{i}\right]$, where $u_{i}, v_{i} \in V$. Then both u_{1}, \ldots, u_{n+1} and v_{1}, \ldots, v_{n+2} are bases of V. There exist unique $\left(\alpha_{1}, \ldots, \alpha_{n+1}\right),\left(\beta_{1}, \ldots, \beta_{n+1} \in \mathbb{F}^{n+1}\right.$ such that $u_{n+2}=\sum_{i=1}^{n+1} \alpha_{i} u_{i}$ and $v_{n+2}=\sum_{i=1}^{n+1} \beta_{i} v_{i}$. By general position, $\alpha_{i} \neq 0$ and $\beta_{i} \neq 0$ for all $1 \leq i \leq n+1$. Let $g \in G L(V)$ be given by $g\left(\alpha_{i} u_{i}\right)=\beta_{i} v_{i}$. Then $T=\bar{g}$ satisfies $T p_{i}=q_{i}$ for all $1 \leq i \leq n+1$. Furthermore

$$
\begin{align*}
T p_{n+2}=\left[g u_{n+2}\right] & =\left[g \sum_{i=1}^{n+1} \alpha_{i} u_{i}\right]=\left[\sum_{i=1}^{n+1} g\left(\alpha_{i} u_{i}\right)\right] \tag{28}\\
& =\left[\sum_{i=1}^{n+1} \beta_{i} v_{i}\right]=\left[v_{n+2}\right]=q_{n+2} .
\end{align*}
$$

For the uniqueness, assume that $S p_{i}=q_{i}$ for $1 \leq i \leq n+2$, for some $S=\bar{h}$. Then there exists nonzero $\gamma_{1}, \ldots, \gamma_{n+2}$ such that $h\left(\alpha_{i} u_{i}\right)=\gamma_{i} v_{i}$. Then

$$
\begin{align*}
{\left[\sum_{i=1}^{n+1} \beta_{i} v_{i}\right] } & =q_{n+2}=S p_{n+2}=\left[h u_{n+2}\right] \\
& =\left[h\left(\sum_{i=1}^{n+1} \alpha_{i} u_{i}\right)\right]=\left[\sum_{i=1}^{n+1} h\left(\alpha_{i} u_{i}\right)\right]=\left[\sum_{i=1} \gamma_{i} v_{i}\right] . \tag{29}
\end{align*}
$$

It follows that there exists a $\theta \neq 0$ such that $\gamma_{i}=\theta \beta_{i}$ for all $1 \leq i \leq n+1$. Therefore

$$
h\left(\alpha_{i} u_{i}\right)=\gamma_{i} u_{i}=\theta \beta_{i} v_{i}=\theta g\left(\alpha_{i} u_{i}\right) .
$$

Thus $S=\bar{h}=\bar{g}=T$.

2.2 Desargue and Pappus Theorems

Theorem 2.2 (Desargue). Let L_{1}, L_{2}, L_{3} be three distinct lines in $\mathbb{F} P^{2}$ that intersect in a point p.
 $q_{1}=\overline{b_{1} c_{1}} \cap \overline{b_{2} c_{2}}, q_{2}=\overline{a_{1} c_{1}} \cap \overline{a_{2} c_{2}}$ and $q_{3}=\overline{a_{1} b_{1}} \cap \overline{a_{2} b_{2}}$. Then q_{1}, q_{2}, q_{3} are collinear.

Proof. We identify a projective point with any of its representatives in $\mathbb{F}^{3} \backslash\{0\}$. There exist $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2} \in$ F such that

$$
p=\alpha_{1} a_{1}+\alpha_{2} a_{2}=\beta_{1} b_{1}+\beta_{2} b_{2}=\gamma_{1} c_{1}+\gamma_{2} c_{2}
$$

It follows that $\alpha_{1} a_{1}-\beta_{1} b_{1}=\beta_{2} b_{2}-\alpha_{2} a_{2}$. As $\alpha_{1} a_{1}-\beta_{1} b_{1} \in \overline{a_{1} b_{1}}$ and $\beta_{2} b_{2}-\alpha_{2} a_{2} \in \overline{a_{2} b_{2}}$, it follows that $q_{3}=\alpha_{1} a_{1}-\beta_{1} b_{1}$. Similarly $q_{1}=\beta_{1} b_{1}-\gamma_{1} c_{1}$ and $q_{2}=\gamma_{1} c_{1}-\alpha_{1} a_{1}$. Summing the three equalities, we obtain that $q_{1}+q_{2}+q_{3}=0$. Hence q_{1}, q_{2}, q_{3} are collinear.

Figure 5: Desargue Theorem

Remark: It turns out that the dual to Desargue theorem is the converse to Desargue theorem (check!).
Theorem 2.3 (Pappus). Let L_{1}, L_{2} be two distinct lines in $\mathbb{F P}^{2}$ and let $q=L_{1} \cap L_{2}$. Let a_{1}, a_{2}, a_{3} be distinct points in $L_{1} \backslash \underline{\{q\}}$, and let b_{1}, b_{2}, b_{3} be distinct points in $L_{2} \backslash\{q\}$. Let $c_{1}=\overline{a_{2} b_{3}} \cap \overline{a_{3} b_{2}}$, $c_{2}=\overline{a_{1} b_{3}} \cap \overline{a_{3} b_{1}}$ and $c_{3}=\overline{a_{1} b_{2}} \cap \overline{a_{2} b_{1}}$. Then c_{1}, c_{2}, c_{3} are collinear.

Proof. Without loss of generality, the points $a_{1}, b_{1}, c_{1}, a_{3}$ are in general position. We may therefore assume that $a_{1}=[1,0,0],\left[b_{1}=[0,1,0], c_{1}=0,0,1\right]$ and $a_{3}=[1,1,1]$. It follows that

$$
\begin{align*}
& \Phi\left(\overline{a_{2} c_{1}}\right)=[1,-p, 0], \\
& \Phi\left(\overline{a_{1} c_{2}}\right)=[0,1,-q], \tag{30}\\
& \Phi\left(\overline{b_{1} b_{2}}\right)=[-r, 0,1] .
\end{align*}
$$

As

$$
\overline{a_{2} c_{1}} \cap \overline{a_{1} c_{2}} \cap \overline{b_{1} b_{2}}=b_{3},
$$

it follows that

$$
0=\operatorname{det}\left[\begin{array}{ccc}
1 & -p & 0 \\
0 & 1 & -q \\
-r & 0 & 1
\end{array}\right]=1-p q r
$$

Therefore $p q r=1$. Now

$$
\begin{align*}
& \Phi\left(\overline{a_{2} b_{1}}\right)=[1,0,-p] \\
& \Phi\left(\overline{a_{1} b_{2}}\right)=[0,-r, 1] \tag{31}\\
& \Phi\left(\overline{c_{1} c_{2}}\right)=[-q, 1,0]
\end{align*}
$$

Now

$$
\operatorname{det}\left[\begin{array}{ccc}
1 & 0 & -p \\
0 & -r & 1 \\
-q & 1 & 0
\end{array}\right]=-1+p q r=0
$$

It follows that

$$
\left.\left\{c_{3}\right\} \cap \overline{c_{1} c_{2}}=\left(\overline{a_{2} b_{1}} \cap \overline{a_{1} b_{2}}\right) \cap \overline{c_{1} c_{2}}\right)
$$

Thus c_{1}, c_{2}, c_{3} are collinear.

Figure 6: Pappus Theorem: first proof

We next give a different proof of Pappus theorem. We need some preliminaries. Let $A \in M_{n}(\mathbb{F})$. For subsets $I=\left\{i_{1}<\cdots<i_{k}\right\}, J=\left\{j_{1}<\cdots<j_{k}\right\} \subset[n]$, let $B=A[I, J] \in M_{k}(\mathbb{F})$ be given by $B_{s t}=A_{i_{s} j_{t}}$. For a subset $K \subset[n]$, let $\bar{K}=[n] \backslash K$. For a partition $[n]=I \cup \bar{I}$ where $I=\left\{i_{1}<\cdots<i_{k}\right\}$, $\bar{I}=\left\{j_{1}<\cdots<j_{n-k}\right\}$, let

$$
\sigma_{I, \bar{I}}=\left(\begin{array}{llllll}
1 & \cdots & k & k+1 & \cdots & n \\
i_{1} & \cdots & i_{k} & j_{1} & \cdots & j_{n-k}
\end{array}\right)
$$

Proposition 2.4 (Laplace Expansion). Let $K \cup \bar{K}$ be a partition of $[n]$ with $|K|=k$, and let $A \in M_{n}(\mathbb{F})$. Then

$$
\begin{equation*}
\operatorname{det} A=\sum_{I \in\binom{[n]}{k}} \operatorname{sgn}\left(\sigma_{I, \bar{I}}\right) \operatorname{det} A[K, I] \cdot \operatorname{det} A[\bar{K}, \bar{I}] \tag{32}
\end{equation*}
$$

For vectors $u_{1}, \ldots, u_{n} \in \mathbb{F}^{n}$ we abbreviate $\left[u_{1}, \ldots, u_{n}\right]=\operatorname{det}\left(u_{1}, \ldots, u_{n}\right)$.
Proposition 2.5 (Plücker relation). Let $u_{1}, \ldots, u_{4} \in \mathbb{F}^{2}$. Then

$$
\begin{equation*}
\left[u_{1}, u_{2}\right] \cdot\left[u_{3}, u_{4}\right]-\left[u_{1}, u_{3}\right] \cdot\left[u_{2}, u_{4}\right]+\left[u_{1}, u_{4}\right] \cdot\left[u_{2}, u_{3}\right]=0 \tag{33}
\end{equation*}
$$

Proof. Let

$$
A=\left[\begin{array}{llll}
u_{1} & u_{2} & u_{3} & u_{4} \\
u_{1} & u_{2} & u_{3} & u_{4}
\end{array}\right] \in M_{4}(\mathbb{F}) .
$$

Then $\operatorname{rk}(A) \leq 2$, so in particular $\operatorname{det} A=0$. On the other hand, by Proposition 2.4:

$$
\operatorname{det} A=2\left(\left[u_{1}, u_{2}\right] \cdot\left[u_{3}, u_{4}\right]-\left[u_{1}, u_{3}\right] \cdot\left[u_{2}, u_{4}\right]+\left[u_{1}, u_{4}\right] \cdot\left[u_{2}, u_{3}\right]\right) .
$$

Corollary 2.6. Let $u_{0}, \ldots, u_{4} \in \mathbb{F}^{3}$. Then:

$$
\begin{equation*}
\left[u_{0}, u_{1}, u_{2}\right] \cdot\left[u_{0}, u_{3}, u_{4}\right]-\left[u_{0}, u_{1}, u_{3}\right] \cdot\left[u_{0}, u_{2}, u_{4}\right]+\left[u_{0}, u_{1}, u_{4}\right] \cdot\left[u_{0}, u_{2}, u_{3}\right]=0 . \tag{34}
\end{equation*}
$$

Proof. For $u_{0}=e_{1}$, Eq. (34) follows from (33). In general, Let $T \in G L_{3}(\mathbb{F})$ such that $T u_{0}=e_{1}$. Then $0=\left[T u_{0}, T u_{1}, T u_{2}\right] \cdot\left[T u_{0}, T u_{3}, T u_{4}\right]-\left[T u_{0}, T u_{1}, T u_{3}\right] \cdot\left[T u_{0}, T u_{2}, T u_{4}\right]+\left[T u_{0}, T u_{1}, T u_{4}\right] \cdot\left[T u_{0}, T u_{2}, T u_{3}\right]$ $=\operatorname{det}(T)^{2}\left(\left[u_{0}, u_{1}, u_{2}\right] \cdot\left[u_{0}, u_{3}, u_{4}\right]-\left[u_{0}, u_{1}, u_{3}\right] \cdot\left[u_{0}, u_{2}, u_{4}\right]+\left[u_{0}, u_{1}, u_{4}\right] \cdot\left[u_{0}, u_{2}, u_{3}\right]\right)$.

Another proof of Pappus Theorem.

Figure 7: Pappus Theorem: second proof

Using the Plücker relation for each of the 8 lines in the configuration we obtain:

$$
\begin{aligned}
& {[147] \cdot[123]-[142] \cdot[173]+[143] \cdot[172]=0 \Rightarrow[142] \cdot[173]=[143] \cdot[172],} \\
& {[147] \cdot[159]-[145] \cdot[179]+[149] \cdot[175]=0 \Rightarrow[145] \cdot[179]=[149] \cdot[175],} \\
& {[147] \cdot[186]-[148] \cdot[176]+[146] \cdot[178]=0 \Rightarrow[148] \cdot[176]=[146] \cdot[178],} \\
& {[471] \cdot[456]-[475] \cdot[416]+[476] \cdot[415]=0 \Rightarrow[475] \cdot[416]=[476] \cdot[415],} \\
& {[471] \cdot[483]-[478] \cdot[413]+[473] \cdot[418]=0 \Rightarrow[478] \cdot[413]=[473] \cdot[418],} \\
& {[471] \cdot[429]-[472] \cdot[419]+[479] \cdot[412]=0 \Rightarrow[472] \cdot[419]=[479] \cdot[412],} \\
& {[714] \cdot[726]-[712] \cdot[746]+[716] \cdot[742]=0 \Rightarrow[712] \cdot[746]=[716] \cdot[742],} \\
& {[714] \cdot[753]-[715] \cdot[743]+[713] \cdot[745]=0 \Rightarrow[715] \cdot[743]=[713] \cdot[745] .}
\end{aligned}
$$

Multiplying the columns and cancelling equal terms, we obtain

$$
[719] \cdot[748]=[718] \cdot[749] .
$$

On the other hand

$$
[714] \cdot[789]-[719] \cdot[748]+[718] \cdot[749]=0
$$

Hence $[789]=0$ and therefore $7,8,9$ are collinear.

2.3 Conic Sections and Quadratic Forms

Consider the cone $C=\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2}=x^{2}+y^{2}\right\}$. A conic section is the intersection of C with a plane H. There are several possibilities.

1. $H=e_{3}^{\frac{1}{3}}$. Then $H \cap C$ is the single point $\{0\}$.
2. $H=e_{2}^{\perp}$. Then $H \cap C$ is the two intersecting lines $\operatorname{span}\left(e_{1}-e_{3}\right) \cup \operatorname{span}\left(e_{1}+e_{3}\right)$.
3. $H=\left(e_{1}-e_{3}\right)^{\perp}$. Then $H \cap C$ is the line $\operatorname{span}\left\{e_{1}+e_{3}\right)$.
4. $H=H_{e_{1}, 1}$. Then $H \cap C$ is the hyperbola $\left\{(1, y, z): 1+y^{2}=z^{2}\right\}$.
5. $H=H_{e_{1}+e_{3},-1}$. Then $H \cap C$ is the parabola $\left.\left\{\frac{y^{2}-1}{2}, y,-\frac{y^{2}+1}{2}\right): y \in \mathbb{R}\right\}$.
6. $H=H_{e_{3}, 1}$. Then $H \cap C$ is the circle $\left\{(x, y, 1): x^{2}+y^{2}=1\right\}$.

Let A be a real symmetric matrix in $M_{n}(\mathbb{R})$. The associated quadratic form is $q_{A}(x)=x^{T} A x$. Two symmetric matrices A and B are congruent if there exists a matrix $P \in G L_{n}(\mathbb{R})$ such that $B=P A P^{T}$. Let $n_{+}\left(n_{-}\right)$be the number of positive (negative) eigenvalues of A. The signature of A is $\left(n_{+}, n_{-}\right)$.

Proposition 2.7 (Sylvester's Inertia Theorem). Let $A, B \in M_{n}(\mathbb{R})$ be symmetric. Then:
(i) A is congruent to a diagonal matrix $D_{n_{+}, n_{-}}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ where

$$
d_{i}= \begin{cases}+1 & 1 \leq i \leq n_{+} \\ -1 & n_{+}+1 \leq i \leq n_{+}+n_{-} \\ 0 & n_{+}+n_{-}+1 \leq i \leq n\end{cases}
$$

(ii) A and B are congruent iff they have the same rank and the same signature.

Proof. (i) Let n_{+}, n_{-}denote respectively the number of positive and negative eigenvalues of A. Let $\left\{\lambda_{i}\right\}_{i=1}^{n}$ denote the eigenvalues of A. We may assume that $\lambda_{i}>0$ for $1 \leq i \leq n_{+}$and $\lambda_{i}<0$ for $n_{+}+1 \leq i \leq n_{+}+n_{-}$. Let $S \in O(n)$ such that $S A S^{-1}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Let

$$
\mu_{i}= \begin{cases}\frac{1}{\sqrt{\lambda_{i}}} & 1 \leq i \leq n_{+} \\ \frac{1}{\sqrt{-\lambda_{i}}} & n_{+}+1 \leq i \leq n_{+}+n_{-} \\ 1 & n_{+}+n_{-}+1 \leq i \leq n\end{cases}
$$

and let $T=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) S$. Then $T A T^{t}$ is of the required form. (ii) It suffices to show that if $A=D_{n_{+}, n_{-}}$is congruent to $B=D_{m_{+}, m_{-}}$then $\left(n_{+}, n_{-}\right)=\left(m_{+}, m_{-}\right)$. Clearly, $n_{+}+n_{-}=\operatorname{rk}(A)=$ $\operatorname{rk}(B)=m_{+}+m_{-}$. Write $B=T A T^{t}$, and let u_{1}, \ldots, u_{n} be the rows of T. Then

$$
\begin{equation*}
\sum_{i=1}^{m_{+}} x_{i}^{2}-\sum_{i=m_{+}+1}^{m_{+}+m_{-}} x_{i}^{2}=\sum_{j=1}^{n_{+}}\left(u_{j} \cdot x\right)^{2}-\sum_{j=n_{+}+1}^{n_{+}+n_{-}}\left(u_{j} \cdot x\right)^{2} \tag{35}
\end{equation*}
$$

Suppose for contradiction that $\left(n_{+}, n_{-}\right) \neq\left(m_{+}, m_{-}\right)$. We may assume that $n_{+}>m_{+}$. As $m_{+}+\left(n-n_{+}\right)<$ n, there exists a nonzero $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n}$ such that $\theta_{i}=0$ for $1 \leq i \leq m_{+}$and $u_{j} \cdot \theta=0$ for $j>n_{+}$. It follows that the left hand side of (35) is negative, while the right hand side of (35) is non-negative, a contradiction.

Let $A \in M_{n+1}(\mathbb{R})$ be a symmetric matrix with a quadratic form $q_{A}(x)$. The corresponding quadratic ($n-1$)-dimensional surface is $Q_{A}=\left\{[x] \in \mathbb{R P}^{n}: q_{A}(x)=0\right\}$. Sets $S_{1}, S_{2} \subset \mathbb{P}(V)$ are projectively equivalent if there exists a projective transformation $T \in P G L(V)$ such that $T S_{1}=S_{2}$.

Claim 2.8. Q_{A} and Q_{B} are projectively equivalent iff A is congruent to either B or to $-B$.

Proof. If $B=P^{T} A P$ for $P \in G L_{n+1}(\mathbb{R})$ then

$$
[x] \in Q_{B} \Leftrightarrow x^{T} B x=0 \Leftrightarrow(P x)^{T} A(P x)=0 \Leftrightarrow P x \in Q_{A} \Leftrightarrow[x] \in P^{-1} Q_{A} .
$$

Hence $Q_{B}=P^{-1} Q_{A}$. If $-B=P^{T} A P$ then $Q_{B}=Q_{-B}=P^{-1} Q_{A}$. Conversely, suppose $Q_{B}=T Q_{A}$ for some $T \in P G L_{n+1}(\mathbb{R})$. It follows that there exist two bases u_{1}, \ldots, u_{n+1} and v_{1}, \ldots, v_{n+1} of \mathbb{R}^{n+1} such that

$$
\begin{equation*}
\sum_{i=1}^{k}\left(u_{i} x\right)^{2}-\sum_{i=k+1}^{k+\ell}\left(u_{i} x\right)^{2}=0 \Leftrightarrow \sum_{i=1}^{k^{\prime}}\left(v_{i} x\right)^{2}-\sum_{i=k^{\prime}+1}^{k^{\prime}+\ell^{\prime}}\left(v_{i} x\right)^{2}=0 . \tag{36}
\end{equation*}
$$

By replacing B with $-B$ if necessary, we may assume that $k \geq \ell$ and $k^{\prime} \geq \ell^{\prime}$. We claim that $k=k^{\prime}$ and $\ell=\ell^{\prime}$ and therefore A is congruent to B. Indeed, suppose to the contrary that $k>k^{\prime}$. Then there exists a nonzero $x \in \mathbb{R}^{n+1}$ such that

- $v_{i} x=v_{i+k^{\prime}} x$ for $1 \leq i \leq \ell^{\prime}$.
- $v_{i} x=0$ for $\ell^{\prime}+1 \leq i \leq k^{\prime}$.
- $u_{i} x=0$ for $k+1 \leq i \leq n+1$.

It follows that there exists an $1 \leq i_{0} \leq k$ such that $u_{i} x \neq 0$, and then the right hand side of (36) is zero, while the left hand side is positive, a contradiction. Thus $k=k^{\prime}$. The proof that $\ell=\ell^{\prime}$ is similar.

Using Proposition 2.7 and Claim 2.8, quadrics in $\mathbb{P}^{2} \mathbb{R}$ are classified as follows:

n_{+}	n_{-}	equation	quadric
1	0	$x^{2}=0$	double line: $x=0$
1	1	$x^{2}-y^{2}=0$	two lines: $x=y$ and $x=-y$
3	0	$x^{2}+y^{2}+z^{2}=0$	\emptyset
2	1	$x^{2}+y^{2}=z^{2}$	ellipse

Proposition 2.9. Let $S=\left\{p_{1}, \ldots, p_{5}\right\}$ be 5 points in general position in $\mathbb{P}^{2}(\mathbb{R})$. Then there exists a unique quadric Q_{A} that contains S.

Proof. By Claim 2.1 we may assume that $p_{i}=\left[e_{i}\right]$ for $i=1,2,3$ and $p_{4}=[1,1,1]$. Let $p_{5}=[\alpha, \beta, \gamma]$. Then $\alpha \beta \gamma \neq 0$ and the unique quadric containing S is

$$
f(x, y, z)=(\beta-\gamma) \alpha y z+(\gamma-\alpha) \beta x z+(\alpha-\beta) \gamma x y .
$$

2.4 Cross-Ratios and Pascal's Theorem

Let U be 2-dimensional space over \mathbb{F}, and let $p, q, r, s \in P(U)$ such that p, q, r are distinct. The crossratio ($p, q ; r, s$) is defined as follows. Write $p=[u], q=[v], r=[w], s=\left[w^{\prime}\right]$. Let $w=\alpha u+\beta v$ and $w^{\prime}=\alpha^{\prime} u+\beta^{\prime} v$. Note that $\alpha, \beta \neq 0$, and if $\beta^{\prime}=0$ then $\alpha^{\prime} \neq 0$. Then

$$
\begin{equation*}
(p, q ; r, s)=\frac{\alpha^{\prime} \cdot \beta}{\alpha \cdot \beta^{\prime}} \in \mathbb{F} \cup\{\infty\} \tag{37}
\end{equation*}
$$

It is straightforward to check that $(p, q ; r, s)$ is well defined and that if $T \in P G L(V)$ then $(T p, T q ; T r, T s)=$ $(p, q ; r, s)$. Pick an arbitrary basis z_{1}, z_{2} for U. For an element $u=\lambda_{1} z_{1}+\lambda_{2} z_{2}$, let $\varphi(u)=\frac{\lambda_{1}}{\lambda_{2}} \in \mathbb{F} \cup\{\infty\}$.

Claim 2.10.

$$
\begin{equation*}
(p, q ; r, s)=\frac{(\varphi(p)-\varphi(r)) \cdot(\varphi(q)-\varphi(s))}{(\varphi(p)-\varphi(s))(\varphi(q)-\varphi(r))} \tag{38}
\end{equation*}
$$

Proof. Let $p=[u], q=[v], r=[w], s=\left[w^{\prime}\right]$. Write $u=a_{1} z_{1}+a_{2} z_{2}, v=b_{1} z_{1}+b_{2} z_{2}, w=c_{1} z_{1}+c_{2} z_{2}$, and $w^{\prime}=d_{1} z_{1}+d_{2} z_{2}$. Let $r=\alpha u+\beta v$ and $s=\alpha^{\prime} u+\beta^{\prime} v$. Then

$$
\begin{align*}
c_{1} z_{1}+c_{2} z_{2} & =w=\alpha u+\beta v=\alpha\left(a_{1} z_{1}+a_{2} z_{2}\right)+\beta\left(b_{1} z_{1}+b_{2} z_{2}\right) \\
& =\left(a_{1} \alpha+b_{1} \beta\right) z_{1}+\left(a_{2} \alpha+b_{2} \beta\right) z_{2} . \tag{39}
\end{align*}
$$

and

$$
\begin{align*}
d_{1} z_{1}+d_{2} z_{2} & =w^{\prime}=\alpha^{\prime} u+\beta^{\prime} v=\alpha^{\prime}\left(a_{1} z_{1}+a_{2} z_{2}\right)+\beta^{\prime}\left(b_{1} z_{1}+b_{2} z_{2}\right) \tag{40}\\
& =\left(a_{1} \alpha^{\prime}+b_{1} \beta^{\prime}\right) z_{1}+\left(a_{2} \alpha^{\prime}+b_{2} \beta^{\prime}\right) z_{2} .
\end{align*}
$$

It follows that

$$
\left[\begin{array}{l}
c_{1} \tag{41}\\
c_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right], \quad\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
\alpha^{\prime} \\
\beta^{\prime}
\end{array}\right] .
$$

Using Cramer's rule it follows that

$$
\begin{gather*}
\frac{\alpha}{\beta}=\frac{\operatorname{det}\left[\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right]}{\operatorname{det}\left[\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right]}=\frac{c_{1} b_{2}-c_{2} b_{1}}{a_{1} c_{2}-a_{2} c_{1}}, \\
\frac{\alpha^{\prime}}{\beta^{\prime}}=\frac{\operatorname{det}\left[\begin{array}{ll}
d_{1} & b_{1} \\
d_{2} & b_{2}
\end{array}\right]}{\operatorname{det}\left[\begin{array}{ll}
a_{1} & d_{1} \\
a_{2} & d_{2}
\end{array}\right]}=\frac{d_{1} b_{2}-d_{2} b_{1}}{a_{1} d_{2}-a_{2} d_{1}} . \tag{42}
\end{gather*}
$$

Hence

$$
\begin{align*}
& \frac{(\varphi(p)-\varphi(r)) \cdot(\varphi(q)-\varphi(s))}{(\varphi(p)-\varphi(s))(\varphi(q)-\varphi(r))}=\frac{\left(\frac{a_{1}}{a_{2}}-\frac{c_{1}}{c_{2}}\right) \cdot\left(\frac{b_{1}}{b_{2}}-\frac{d_{1}}{d_{2}}\right)}{\left(\frac{a_{1}}{a_{2}}-\frac{d_{1}}{d_{2}}\right) \cdot\left(\frac{b_{1}}{b_{2}}-\frac{c_{1}}{c_{2}}\right)} \\
& =\frac{\left(a_{1} c_{2}-a_{2} c_{1}\right) \cdot\left(b_{1} d_{2}-b_{2} d_{1}\right)}{\left(a_{1} d_{2}-a_{2} d_{1}\right) \cdot\left(b_{1} c_{2}-b_{2} c_{1}\right)} \tag{43}\\
& =\frac{\left(a_{1} c_{2}-a_{2} c_{1}\right) \cdot\left(b_{1} d_{2}-b_{2} d_{1}\right)}{\left(a_{1} d_{2}-a_{2} d_{1}\right) \cdot\left(b_{1} c_{2}-b_{2} c_{1}\right)} \\
& =\frac{\alpha^{\prime} \beta}{\alpha \beta^{\prime}}=(p, q ; r, s) .
\end{align*}
$$

Proposition 2.11. Let a, b, c, d distinct points on a line ℓ, and let $p \notin \ell$, all in the projective plane $\mathbb{P}^{2}(\mathbb{F})$. Let $\overline{p a}, \overline{p b}, \overline{p c}, \overline{p d}$ be the four lines through p, and let $a_{1}, b_{1}, c_{1}, d_{1}$ be their dual points. Then $\left(a_{1}, b_{1} ; c_{1}, d_{1}\right)=(a, b ; c, d)$. In particular, if $\tilde{\ell}$ is another line that does not contain p, and $\ell^{\prime} \cap \overline{p a}=a^{\prime}$, $\ell^{\prime} \cap \overline{p b}=b^{\prime}, \ell^{\prime} \cap \overline{p c}=c^{\prime}, \ell^{\prime} \cap \overline{p d}=d^{\prime}$, then $(a, b ; c, d)=\left(a^{\prime}, b^{\prime} ; c^{\prime}, d^{\prime}\right)$.

Proof. Write $p=[w], a=[u], b=[v], c=[\alpha u+\beta v], d=\left[\alpha^{\prime} u+\beta^{\prime} v\right]$. Let $a_{1}=\left[u_{1}\right], b_{1}=\left[v_{1}\right]$. Thus $u_{1} \perp u, w$ and $v_{1} \perp v, w$. It follows that $c_{1}=\alpha_{1} u_{1}+\beta_{1} v_{1}$ and $d_{1}=\alpha_{1}^{\prime} u_{1}+\beta_{1}^{\prime} v_{1}$, where $\alpha_{1}=\alpha\left(v_{1} \cdot u\right)$, $\beta_{1}=-\beta\left(u_{1} \cdot v\right)$, and $\alpha_{1}^{\prime}=\alpha^{\prime}\left(v_{1} \cdot u\right), \beta_{1}^{\prime}=-\beta^{\prime}\left(u_{1} \cdot v\right)$ (check!). It follows that

$$
\left(a_{1}, b_{1} ; c_{1}, d_{1}\right)=\frac{\alpha_{1}^{\prime} \beta_{1}}{\alpha_{1} \beta_{1}^{\prime}}=\frac{\alpha^{\prime} \beta}{\alpha \beta^{\prime}}=(a, b ; c, d) .
$$

Figure 8: $(a, b ; c, d)=\left(a_{1}, b_{1} ; c_{1}, d_{1}\right)=\left(a^{\prime}, b^{\prime} ; c^{\prime}, d^{\prime}\right)$

For four intersecting lines $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ in $\mathbb{P}^{2}(\mathbb{F})$, define

$$
\left(\ell_{1}, \ell_{2} ; \ell_{3}, \ell_{4}\right)=\left(\Phi\left(\ell_{1}\right), \Phi\left(\ell_{2}\right) ; \Phi\left(\ell_{3}\right), \Phi\left(\ell_{4}\right)\right)
$$

The dual form of Proposition 2.11 is the following
Proposition 2.12. Let a, b, c, d be points on a line ℓ and let $p, q \notin \ell$. Then

$$
(\overline{p a}, \overline{p b} ; \overline{p c}, \overline{p d})=(a, b ; c, d)=(\overline{q a}, \overline{q b} ; \overline{q c}, \overline{q d})
$$

The following result is a version of Proposition 2.12, where the degenerate conic ℓ is replaced by a nonsingular conic.

Proposition 2.13. Let p, q, a, b, c, d be distinct points on a nonsingular conic C. Then

$$
\begin{equation*}
(\overline{p a}, \overline{p b} ; \overline{p c}, \overline{p d})=(\overline{q a}, \overline{q b} ; \overline{q c}, \overline{q d}) \tag{44}
\end{equation*}
$$

Proof. Let $\overline{p a}=u_{a}^{\perp}, \overline{p b}=u_{b}^{\perp}, \overline{p c}=\left(u_{a}+u_{b}\right)^{\perp}, \overline{q a}=v_{a}^{\perp}, \overline{q b}=v_{b}^{\perp}, \overline{q c}=\left(v_{a}+v_{b}\right)^{\perp}$. It follows that $C=\left\{[x] \in \mathbb{P}^{2}(\mathbb{R}): f(x)=0\right\}$ where

$$
f(x)=\left(u_{a} x\right) \cdot\left(v_{b} x\right)-\left(u_{b} x\right) \cdot\left(v_{a} x\right)
$$

Let $\overline{p d}=\left(\alpha u_{a}+\beta u_{b}\right)^{\perp}$ and $\overline{q d}=\left(\alpha^{\prime} v_{a}+\beta^{\prime} v_{b}\right)^{\perp}$. Then $\alpha\left(u_{a} d\right)+\beta\left(u_{b} d\right)=0$ and $\alpha^{\prime}\left(v_{a} d\right)+\beta^{\prime}\left(v_{b} d\right)=0$. On the other hand $\left(u_{a} d\right) \cdot\left(v_{b} d\right)=\left(u_{b} d\right)\left(v_{b} d\right)$. Therefore

$$
(\overline{p a}, \overline{p b} ; \overline{p c}, \overline{p d})=\frac{\alpha}{\beta}=\frac{\alpha^{\prime}}{\beta^{\prime}}=(\overline{q a}, \overline{q b} ; \overline{q c}, \overline{q d})
$$

Figure 9: $(\overline{p a}, \overline{p b} ; \overline{p c}, \overline{p d})=(\overline{q a}, \overline{q b} ; \overline{q c}, \overline{q d})$

Theorem 2.14 (Pascal). Let C be a nonsingluar quadric in $\mathbb{P}^{2}(\mathbb{R})$, and let $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ be distinct points on C. Then the points $c_{1}=a_{3} b_{2} \cap a_{2} b_{3}, c_{2}=a_{1} b_{3} \cap a_{3} b_{1}$ and $c_{3}=a_{1} b_{2} \cap a_{3} b_{2}$ are collinear.

Proof. Let $s=a_{3} b_{2} \cap a_{1} b_{3}, t=a_{3} b_{1} \cap a_{1} b_{2}$. Then

$$
\begin{align*}
\left(a_{3}, c_{1} ; s, b_{2}\right) & =\left(b_{3} a_{3}, b_{3} c_{1} ; b_{3} s, b_{3} b_{2}\right)=\left(b_{3} a_{3}, b_{3} a_{2} ; b_{3} a_{1}, b_{3} b_{2}\right) \\
& =\left(b_{1} a_{3}, b_{1} a_{2} ; b_{1} a_{1}, b_{1} b_{2}\right)=\left(b_{1} t, b_{1} c_{3} ; b_{1} a_{1}, b_{1} b_{2}\right) \tag{45}\\
& =\left(t, c_{3} ; a_{1}, b_{2}\right) .
\end{align*}
$$

Therefore

$$
\begin{equation*}
\left(c_{2} a_{3}, c_{2} c_{1} ; c_{2} s, c_{2} b_{2}\right)=\left(c_{2} t, c_{2} c_{3} ; c_{2} a_{1}, c_{2} b_{2}\right)=\left(c_{2} a_{3}, c_{2} c_{3} ; c_{2} s, c_{2} b_{2}\right) . \tag{46}
\end{equation*}
$$

It follows that $c_{2} c_{1}=c_{2} c_{3}$, i.e. c_{1}, c_{2}, c_{3} are collinear.

Figure 10: Pascal Theorem: c_{1}, c_{2}, c_{3} are collinear

2.5 Metric Aspects of $\mathbb{P}^{2}(\mathbb{R})$

Let $L(\gamma)$ denote the length of a path $\gamma:[0,1] \rightarrow \mathbb{R}^{3}$. Define a metric on the unit sphere S^{2} by $d(u, v)=$ $\min L(\gamma)$ where γ ranges over all $\gamma:[0,1] \rightarrow S^{2}$ such that $\gamma(0)=u, \gamma(1)=v$.

Claim 2.15. $d(u, v)=\arccos (u \cdot v)$.
Proof. We may assume that $u=(0,0,1)$ and $v=(\sin \alpha, 0, \cos \alpha)$. Let γ be a path in S^{2} between u and v, and write

$$
\gamma(t)=(\sin (\phi(t)) \cos (\theta(t)), \sin (\phi(t)) \sin (\theta(t)), \cos (\phi(t))),
$$

where $\phi(0)=0, \phi(1)=\alpha, \theta(0)=\theta(1)=0$. Then

$$
\begin{align*}
L(\gamma) & =\int_{t=0}^{1}|\dot{\gamma}(t)| d t=\int_{t=0}^{1} \sqrt{\dot{\phi}(t)^{2}+\theta(t)^{2} \sin ^{2} \phi(t)} d t \tag{47}\\
& \geq \int_{t=0}^{1}|\dot{\phi}(t)| d t \geq \int_{t=0}^{1} \dot{\phi}(t) d t=\phi(1)-\phi(0)=\alpha .
\end{align*}
$$

For a point $u \in S^{2}$, let $A_{u}^{+}=\left\{v \in S^{2}: u \cdot v>0\right\}, A_{u}^{-}=\left\{v \in S^{2}: u \cdot v<0\right\}$. Let u_{1}, u_{2}, u_{3} be distinct points in S^{2}, and consider the interior $B=\cap_{i=1}^{3} A_{u_{i}}^{+}$of the spherical triangle determined by u_{1}, u_{2}, u_{3}. Let α_{i} be the angle between u_{j}, u_{k} where $\{i, j, k\}=\{1,2,3\}$.

Claim 2.16. $\mu(B)=\sum_{i=1}^{3} \alpha_{i}-\pi$.
Proof. Let $B_{i j}=A_{u_{i}}^{+} \cap A_{u_{j}}^{+}$. Then $\mu\left(B_{i j}\right)=2 \alpha_{k}$ where $\{i, j, k\}=\{1,2,3\}$. Let $C=\cup_{1 \leq i<j \leq 3} B_{i j}$. Then $C \cup(-C)=S^{2} \backslash \partial B$ is a partition. It follows that $\mu(C)=2 \pi$. On the other hand,

$$
\mu(C)=\sum_{1 \leq i<j \leq 3} \mu\left(B_{i j}\right)-2 \mu(B)=2 \sum_{i=1}^{3} \alpha_{i}-2 \mu(B) .
$$

It follows that $2 \pi=2 \sum_{i=1}^{3} \alpha_{i}-2 \mu(B)$.

We recall the cross product in \mathbb{R}^{3}. For $u, v \in \mathbb{R}^{3}$, let $u \times v$ be the unique element of \mathbb{R}^{3} such that for $\operatorname{det}(u, v, x)=(u \times v) \cdot x$ for any $x \in \mathbb{R}^{3}$. Then $u \times v \perp u, v$ and $|u \times v|=|u| \cdot|v| \cdot \sin \alpha$ where α is the angle between u and v.

Claim 2.17.

(i) $\left(u_{1} \times u_{2}\right) \times v=-\left(v \cdot u_{2}\right) u_{1}+\left(v \cdot u_{1}\right) u_{2}$.
(ii) $\left(u_{1} \times u_{2}\right) \cdot\left(v_{1} \times v_{2}\right)=\left(u_{1} \cdot v_{1}\right) \cdot\left(u_{2} \cdot v_{2}\right)-\left(u_{1} \cdot v_{2}\right) \cdot\left(u_{2} \cdot v_{1}\right)$.

Let T be a spherical triangle with vertices $u, v, w \in S^{2}$. Let $d(v, w)=a, d(u, w)=b, d(u, v)=c$ and let α, β, γ be the angles at u, v, w respectively.
Proposition 2.18 (Spherical Cosine Formula).

$$
\begin{equation*}
\cos \gamma=\frac{\cos c-\cos a \cos b}{\sin a \sin b} \tag{48}
\end{equation*}
$$

Proof. We have $|v \times w|=\sin a,|u \times w|=\sin b$. It follows that

$$
\begin{align*}
\cos c-\cos a \cos b & =u \cdot v-(u \cdot w)(w \cdot v) \\
=(u \times w) \cdot(v \times w) & =|u \times w| \cdot|v \times w| \cdot \cos \gamma \tag{49}\\
& =\sin a \sin b \cos \gamma .
\end{align*}
$$

Corollary 2.19 (Spherical Pythagoras Theorem). If $\gamma=\frac{\pi}{2}$, then $\cos c=\cos a \cos b$.
Proposition 2.20 (Spherical Sine Formula). Let V be the volume of the parallelepiped spanned by u, v, w. Then

$$
\begin{equation*}
\frac{\sin ^{2} \alpha}{\sin ^{2} a}=\frac{\sin ^{2} \beta}{\sin ^{2} b}=\frac{\sin ^{2} \gamma}{\sin ^{2} c}=\frac{V^{2}}{\sin ^{2} a \cdot \sin ^{2} b \cdot \sin ^{2} c} \tag{50}
\end{equation*}
$$

Proof. We may assume that $u=(0,0,1)$ and $v=(\sin c, 0, \cos c)$. Then $w=(\sin b \cos \alpha, \sin b \sin \alpha, \cos b)$. It follows that

$$
V^{2}=\operatorname{det}(u, v, w)^{2}=\operatorname{det}\left[\begin{array}{ccc}
0 & 0 & 1 \\
\sin c & 0 & \cos c \\
\sin b \cos \alpha & \sin b \sin \alpha & \cos b
\end{array}\right]^{2}=\sin ^{2} c \cdot \sin ^{2} b \cdot \sin ^{2} \alpha .
$$

Similarly

$$
V^{2}=\sin ^{2} a \cdot \sin ^{2} b \cdot \sin ^{2} \gamma=\sin ^{2} a \cdot \sin ^{2} c \cdot \sin ^{2} \beta
$$

This implies (50).

Define a a function on $d: \mathbb{P}^{2} \times \mathbb{P}^{2} \rightarrow \mathbb{R}$ by

$$
d([u],[v])=\arccos \left(\frac{|u \cdot v|}{|u| \cdot|v|}\right)
$$

Proposition 2.21. $d(\cdot, \cdot)$ defines a metric on \mathbb{P}^{2}.

3 The Hyperbolic Plane

We first recall the following (abridged) definition of Riemmanian metrics. Let U be an open set in \mathbb{R}^{n} and let $S(x)=\left(s_{i j}(x)\right)_{i, j=1}^{n}$ be a positive definite symmetric matrix, where the $s_{i j}: U \rightarrow \mathbb{R}$ are smooth functions. For a smooth curve $\gamma:[a, b] \rightarrow U$, define the length of γ with respect to S by

$$
\begin{equation*}
L(\gamma)=\int_{a}^{b}\left(\dot{\gamma}(t)^{T} S(\gamma(t)) \dot{\gamma}(t)\right)^{\frac{1}{2}} d t \tag{51}
\end{equation*}
$$

It can be check that $L(\gamma)$ is independent of the parametrization of γ. The riemannian distance determined by $S(x)$ is given by $d(p, q)=\inf _{\gamma} L(\gamma)$, where γ ranges over all smooth paths $\gamma:[0,1] \rightarrow U$ with $\gamma(0)=p, \gamma(1)=q$. The riemannian volume of $A \subset U$ is given by

$$
\operatorname{vol}(A)=\int_{A} \sqrt{\operatorname{det} S(x)} d x .
$$

In this section we will study two models of the hyperbolic plane using the relevant riemannian metrics.

3.1 The Upper Half Plane Model

The points of the Hyperbolic Plane is the set $\mathbb{H}=\{(x, y): y>0\}$. The hyperbolic lines are of two types:

- $\ell=\left\{\left(x_{0}, y\right): y>0\right\}$ for some $x_{0} \in \mathbb{R}$.
- $\ell=\left\{(x, y):\left(x-x_{0}\right)^{2}+y^{2}=r_{0}^{2}, y>0\right\}$ for some $x_{0} \in \mathbb{R}, 0<r_{0} \in \mathbb{R}$.

Claim 3.1. Any two distinct points in \mathbb{H} are contained in a unique line. For any line ℓ and $p \notin \ell$ there exist infinitely many lines through p that are disjoint from ℓ.

The metric of the hyperbolic plane is defined by the matrix $S(x, y)=\frac{1}{y^{2}} I$. Thus the hyperbolic length of $\gamma:[a, b] \rightarrow \mathbb{H}$ where $\gamma(t)=(x(t), y(t))$ is given by

$$
L_{\mathbb{H}}(\gamma)=\int_{a}^{b} \frac{\sqrt{\dot{x}(t)^{2}+\dot{y}(t)^{2}}}{y(t)} d t .
$$

The hyperbolic area of $A \subset \mathbb{H}$ is given by

$$
\operatorname{area}_{\mathbb{H}}(A)=\int_{(x, y) \in A} \frac{d x d y}{y^{2}} .
$$

We will show that the shortest path between $p, q \in \mathbb{H}$ is attained by the hyperbolic segment connecting these two points. For example, if $0<a<b$ and $p=\left(x_{0}, a\right), q=\left(x_{0}, b\right)$ and $\gamma(t)=\left(x_{0}, t\right)$ for $0<a \leq t \leq b$, then

$$
d_{\mathbb{H}}(p, q)=L_{\mathbb{H}}(\gamma)=\int_{a}^{b} \frac{d t}{t}=\ln \frac{b}{a} .
$$

In the sequel, we identify \mathbb{H} with $\{z \in \mathbb{C}: \operatorname{Im} z>0\}$. Let $S L_{2}(\mathbb{R})=\left\{A \in G L_{2}(\mathbb{R}): \operatorname{det} A=1\right\}$ and let $P S L_{2}(\mathbb{R})=S L_{2}(\mathbb{R}) / \pm I . g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in P S L_{2}(\mathbb{R})$ acts on \mathbb{H} by fractional linear transformation $g(z)=\frac{a z+b}{c z+d}$.

Claim 3.2. $P S L_{2}(\mathbb{R})$ transforms lines into lines.
Claim 3.3. Let $\gamma:[a, b] \rightarrow \mathbb{H}$ be a smooth path and let $g \in P S L_{2}(\mathbb{R})$. Then $L_{\mathbb{H}}(g(\gamma))=L_{\mathbb{H}}(\gamma)$.

Proof. Let $\Gamma(t)=g(\gamma(t))$. Then

$$
\Gamma^{\prime}(t)=\frac{(a d-b c) \gamma^{\prime}(t)}{(c \gamma(t)+d)^{2}}=\frac{\gamma^{\prime}(t)}{(c \gamma(t)+d)^{2}}
$$

On the other hand

$$
\operatorname{Im} \Gamma(t)=\frac{(a d-b c)}{|c \gamma(t)+d|^{2}} \cdot \operatorname{Im} \gamma(t)=\frac{\operatorname{Im} \gamma(t)}{|c \gamma(t)+d|^{2}}
$$

It follows that

$$
\frac{\left|\Gamma^{\prime}(t)\right|}{\operatorname{Im} \Gamma(t)}=\frac{\left|\gamma^{\prime}(t)\right|}{\operatorname{Im} \gamma(t)} .
$$

The hyperbolic distance $d_{\mathbb{H}}(p, q)$ between two point $p, q \in \mathbb{H}$ is defined as $d_{\mathbb{H}}(z, w)=\inf L_{\mathbb{H}}(\gamma)$ where the infimum is taken over all paths γ in \mathbb{H} with endpoints z, w.

Proposition 3.4.

$$
\begin{equation*}
d_{\mathbb{H}}(z, w)=\ln \frac{|z-\bar{w}|+|z-w|}{|z-\bar{w}|-|z-w|} . \tag{52}
\end{equation*}
$$

Proof. Note that both sides are invariant under the action of $P S L_{2}(\mathbb{R})$. If $z=i p$ and $w=i q$ then (52) can be checked directly. Indeed, suppose $\gamma(t)=x(t)+i y(t) \in \mathbb{H}$ such that $\gamma(0)=i p$ and $\gamma(1)=i q$. Then

$$
\begin{align*}
L_{\mathbb{H}}(\gamma) & =\int_{0}^{1} \frac{\sqrt{\dot{x}(t)^{2}+\dot{y}(t)^{2}}}{y(t)} d t \tag{53}\\
& \geq \int_{0}^{1} \frac{|\dot{y}(t)|}{y(t)} d t=\left|\ln \frac{p}{q}\right| .
\end{align*}
$$

Suppose now that z and w are not on the same vertical line. There is a unique Euclidean semicircle C with radius R and center $\alpha+R$ that contains z and w. Let $g(z)=1-\frac{2 R}{z-\alpha}$. Then $g(z)$ and $g(w)$ are on the line it and the result follows.

Proposition 3.5. Let T be a hyperbolic triangle with angles α, β, γ. Then

$$
\begin{equation*}
\operatorname{area}_{\mathbb{H}}(T)=\pi-(\alpha+\beta+\gamma) . \tag{54}
\end{equation*}
$$

We next discuss some aspects of hyperbolic trigonometry. Recall the hyperbolic trigonometric functions $\cosh x=\frac{e^{x}+e^{-x}}{2}$ and $\sinh x=\frac{e^{x}-e^{-x}}{2}$.

Claim 3.6. Let $z, w \in \mathbb{H}$. Then

$$
\cosh d_{\mathbb{H}}(z, w)=1+\frac{|z-w|^{2}}{2 \operatorname{Im} z \operatorname{Im} w} .
$$

Proof. By (52)

$$
\begin{align*}
& \cosh d_{\mathbb{H}}(z, w)=\frac{1}{2}\left(\frac{|z-\bar{w}|+|z-w|}{|z-\bar{w}|-|z-w|}+\frac{|z-\bar{w}|-|z-w|}{|z-\bar{w}|+|z-w|}\right) \\
& \frac{|z-\bar{w}|^{2}+|z-w|^{2}}{|z-\bar{w}|^{2}-|z-w|^{2}}=1+\frac{2\left(|z-w|^{2}\right)}{|z-\bar{w}|^{2}-|z-w|^{2}} \tag{55}\\
& =1+\frac{|z-w|^{2}}{\operatorname{Re}(z \bar{w})-\operatorname{Re}(z w)}=1+\frac{|z-w|^{2}}{2 \operatorname{Im} z \operatorname{Im} w} .
\end{align*}
$$

3.2 The Hyperboloid Model

Define the Lorentz bilinear form in \mathbb{R}^{3} as follows. For $x=\left(x_{0}, x_{1}, x_{2}\right), y=\left(y_{0}, y_{1}, y_{2}\right) \in \mathbb{R}^{3}$ let

$$
Q(x, y)=-x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2} .
$$

Let

$$
\tilde{\mathbb{H}}=\left\{x \in \mathbb{R}^{3}: Q(x, x)=-1, x_{0}>0\right\} .
$$

The points of the hyperboloid model are the elements of $\tilde{\mathbb{H}}$, and the lines are nonempty intersections of $\tilde{\mathbb{H}}$ with 2-dimensional linear subspaces of \mathbb{R}^{3}.

Claim 3.7. Any two distinct points in $\tilde{\mathbb{H}}$ are contained in a unique line. For any line ℓ and $p \notin \ell$ there exist infinitely many lines through p that are disjoint from ℓ.

Claim 3.8. If $\gamma:[a, b] \rightarrow \tilde{\mathbb{H}}$ is a differentiable curve then $Q(\dot{\gamma}(t), \dot{\gamma}(t)) \geq 0$.
Proof. Write $\gamma(t)=\left(x_{0}(t), x_{1}(t), x_{2}(t)\right) \in \tilde{\mathbb{H}}$. Then $x_{0}(t) \geq 1$ and $x_{0}(t)^{2}=1+x_{1}(t)^{2}+x_{2}(t)^{2}$. Differentiating we obtain $x_{0}(t) \dot{x}_{0}(t)=x_{1}(t) \dot{x}_{1}(t)+x_{2}(t) \dot{x}_{2}(t)$. Hence

$$
\begin{aligned}
\dot{x}_{0}(t)^{2} & =\frac{\left(x_{1}(t) \dot{x}_{1}(t)+x_{2}(t) \dot{x}_{2}(t)\right)^{2}}{x_{0}(t)^{2}} \\
& \leq \frac{x_{1}(t)^{2}+x_{2}(t)^{2}}{x_{0}(t)^{2}} \cdot\left(\dot{x}_{1}(t)^{2}+\dot{x}_{2}(t)^{2}\right) \\
& =\frac{x_{0}(t)^{2}-1}{x_{0}(t)^{2}} \cdot\left(\dot{x}_{1}(t)^{2}+\dot{x}_{2}(t)^{2}\right) \\
& \leq \dot{x}_{1}(t)^{2}+\dot{x}_{2}(t)^{2} .
\end{aligned}
$$

Define the length of γ by

$$
L_{\tilde{\tilde{H}}}(\gamma)=\int_{a}^{b} \sqrt{Q(\dot{\gamma}(t), \dot{\gamma}(t))} d t .
$$

Let

$$
\eta=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The Lorentz group $L=O(1,2)$ is defined by

$$
\begin{align*}
L & =\left\{g \in G L_{3}(\mathbb{R}): Q(g x, g x)=Q(x, x) \text { for all } x \in \mathbb{R}^{3}\right\} \\
& =\left\{g \in G L_{3}(\mathbb{R}): g^{T} \eta g=\eta\right\} . \tag{56}
\end{align*}
$$

The Proper Lorentz Group is the connected component of $I \in L$:

$$
L^{0}=\left\{g=\left(g_{i j}\right)_{i, j=0}^{2} \in L: g_{00}>0, \operatorname{det} g=1\right\} .
$$

Claim 3.9. All elements of L^{0} are bijective self-maps of $\tilde{\mathbb{H}}$.
Proof. Let $u=\left(u_{0}, u_{1}, u_{2}\right) \in \tilde{\mathbb{H}}$ and let $g=\left(g_{i j}\right) \in L^{0}$. Note that $g^{T} \in L^{0}$, hence $-g_{00}^{2}+g_{10}^{2}+g_{20}^{2}=-1$. Write $g u=v=\left(v_{0}, v_{1}, v_{2}\right)$. Then $g_{00}>0$ and $-u_{0}^{2}+u_{1}^{2}+u_{2}^{2}=-1$. Hence, by Cauchy-Schwartz

$$
\begin{align*}
v_{0} & =g_{00} u_{0}+g_{10} u_{1}+g_{20} u_{2}=\sqrt{1+g_{10}^{2}+g_{20}^{2}} \sqrt{1+u_{1}^{2}+u_{2}^{2}}+g_{10} u_{1}+g_{20} u_{2} \tag{57}\\
& \geq \sqrt{1+g_{10}^{2}+g_{20}^{2}} \sqrt{1+u_{1}^{2}+u_{2}^{2}}-\sqrt{g_{10}^{2}+g_{20}^{2}} \sqrt{u_{1}^{2}+u_{2}^{2}}>0 .
\end{align*}
$$

We single out two families of elements in L^{0}. For $\theta \in \mathbb{R}$ let

$$
R(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \in O(2) \quad, \quad \tilde{R}(\theta)=\left[\begin{array}{cc}
1 & 0 \\
0 & R_{\theta}
\end{array}\right] \in L^{0}
$$

For $\lambda \in \mathbb{R}$ let

$$
L(\lambda)=\left[\begin{array}{cc}
\cosh \lambda & -\sinh \lambda \\
-\sinh \lambda & \cosh \lambda
\end{array}\right] \quad, \quad \tilde{L}(\lambda)=\left[\begin{array}{cc}
L(\lambda) & 0 \\
0 & 1
\end{array}\right] \in L^{0}
$$

Claim 3.10. L^{0} acts transitively on $\tilde{\mathbb{H}}$.
Proof. Let $u \in \tilde{\mathbb{H}}$. We will show that there exists a $g \in L^{0}$ such that $g u=(1,0,0)$. Write $u=\left(\sqrt{r^{2}+1}, r \cos \theta, r \sin \theta\right)$. Then $\tilde{R}(-\theta) u=\left(\sqrt{r^{2}+1}, r, 0\right)$. Now let $\lambda=\ln \left(\sqrt{1+r^{2}}+r\right)$. Then $\tilde{L}(\lambda)\left(\sqrt{r^{2}+1}, r, 0\right)^{T}=(1,0,0)^{T}$.

Corollary 3.11. For any $u, v \in \tilde{\mathbb{H}}$ there exists a $g \in L^{0}$ such that $g u=(1,0,0)$ and $g v=\left(\sqrt{1+\alpha^{2}}, \alpha, 0\right)$ for some α.

Proof. By Claim 3.10 there exists a $g_{1} \in L^{0}$ such that $g_{1} u=(1,0,0)^{T}$. Write $g_{1} v=\left(\sqrt{1+r^{2}}, r \cos \theta, r \sin \theta\right)^{T}$. Then $g=\tilde{R}(-\theta) g_{1}$ satisfies the required conditions.

Claim 3.12. Let $\gamma:[a, b] \rightarrow \tilde{\mathbb{H}}$ be a smooth path and let $g \in L^{0}$. Then $L_{\tilde{\mathbb{H}}}(g(\gamma))=L_{\tilde{\mathbb{H}}}(\gamma)$.
Proof. Let $\gamma(t)=\left(x_{0}(t), x_{1}(t), x_{2}(t)\right)$ and $\Gamma(t)=g(\gamma(t))$. Then $\dot{\Gamma}(t)=g \dot{\gamma}(t)$ and hence

$$
\begin{align*}
L_{\tilde{\tilde{H}}}(\Gamma) & =\int_{a}^{b} \sqrt{Q(\dot{\Gamma}(t), \dot{\Gamma}(t))} d t \\
& =\int_{a}^{b} \sqrt{Q(g \dot{\gamma}(t), g \dot{\gamma}(t))} d t \tag{58}\\
& =\int_{a}^{b} \sqrt{Q(\dot{\gamma}(t), \dot{\gamma}(t))} d t=L_{\tilde{\mathbb{H}}}(\gamma) .
\end{align*}
$$

Proposition 3.13. For $u, v \in \tilde{\mathbb{H}}$

$$
\cosh d_{\tilde{\mathbb{H}}}(u, v)=-Q(u, v) .
$$

Proof. In view of Claim 3.12 and Corollary 3.11, it suffices to consider the case $u=(1,0,0), v=$ $\left(\sqrt{1+\alpha^{2}}, \alpha, 0\right)$. Let $\gamma:[0,1] \rightarrow \tilde{\mathbb{H}}$ such that $\gamma(0)=u, \gamma(1)=v$. Write $\gamma(t)=\left(x_{0}(t), x_{1}(t), x_{2}(t)\right)$. Let $w(t)=\sqrt{x_{1}(t)^{2}+x_{2}(t)^{2}}$. Then $w(t)^{2}=x_{1}(t)^{2}+x_{2}(t)^{2}=x_{0}(t)^{2}-1$. Therefore

$$
\begin{align*}
& w(t)|\dot{w}(t)|=\left|\dot{x}_{1}(t) x_{1}(t)+\dot{x}_{2}(t) x_{2}(t)\right| \\
& \leq \sqrt{\dot{x}_{1}(t)^{2}+\dot{x}_{1}(t)^{2}} \cdot \sqrt{x_{1}(t)^{2}+x_{1}(t)^{2}} \tag{59}\\
& =w(t) \sqrt{\dot{x}_{1}(t)^{2}+\dot{x}_{1}(t)^{2}} .
\end{align*}
$$

Hence

$$
\begin{equation*}
\dot{x}_{1}(t)^{2}+\dot{x}_{1}(t)^{2} \geq \dot{w}(t)^{2} . \tag{60}
\end{equation*}
$$

Moreover $x_{0}(t) \dot{x}_{0}(t)=w(t) \dot{w}(t)$, and hence

$$
\begin{equation*}
\dot{x}_{0}(t)^{2}=\frac{w(t)^{2} \dot{w}(t)^{2}}{x_{0}(t)^{2}}=\frac{w(t)^{2} \dot{w}(t)^{2}}{w(t)^{2}+1} . \tag{61}
\end{equation*}
$$

Combining (60) and (60) we obtain

$$
\begin{align*}
L_{\tilde{\mathbb{H}}}(\gamma) & =\int_{0}^{1}\left(-\dot{x}_{0}(t)^{2}+\dot{x}_{1}(t)^{2}+\dot{x}_{2}(t)^{2}\right)^{\frac{1}{2}} d t \\
& \geq \int_{0}^{1}\left(\dot{w}(t)^{2}-\dot{x}_{0}(t)^{2}\right)^{\frac{1}{2}} d t \\
& =\int_{0}^{1}\left(\dot{w}(t)^{2}-\frac{w(t)^{2} \dot{w}(t)^{2}}{w(t)^{2}+1}\right)^{\frac{1}{2}} d t \tag{62}\\
& =\int_{0}^{1} \frac{\dot{w}(t) d t}{\sqrt{w(t)^{2}+1}} \\
& =\left.\ln \left(w(t)+\sqrt{w(t)^{2}+1}\right)\right|_{t=0} ^{t=1} \\
& =\ln \left(\alpha+\sqrt{\alpha^{2}+1}\right)
\end{align*}
$$

Therefore

$$
\begin{align*}
\cosh L_{\tilde{\mathbb{H}}}(\gamma) & \geq \frac{1}{2}\left(\alpha+\sqrt{\alpha^{2}+1}+\frac{1}{\alpha+\sqrt{\alpha^{2}+1}}\right) \tag{63}\\
& =\sqrt{\alpha^{2}+1}=-Q(u, v)
\end{align*}
$$

On the other hand, taking $\gamma(t)=\left(\sqrt{1+t^{2}}, t, 0\right)$ for $0 \leq t \leq \alpha$, we get

$$
\begin{aligned}
\cosh L_{\tilde{\mathbb{H}}}(\gamma) & =\cosh \left(\int_{0}^{\alpha} \frac{d t}{\sqrt{1+t^{2}}}\right)=\cosh \left(\ln \left(\alpha+\sqrt{\alpha^{2}+1}\right)\right) \\
& =\sqrt{\alpha^{2}+1}=-Q(u, v)
\end{aligned}
$$

Proposition 3.14. Let $u, v \in \tilde{\mathbb{H}}$ and let $d=d_{\tilde{\mathbb{H}}}(u, v)$. Let $z=\frac{v-\cosh (d) u}{\sinh (d)}$. Then $\gamma:[0, d] \rightarrow \tilde{\mathbb{H}}$ given by $\gamma(t)=\cosh (t) u+\sinh (t) z$ is a geodesic between u and v.

Proof. First note that

$$
\begin{align*}
Q(z, z) & =\left(\frac{v-\cosh (d) u}{\sinh (d)}, \frac{v-\cosh (d) u}{\sinh (d)}\right) \\
& =\frac{Q(v-\cosh (d) u, v-\cosh (d) u)}{\sinh ^{2}(d)} \\
& =\frac{Q(u, u)+\cosh ^{2}(d) Q(u, u)-2 \cosh (d) Q(u, v)}{\sinh ^{2}(d)} \tag{64}\\
& =\frac{-1-\cosh ^{2} d+2 \cosh ^{2} d}{\sinh ^{2}(d)}=\frac{\sinh ^{2}(d)}{\sinh ^{2}(d)}=1 .
\end{align*}
$$

Next observe that $\dot{\gamma}(t)=\sinh (t) u+\cosh (t) z$, and that

$$
\begin{align*}
Q(u, z) & =Q\left(u, \frac{v-\cosh (d) u}{\sinh (d)}\right)=\frac{Q(u, v)-\cosh (d) Q(u, u)}{\sinh ^{2}(d)} \\
& =\frac{-\cosh (d)+\cosh (d)}{\sinh ^{2}(d)}=0 \tag{65}
\end{align*}
$$

Hence

$$
\begin{align*}
Q(\gamma(t), \gamma(t)) & =Q(\cosh (t) u+\sinh (t) z, \cosh (t) u+\sinh (t) z) \\
& =\cosh ^{2}(t) Q(u, u)+\sinh ^{2}(t) Q(z, z)+\cosh (t) \sinh (t) Q(u, z) \tag{66}\\
& =-\cosh ^{2}(t)+\sinh ^{2}(t)=-1
\end{align*}
$$

It follows that $\gamma(t) \in \tilde{\mathbb{H}}$. Furthermore

$$
\begin{align*}
Q(\dot{\gamma}(t), \dot{\gamma}(t)) & =Q(\sinh (t) u+\cosh (t) z, \sinh (t) u+\cosh (t) z) \\
& =\sinh ^{2}(t) Q(u, u)+\cosh ^{2}(t) Q(z, z) \tag{67}\\
& =-\sinh ^{2}(t)+\cosh ^{2}(t)=1
\end{align*}
$$

Therefore

$$
\int_{t=0}^{d} \sqrt{Q(\dot{\gamma}(t), \dot{\gamma}(t))} d t=d
$$

and hence γ is a geodesic between u and v.

3.3 Hyperbolic Trigonometry

The hyperbolic cross product $u \times_{Q} v$ of $u, v \in \mathbb{R}^{3}$ is defined as the unique element of \mathbb{R}^{3} such that $\operatorname{det}(u, v, w)=Q\left(u \times_{Q} v, w\right)$. Defining $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $R\left(u_{1}, u_{2}, u_{3}\right)=\left(-u_{1}, u_{2}, u_{3}\right)$, we have $Q(u, v)=$ $(R u) \cdot v$ and $u \times_{Q} v=R(u \times v)=-\left(R u_{1}\right) \times\left(R u_{2}\right)$. Define the hyperbolic norm of an element $u \in \mathbb{R}^{3}$ by

$$
|u|_{Q}=\left\{\begin{array}{cl}
\sqrt{Q(u, u)} & Q(u, u) \geq 0 \\
i \sqrt{-Q(u, u)} & Q(u, u)<0
\end{array}\right.
$$

For example, if $u \in \tilde{\mathbb{H}}$ then $|u|_{Q}=i$.
Corollary 3.15. Let $u, v \in \tilde{\mathbb{H}}$. Then

$$
\begin{equation*}
\left|u \times_{Q} v\right|_{Q}=\sinh d_{\tilde{\mathbb{H}}}(u, v) . \tag{68}
\end{equation*}
$$

Proof.

$$
Q\left(u \times_{Q} v, u \times_{Q} v\right)=Q(u, v)^{2}-Q(u, u) \cdot Q(v, v)=\cosh ^{2} d_{\tilde{\mathbb{H}}}(u, v)-1=\sinh ^{2} d_{\tilde{\mathbb{H}}}(u, v) .
$$

As $d_{\tilde{\mathbb{H}}}(u, v) \geq 0$, it follows that $Q\left(u \times_{Q} v, u \times_{Q} v\right) \geq 0$ and $\sinh d_{\tilde{\mathbb{H}}}(u, v) \geq 0$. Hence

$$
\left|u \times_{Q} v\right|_{Q}=\sqrt{Q\left(u \times_{Q} v, u \times_{Q} v\right)}=\sinh d_{\tilde{\mathbb{H}}}(u, v) .
$$

The hyperbolic counterpart of Claim 2.17 is the following

Claim 3.16.

(i) $\left(u_{1} \times_{Q} u_{2}\right) \times_{Q} v=Q\left(u_{2}, v\right) u_{1}-Q\left(u_{1}, v\right) u_{2}$.
(ii) $Q\left(u_{1} \times_{Q} u_{2}, v_{1} \times_{Q} v_{2}\right)=Q\left(u_{1}, v_{2}\right) Q\left(u_{2}, v_{1}\right)-Q\left(u_{1}, v_{1}\right) Q\left(u_{2}, v_{2}\right)$.

Proof. (i)

$$
\begin{aligned}
\left(u_{1} \times_{Q} u_{2}\right) \times_{Q} v & =-R\left(u_{1} \times_{Q} u_{2}\right) \times R v=-\left(u_{1} \times u_{2}\right) \times R v \\
& =\left(R v \cdot u_{2}\right) u_{1}-\left(R v \cdot u_{1}\right) u_{2} \\
& =Q\left(u_{2}, v\right) u_{1}-Q\left(u_{1}, v\right) u_{2} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
Q\left(u_{1} \times_{Q} u_{2}, v_{1} \times_{Q} v_{2}\right) & =R\left(u_{1} \times_{Q} u_{2}\right) \cdot\left(v_{1} \times_{Q} v_{2}\right) \\
& =\left(u_{1} \times u_{2}\right) \cdot\left(v_{1} \times_{Q} v_{2}\right)=-\left(u_{1} \times u_{2}\right) \cdot\left(R v_{1} \times R v_{2}\right) \\
& =-\left(u_{1} \cdot R v_{1}\right)\left(u_{2} \cdot R v_{2}\right)+\left(u_{1} \cdot R v_{2}\right)\left(u_{2} \cdot R v_{1}\right) \\
& =Q\left(u_{1}, v_{2}\right) Q\left(u_{2}, v_{1}\right)-Q\left(u_{1}, v_{1}\right) Q\left(u_{2}, v_{2}\right) .
\end{aligned}
$$

Let T be a hyperbolic triangle with vertices $u, v, w \in \tilde{\mathbb{H}}$. Let $d_{\tilde{\mathbb{H}}}(v, w)=a, d_{\tilde{\mathbb{H}}}(u, w)=b, d_{\tilde{\mathbb{H}}}(u, v)=c$ and let α, β, γ be the angles at u, v, w respectively.

Claim 3.17.

$$
\begin{equation*}
\cos \gamma=\frac{Q\left(u \times_{Q} w, v \times_{Q} w\right)}{\left|u \times_{Q} w\right| \cdot\left|v \times_{Q} w\right|} . \tag{69}
\end{equation*}
$$

Proposition 3.18 (Hyperbolic Cosine Formula).

$$
\begin{equation*}
\cos \gamma=\frac{\cosh a \cosh b-\cosh c}{\sinh a \sinh b} . \tag{70}
\end{equation*}
$$

Proof. By Proposition 3.13, $\cosh a=-Q(v, w), \cosh b=-Q(u, w)$ and $\cosh c=-Q(u, v)$. By Corollary 3.15

$$
\left|u \times_{Q} w\right|_{Q}=\sinh d_{\tilde{\mathbb{H}}}(u, w)=\sinh b
$$

and

$$
\left|v \times_{Q} w\right|_{Q}=\sinh d_{\tilde{\mathbb{H}}}(v, w)=\sinh a .
$$

Substituting in (3.17) we obtain

$$
\begin{align*}
\cos \gamma & =\frac{Q\left(u \times_{Q} w, v \times_{Q} w\right)}{\left|u \times_{Q} w\right| \cdot\left|v \times_{Q} w\right|} \\
& =\frac{Q(u, w) Q(v, w)-Q(u, v) Q(w, w)}{\sinh a \sinh b} \tag{71}\\
& =\frac{\cosh a \cosh b-\cosh c}{\sinh a \sinh b} .
\end{align*}
$$

Proposition 3.19. For any $0<\alpha<\frac{(n-2) \pi}{n}$ there exists a regular n-gon in $\tilde{\mathbb{H}}$ with all angles equal to α.
Proof. For $x>0$ and $0 \leq k \leq n-1$ let

$$
u_{k, n}(x)=\left(\cosh x, \sinh x \cos \frac{2 \pi k}{n}, \sinh x \sin \frac{2 \pi k}{n}\right) .
$$

Let $P_{n}(x)$ denote the n-gon with vertices $\left\{u_{k, n}(x)\right\}_{k=0}^{n-1}$. Let $d_{n}(x)$ denote the edge length of $P_{n}(x)$. Then

$$
\begin{align*}
\cosh d_{n}(x) & =-Q\left(u_{0, n}(x), u_{1, n}(x)\right) \\
& =-Q\left((\cosh x, \sinh x, 0),\left(\cosh x, \sinh x \cos \frac{2 \pi}{n}, \sinh x \sin \frac{2 \pi}{n}\right)\right) \\
& =\cosh ^{2} x-\sinh ^{2} x \cos \frac{2 \pi}{n} \tag{72}\\
& =1+\sinh ^{2} x\left(1-\cos \frac{2 \pi}{n}\right) .
\end{align*}
$$

Let $e_{n}(x)=d_{\tilde{\mathbb{H}}}\left(u_{0}(x), u_{2}(x)\right)$. Then

$$
\begin{align*}
\cosh e_{n}(x) & =-Q\left(u_{0, n}(x), u_{2, n}(x)\right) \\
& =-Q\left((\cosh x, \sinh x, 0),\left(\cosh x, \sinh x \cos \frac{4 \pi}{n}, \sinh x \sin \frac{2 \pi}{n}\right)\right) \\
& =\cosh ^{2} x-\sinh ^{2} x \cos \frac{4 \pi}{n} \tag{73}\\
& =1+\sinh ^{2} x\left(1-\cos \frac{4 \pi}{n}\right) .
\end{align*}
$$

Let $\gamma_{n}(x)$ denote the angle of $P_{n}(x)$. By the hyperbolic cosine theorem

$$
\begin{align*}
\cos \gamma_{n}(x) & =\frac{\cosh ^{2} d_{n}(x)-\cosh e_{n}(x)}{\sinh ^{2} d_{n}(x)} \\
& =\frac{\left(1+\sinh ^{2} x\left(1-\cos \frac{2 \pi}{n}\right)\right)^{2}-\left(1+\sinh ^{2} x\left(1-\cos \frac{4 \pi}{n}\right)\right)}{\left(1+\sinh ^{2} x\left(1-\cos \frac{2 \pi}{n}\right)\right)^{2}-1} . \tag{74}
\end{align*}
$$

Therefore

$$
\begin{align*}
\lim _{x \rightarrow 0} \cos \gamma_{n}(x) & =\lim _{x \rightarrow 0} \frac{\left(1+\sinh ^{2} x\left(1-\cos \frac{2 \pi}{n}\right)\right)^{2}-\left(1+\sinh ^{2} x\left(1-\cos \frac{4 \pi}{n}\right)\right)}{\left(1+\sinh ^{2} x\left(1-\cos \frac{2 \pi}{n}\right)\right)^{2}-1} \\
& =\lim _{t \rightarrow 0} \frac{\left(1+2 t\left(1-\cos \frac{2 \pi}{n}\right)\right)-\left(1+t\left(1-\cos \frac{4 \pi}{n}\right)\right)}{\left(1+2 t\left(1-\cos \frac{2 \pi}{n}\right)\right)-1} \\
& =\frac{1-2 \cos \frac{2 \pi}{n}+\cos \frac{4 \pi}{n}}{2\left(1-\cos \frac{2 \pi}{n}\right)} \tag{75}\\
& =\frac{\cos ^{2} \frac{2 \pi}{n}-\cos \frac{2 \pi}{n}}{1-\cos \frac{2 \pi}{n}} \\
& =-\cos \frac{2 \pi}{n}=\cos \frac{(n-2) \pi}{n} .
\end{align*}
$$

It follows $\lim _{x \rightarrow 0} \gamma_{n}(x)=\frac{(n-2) \pi}{n}$. On the other hand

$$
\begin{align*}
\lim _{x \rightarrow \infty} \cos \gamma_{n}(x) & =\lim _{x \rightarrow \infty} \frac{\left(1+\sinh ^{2} x\left(1-\cos \frac{2 \pi}{n}\right)\right)^{2}-\left(1+\sinh ^{2} x\left(1-\cos \frac{4 \pi}{n}\right)\right)}{\left(1+\sinh ^{2} x\left(1-\cos \frac{2 \pi}{n}\right)\right)^{2}-1} \\
& =\lim _{t \rightarrow \infty} \frac{\left(1+t\left(1-\cos \frac{2 \pi}{n}\right)\right)^{2}-\left(1+t\left(1-\cos \frac{4 \pi}{n}\right)\right)}{\left(1+t\left(1-\cos \frac{2 \pi}{n}\right)\right)^{2}-1}=1 . \tag{76}
\end{align*}
$$

It follows $\lim _{x \rightarrow \infty} \gamma_{n}(x)=0$. By continuity, for any $0<\alpha<\frac{(n-2) \pi}{n}$ there exists an x such that $\gamma_{n}(x)=\alpha$.

