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1 Euclidean Geometry

An Euclidean Space is an n-dimensional linear space V over the field R of real numbers, together with
a inner product 〈·, ·〉. Recall that this means that 〈·, ·〉 is symmetric bilinear form such that 〈u, u〉 ≥ 0,
where equality implies that u = 0. The form 〈·, ·〉 induces a norm ‖ · ‖ on V given by ‖u‖ =

√

〈u, u〉.
Any n-dimensional Euclidean space V is isomorphic to R

n with its standard inner product defined on
u = (a1, . . . , an), v = (b1, . . . , bn) by 〈u, v〉 =∑n

i=1 aibi. The angle α between two nonzero vectors u, v ∈ V

is given by α = arccos 〈u,v〉
‖u‖·‖v‖ . An affine combination of u0, . . . , uk ∈ V is a vector of the form

∑k
i=0 λiui

where
∑k

i=0 λi = 1. The affine span of A ⊂ V is

aff (A) =

{

k
∑

i=0

λiui : ui ∈ A,

k
∑

i=0

λi = 1

}

.

The vectors u0, . . . , uk ∈ V are affinely independent if
∑k

i=0 λiui = 0 together with
∑k

i=0 λi = 0, imply
that λi = 0 for all 0 ≤ i ≤ k. An equivalent condition (check!) is that uj 6∈ aff ({ui}i 6=j) for all 0 ≤ j ≤ k.
A subset F ⊂ V is a flat if aff (F ) = F . Check that F is a flat iff F = v + U , for some v ∈ V a linear
subspace U of V . The subspace U is uniquely determined by F (check!), and is called the direction of F .
We define dimF = dimU .

A set K ⊂ R
n is convex if for any u, v ∈ K, the segment [u, v] := {tu + (1 − t)v : 0 ≤ t ≤ 1} is

contained in K. The standard k-simplex in R
k+1 is the set

∆k = {λ = (λ0, . . . , λk) ∈ R
k+1 : λi ≥ 0,

k
∑

i=0

λi = 1}.

A convex combination of u0, . . . , uk is a vector of the form
∑k

i=0 λiui where (λ0, . . . , λk) ∈ ∆k}. The
convex hull of a set A ∈ R

n is

conv (A) =

{

k
∑

i=0

λiui : u0, . . . , uk ∈ A, (λ0, . . . , λk) ∈ ∆k

}

.

conv (A) is the inclusion-wise minimal convex subset of Rn that contains A (check!).

In the following sections we will recall some classical results from plane Euclidean geometry, and dis-
cuss their higher dimensional counterparts.

1.1 Ceva’s Theorem in n-Space

A Cevian in a triangle is a segment that connects a vertex to a point in the opposite edge. In plane
geometry we encounter several results that assert that certain three Cevians from the three vertices are
concurrent (i.e. intersect in a point). For example:
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Theorem 1.1. In a triangle ∆ = ABC
(i) The three medians are concurrent.
(ii) The three altitudes are concurrent.
(iii) The three angle bisectors are concurrent.

It turns out that Theorem 1.1 and similar results can be proved as a consequence of the following

C1A B

C

A1
B1

P

Figure 1: Three collinear Cevians

Theorem 1.2 (Ceva). Let ∆ABC be a triangle in the plane and consider three points C1 ∈ AB ,A1 ∈ BC,
and B1 ∈ CA. Then the segments AA1, BB1, CC1 intersect in a point P iff

|AC1| · |BA1| · |CB1|
|BC1| · |CA1| · |AB1|

= 1. (1)

Proof of Theorem 1.1. Let α = ∠BAC, β = ∠ABC and γ = ∠ACB. Let a = |BC|, b = |AC| and
c = |AB|.
(i) Let AA1, BB1, CC1 be the three medians of ∆. Then |AC1| = |BC1| = c

2 , |BA1| = |CA1| = a
2 and

|CB1| = |AB1| = b
2 . It follows that (1) is satisfied and hence AA1, BB1, CC1 are concurrent.
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Figure 2: Medians

(ii) Let AA1, BB1, CC1 be the three altitudes of ∆. Then |BA1| = c cos β, |CB1| = a cos γ and |AC1| =
b cosα. Similarly |CA1| = b cos γ, |AB1| = c cosα and |BC1| = a cos β. It follows that

|AC1| · |BA1| · |CB1|
|BC1| · |CA1| · |AB1|

=
b cosα · c cos β · a cos γ
a cos β · b cos γ · c cosα = 1,

and hence AA1, BB1, CC1 are concurrent.
(iii) Let AA1, BB1, CC1 be the three angle bisectors of ∆. By the sines theorem

|BA1|
sin α

2

=
c

sin∠AA1B

and
|CA1|
sin α

2

=
b

sin∠AA1C
.
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b cos γ
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Figure 3: Altitudes

It follows that |BA1|
|CA1| =

c
b
. Similarly |AC1|

|BC1| =
b
a
and |CB1|

|AB1| =
a
c
. Therefore

|AC1| · |BA1| · |CB1|
|BC1| · |CA1| · |AB1|

=
b

a
· a
c
· c
b
= 1,

and hence AA1, BB1, CC1 are concurrent.

c · z

C

B1
A1

BA b · x a · x

b · y

C1

c · y

a · z

Figure 4: Angle Bisectors
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For the sequel it will be useful to formulate Ceva’s theorem in a different but equivalent form. Fix an

arbitrary origin O in R
2, and let uA =

−→
OA, uB =

−−→
OB and uC =

−−→
OC. Let vA =

−−→
OA1, vB =

−−→
OB1 and

vC =
−−→
OC1.

Claim 1.3. The Cevians AA1,BB1,CC1 satisfy (1) iff there exist (λA, λB , λC) ∈ ∆2 such that

vA =
1

1− λA
(λBuB + λCuC),

vB =
1

1− λB
(λAuA + λCuC),

vC =
1

1− λC
(λAuA + λBuB).

(2)
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Proof. If (2) holds then

|AC1|
|BC1|

=
λB

λA
,

|BA1|
|CA1|

=
λC

λB
,

|CB1|
|AB1|

=
λA

λC
.

Hence
|AC1| · |BA1| · |CB1|
|BC1| · |CA1| · |AB1|

=
λB

λA
· λC

λB
· λA

λC
= 1.

Conversely, suppose that (1) holds. Let

S = |CB1| · |BC1|+ |AC1| · |CB1|+ |AB1| · |BC1|

and let

λA =
|CB1| · |BC1|

S
, λB =

|AC1| · |CB1|
S

, λC =
|AB1| · |BC1|

S
.

Then
λB

λA
=

|AC1| · |CB1|
|CB1| · |BC1|

=
|AC1|
|BC1|

and
λC

λA
=

|AB1| · |BC1|
|CB1| · |BC1|

=
|AB1|
|CB1|

.

Moreover, by (1)
λB

λC
=

|AC1| · |CB1|
|AB1| · |BC1|

=
|CA1|
|BA1|

.

hence (2) holds.

�

In view of Claim 1.3, Ceva’s Theorem 1.2 is equivalent to the following

Theorem 1.4. The Cevians AA1, BB1, CC1 are concurrent iff there exists a point (λA, λB , λC) ∈ ∆2

such that (2) holds.

�

This version of Ceva’s theorem admits a straightforward high dimensional extension. As in the planar
case, define a Cevian in a simplex σ = conv {ui : 0 ≤ i ≤ k} as a segment [uj, vj ] where 0 ≤ j ≤ k and
vj ∈ conv {ui : 0 ≤ i ≤ k, i 6= j}.

Theorem 1.5 (Landy). Let σ = conv {u0, . . . , un} be a nondegenerate n-simplex in R
n, and for 0 ≤ i ≤ n

let vi ∈ conv {uj : 0 ≤ j ≤ n, j 6= u}. Then

n
⋂

i=0

[ui, vi] 6= ∅ (3)

iff there exist λ = (λ0, . . . , λn) ∈ ∆n such that for all 0 ≤ i ≤ n

vi =
1

1− λi

∑

j 6=i

λjuj . (4)

Proof. For the direction (4) ⇒ (3), note that if (4) holds then for all 0 ≤ i ≤ n

p :=
n
∑

j=0

λjuj = λiui + (1− λi)





1

1− λi

∑

j 6=i

λjuj





= λiui + (1− λi)vi ∈ [ui, vi].
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For the other direction, suppose {[ui, vi]}ni=0 are Cevians such that {p} = ∩n
i=0[ui, vi]. For 0 ≤ i ≤ n let

vi =
∑n

j=0 λijuj where λij ≥ 0,
∑n

j=0 λij = 1 and λii = 0, and let p = θiui+(1−θi)vi. Let p =
∑n

j=0 µjuj
where µi ≥ 0 and

∑n
i=0 µi = 1. Fix 0 ≤ i ≤ n. Then

n
∑

j=0

µjuj = p = θiui + (1− θi)vi

= θiui + (1− θi)
n
∑

j=0

λijuj

= θiui +
∑

j 6=i

(1− θi)λijuj .

(5)

It follows that θi = µi and (1− θi)λij = µj for j 6= i. Thus

vi =
∑

j 6=i

λijuj =
1

1− µi

∑

j 6=i

µjuj.

�

The barycenter of a simplex S = conv {u0, . . . , uk} is 1
k+1

∑k
i=0 ui. The median from ui is the Cevian

connecting ui to the barycenter vi = 1
n

∑

j 6=i uj of the face conv {uj : 0 ≤ j ≤ k, j 6= i}. Taking

(λ0, . . . , λn) = ( 1
n+1 , . . . ,

1
n+1) in Theorem 1.5 we obtain the following

Claim 1.6.
n
⋂

i=0

[ui, vi] = p =
1

n+ 1

n
∑

i=0

ui.

An n-simplex S = conv {u0, . . . , un} is orthocentric if all altitudes in S intersect in a point, called the
orthocenter. For n > 2, not every n-simplex is orthocentric.

Proposition 1.7. S is orthocentric iff there exists a constant c such that (ui − u0, uj − u0) = c for all
i 6= j ∈ {1, . . . , n}.
Proof. Suppose S is orthocentric with orthocenter p. then for any distinct nonzero i, j

0 = (p− u0, ui − uj) = (p− u0, (ui − u0)− (uj − u0)) .

Therefore (p− u0, ui − u0) = c for all i 6= 0. Hence

(ui − u0, uj − u0) = ((p− u0)− (p− ui), uj − u0) = (p− u0, uj − u0) = c.

Conversely, suppose (ui − u0, uj − u0) = c for all distinct nonzero i, j. Let {vi}ni=1 be a basis dual to the
basis {ui − u0}ni=1, i.e. (vi, uj − u0) = δij . We claim that p = u0 + c

∑n
i=1 vi is the orthocenter of S.

Indeed, if k 6= ℓ are nonzero, then

(p− u0, uk − uℓ) = c(

n
∑

i=1

vi, uk − uℓ) = c(1 − 1) = 0.

On the other hand

(p− uk, u0 − uℓ) =

(

(u0 − uk) + c

n
∑

i=1

vi, u0 − uℓ

)

= (u0 − uk, u0 − uℓ)− c

(

n
∑

i=1

vi, uℓ − u0

)

= c− c = 0.

�
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1.2 Heron’s Formula in n-Space

We start with some remarks on volumes in R
n. Let A be a bounded set in R

n and let 1A be the indicator
function of A, i.e. 1A(u) = 1 if u ∈ A and 1A(u) = 0 otherwise. Assume that the boundary ∂A has
measure 0. Then 1A is Riemann integrable and we define vol(A) =

∫

Rn 1A(x)dx. For u1, . . . , un let

P (u1, . . . , un) =

{

n
∑

i=1

xiui : 0 ≤ xi ≤ 1

}

denote the parallelogram generated by u1, . . . , un. The volume of P (u1, . . . , un) is given by

vol (P (u1, . . . , un)) = |det(u1, . . . , un)|. (6)

Let S = conv {u0, . . . , un}. Then

vol(S) =
1

n!
vol (P (u1 − u0, . . . , un − u0))

=
1

n!
|det(u1 − u0, . . . , un − u0)|.

(7)

As an example of volume computation, let us evaluate the volume of a ball B(0, r) = {x ∈ R
n : |x| ≤ r}.

First note that by homogeniety, vol (B(0, r)) = vol (B(0, 1)) := wn. The gamma function defined on
x > 0 is given by Γ(x) =

∫∞
t=0 t

x−1e−tdt. The beta function defined on x > 0, y > 0 is given by

B(x, y) =
∫ 1
t=0 t

x−1(1− t)y−1dt.

Claim 1.8.

(i) B(x, y) = Γ(x)Γ(y)
Γ(x+y) For all x, y > 0

(ii) Γ(12) =
√
π.

(iii) Γ(x+ 1) = xΓ(x)

(iv) wn = π
n
2

Γ(n
2
+1) .

Let ∆ABC be a triangle in the plane with sides a = |BC|, b = |AC|, c = |AB|, and let s = a+b+c
2 be

its semiperimeter. Heron’s formula for the area of the triangle is the following

Theorem 1.9 (Heron, Archimedes).

area(∆ABC) =
√

s(s− a)(s − b)(s− c). (8)

Let S = conv {u0, . . . , un} be a n-simplex in R
n. For 0 ≤ i, j ≤ n, let dij = |vi − vj |. define a symmetric

(n + 2)× (n + 2) matrix

D =



















0 d20,1 · · · d20,n−1 d20,n 1

d21,0 0 · · · d21,n−1 d21,n 1
...

...
. . .

...
...

...
d2n−1,0 d2n−1,1 · · · 0 d2n−1,n 1

d2n,0 d2n,1 · · · d2n,n−1 0 1

1 1 · · · 1 1 0



















. (9)

The following high dimensional extension of Heron’s formula expresses the volume of S in terms of the
pairwise distances of its vertices.

Theorem 1.10 (Cayley-Menger).

vol(S) =

(

(−1)n+1

2n(n!)2
detD

)
1
2

. (10)
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Proof. Let

A =















uT0 1 0
uT1 1 0
...

...
...

uTn 1 0
0 0 · · · 0 0 0 1















, (11)

B =





















| | · · · | |
| | · · · | |
u0 u1 · · · un 0
| | · · · | |
| | · · · | |
0 0 · · · 0 1
1 1 · · · 1 0





















. (12)

Claim 1.11.

detA = (−1)n det(u1 − u0, . . . , un − u0),

detB = (−1)n+1 det(u1 − u0, . . . , un − u0),

and

AB =



















(u0, u0) (u0, u1) · · · (u0, un−1) (u0, un) 1
(u1, u0) (u1, u1) · · · (u1, un−1) (u1, un) 1

...
...

. . .
...

...
...

(un−1, u0) (un−1, u1) · · · (un−1, un−1) (un−1, un) 1
(un, u0) (un, u1) · · · (un, un−1) (un, un) 1

1 1 · · · 1 1 0



















. (13)

Now,

(ui, uj) =
1

2

(

|ui|2 + |uj|2 − d2ij
)

.

Thus, by subtracting
|uj |2
2 times of the last column from the j-th column, and then subtracting |ui|2

2 times
of the last row from the i-th row, it follows that

det(AB) = det

























0 −d20,1
2 · · · −d20,n−1

2 −d20,n
2 1

−d21,0
2 0 · · · −d21,n−1

2 −d21,n
2 1

...
...

. . .
...

...
...

−d2n−1,0

2 −d2n−1,1

2 · · · 0 −d2n−1,n

2 1

−d2n,0

2 −d2n,1

2 · · · −d2n,n−1

2 0 1
1 1 · · · 1 1 0

























= 4 ·
(

−1

2

)n+2

detD =
(−1)n

2n
detD.

Therefore

(n!)2vol(S)2 = vol (P (u1 − u0, . . . , un − u0))
2

= det(u1 − u0, . . . , un − u0)
2

= − det(AB) =
(−1)n+1

2n
detD.

�
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The radius of the circumscribed circle of a triangle is given by

abc

4
√

s(s− a)(s − b)(s− c)
.

The high dimensional extension is as follows. Let R be the radius of the sphere circumscrbing the simplex
S = conv {u0, . . . , un} and let

D0 =















0 d20,1 · · · d20,n−1 d20,n
d21,0 0 · · · d21,n−1 d21,n
...

...
. . .

...
...

d2n−1,0 d2n−1,1 · · · 0 d2n−1,n

d2n,0 d2n,1 · · · d2n,n−1 0















. (14)

Theorem 1.12. R2 = − det(D0)
2 det(D) .

Proof. Let un+1 denote the center of the circumscribing sphere of S. By adding an (n + 1) fixed
coordinate, we may view {ui}n+1

i=0 as points in R
n+1. Let

D̃ =























0 d20,1 · · · d20,n−1 d20,n R2 1

d21,0 0 · · · d21,n−1 d21,n R2 1
...

...
. . .

...
...

...
...

d2n−1,0 d2n−1,1 · · · 0 d2n−1,n R2 1

d2n,0 d2n,1 · · · d2n,n−1 0 R2 1

R2 R2 · · · R2 R2 0 1
1 1 · · · 1 1 1 0























. (15)

The simplex S̃ = conv {ui}n+1
i=0 is degenerate and thus has volume 0. Noting that d2i,n+1 = R2 for all

0 ≤ i ≤ n, it follows from Theorem 1.10 that det D̃ = 0. Subtracting R2 times the (n + 3)-rd column
from the (n+ 2)-nd column, and then subtracting R2 times the (n+ 3)-rd row from the (n+ 2)-nd row,
it follows that 0 = det D̃ = detE, where

E =























0 d20,1 · · · d20,n−1 d20,n 0 1

d21,0 0 · · · d21,n−1 d21,n 0 1
...

...
. . .

...
...

...
...

d2n−1,0 d2n−1,1 · · · 0 d2n−1,n 0 1

d2n,0 d2n,1 · · · d2n,n−1 0 0 1

0 0 · · · 0 0 −2R2 1
1 1 · · · 1 1 1 0























. (16)

Expanding detE by the (n+ 2)-nd row we obtain

0 = det D̃ = detE = − detD0 − 2R2 detD,

hence R2 = − detD0
2 detD .

�
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1.3 Touching Spheres

Let C1 = S(a1, r1), . . . , Cn+2 = S(an+2, rn+2) be pairwise touching (i.e. tangent) spheres in R
n. The

following result was proved by Descartes for n = 2 and by Gosset for general n.

Theorem 1.13 (Descartes, Gosset).
(i) If all Ci’s touch externally then

(

n+2
∑

i=1

r−1
i

)2

= n

n+2
∑

i=1

r−2
i . (17)

(ii) If C1, . . . , Cn+1 touch externally among themselves, and all touch Cn+2 internally, then

(

n+1
∑

i=1

r−1
i − r−1

n+2

)2

= n

n+2
∑

i=1

r−2
i (18)

Proof. (i) The assumption that the Ci’s are externally touching implies that for all 1 ≤ i, j ≤ n+ 2

|ai − aj |2 = (ri + rj)
2 − 4δijrirj . (19)

The a1, . . . , an+2 ∈ R
n are affinely dependent, i.e. there exists a 0 6= (β1, . . . , βn+2) ∈ R

n+2 such that
∑n+2

i=1 βi = 0 and
∑n+2

i=1 βiai = 0. Multiplying (19) by βi and over all i’s we obtain

n+2
∑

i=1

βi|ai|2 =
n+2
∑

i=1

βir
2
i + 2

(

n+2
∑

i=1

βiri

)

rj − 4βjr
2
j . (20)

Let

A =

n+2
∑

i=1

βiri , B =

n+2
∑

i=1

βi(r
2
i − |ai|2).

Then (20) implies that for all 1 ≤ j ≤ n

4r2jβj = 2Arj +B. (21)

Dividing (21) by rj and summing over all j’s we obtain

4A = 2(n + 2)A+B
n+2
∑

j=1

1

rj
, (22)

i.e.

A = − B

2n

n+2
∑

j=1

1

rj
. (23)

Dividing (21) by r2j and summing over all j’s we obtain

0 = 4
n+2
∑

j=1

βj = 2A
n+2
∑

j=1

1

rj
+B

n+2
∑

j=1

1

r2j
. (24)

If B = 0 then A = 0 and hence βj = 0 for all j’s, a contradiction. Hence B 6= 0. Substituting (23) in (24)
we obtain

0 = −B

n





n+2
∑

j=1

1

rj





2

+B
n+2
∑

j=1

1

r2j
. (25)

Dividing by B we obtain (17).

�
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1.4 Inversion

Inversion is the map φ : Rn \ {0} → R
n \ {0} given by φ(x) = x

|x|2 . Clearly, φ is an involution, i.e.

φ2 = I. In this section we will study some properties of this map. For a ∈ R
n and r > 0, let S(a, r) =

{x ∈ R
n : |x − a| = r} be the sphere of radius r and center a. For 0 6= u ∈ R

n and α ∈ R let
Hu,α = {x ∈ R

n : (x, u) = α} be the hyperplane orthogonal to u that passes through the point αu
|u|2 .

Claim 1.14.

(i) φ maps Hu,0 \ {0} bijectively onto itself.

(ii) If α 6= 0 then φ map Hu,α bijectively onto S
(

u
2α ,

|u|
2|α|

)

\ {0}.
(iii) Let S(a, r) be a sphere that contains 0. Then φ maps S(a, r) \ {0} onto the hyperplane H a

2|a|2
, 1
4|a|2

.

(iv) Let S(a, r) be a sphere with |a| > r. Then φ maps S(a, r) bijectively onto the sphere S
(

a
|a|2−r2

, r
|a|2−r2

)

.

(v) Let S(a, r) be a sphere with |a| < r. Then φ maps S(a, r) bijectively onto the sphere S
(

a
|a|2−r2

, r
r2−|a|2

)

.

Proof. (i) is clear. (ii) Let v ∈ Hu,α. Then

∣

∣

∣
φ(v)− u

2α

∣

∣

∣

2
=

∣

∣

∣

∣

v

|v|2 − u

2α

∣

∣

∣

∣

2

=
1

|v|2 +
|u|2
4α2

− 2

(

v

|v|2 ,
u

2α

)

=
|u|2
4α2

.

(26)

(iii) follows from (ii). To show (iv), suppose that |a| > r and x ∈ S(a, r). Then

∣

∣

∣

∣

φ(x)− a

|a|2 − r2

∣

∣

∣

∣

2

=

∣

∣

∣

∣

x

|x|2 − a

|a|2 − r2

∣

∣

∣

∣

2

=
1

|x|2 +
|a|2

(|a|2 − r2)2
− 2(x, a)

|x|2 (|a|2 − r2)

=
|a|2 − r2 − 2(x, a)

|x|2 (|a|2 − r2)
+

|a|2
(|a|2 − r2)2

=
|a|2

(|a|2 − r2)2
− |a|2 − r2

(|a|2 − r2)2

=

(

r

|a|2 − r2

)2

.

(27)

The proof of (v) is essentially the same.

�

2 Projective Geometry

2.1 The n-Dimensional Projective Space

Let V be an (n + 1)-dimensional vector space over a field F. The projective space P (V ) associated with
V is defined as follows. The points of P (V ) are the 1-dimensional linear subspaces of V . Given a nonzero
u ∈ V , let [u] = span{u} denote the line spanned by u. A projective subspace (or flat) of P (V ) is the set
[U ] = {[u] : 0 6= u ∈ U}, where U is a linear subspace of V . The dimension of [U ] is dim[U ] = dimU − 1.
When V = F

n+1 and 0 6= u = (a0, . . . , an) ∈ V , we denote [u] by its homogenous coordinates [a0, . . . , an].
The projective space P (Fn+1) is denoted by FPn. Let V ∗ denote the dual space of V . This is the space
of linear functionals of V . The dual of P (V ) is P (V ∗). The duality map Φ is the bijective map from the
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set of projective subspaces of P (V ) to projective subspaces of P (V ∗), that assigns to a subspace P (U) of
P (V ), the subspace P (U◦), where

U◦ = {φ ∈ V ∗ : φ(u) = 0 for all u ∈ U}

is the annihilator of U . Note that Φ2 = Identity, and dimΦP (U) = dimP (V ) − dimP (U). For ex-
ample, if dimV = 3 then Φ maps points to lines, and lines to points. Furthermore, P (U1) ⊂ P (U2) iff
ΦP (U1) ⊃ ΦP (U2). This leads to the following
Duality Principle: Any true statement concerning incidence in P (V ) gives rise to a true statement in
P (V ∗) obtain by replacing any P (U) by its dual ΦP (U). Consider, for example, the statement: any two
distinct points in FP 2 are contained in a unique line. The dual statement is: Any two distinct lines in
FP 2 intersect in a single point.

Let GL(V ) denote the general linear group of V , i.e. all invertible linear transformations of V . Let
Z(V ) = {cI : c 6= 0} be the normal subgroup consisting of all nonzero multiples of the identity. The
projective linear group is defined as PGL(V ) = GL(V )/Z(V ). The action of PGL(V ) on P (V ) is given
as follows. Let g ∈ GL(V ) and let g be its image in PGL(V ). Let 0 6= u ∈ V . Then g[v] = [gv]. Clearly,
if [U ] is a projective subspace of P (V ), then T [U ] is a projective subspace and dimT [U ] = dim[U ] for any
T ∈ PGL(V ). A set A ⊂ P (V ) is in general position such that C is linearly independent for any C ⊂ A
of cardinality |C| ≤ n+ 1.

Claim 2.1. Let A = {p1, . . . , pn+2} and B = {q1, . . . , qn+2} be two sets in general position in P (V ). Then
there exists a unique projective transformation T ∈ PGL(V ) such that Tpi = qi for all 1 ≤ i ≤ n+ 2.

Proof. For 1 ≤ i ≤ n + 2 write pi = [ui] and qi = [vi], where ui, vi ∈ V . Then both u1, . . . , un+1

and v1, . . . , vn+2 are bases of V . There exist unique (α1, . . . , αn+1), (β1, . . . , βn+1 ∈ F
n+1 such that

un+2 =
∑n+1

i=1 αiui and vn+2 =
∑n+1

i=1 βivi. By general position, αi 6= 0 and βi 6= 0 for all 1 ≤ i ≤ n + 1.
Let g ∈ GL(V ) be given by g(αiui) = βivi. Then T = g satisfies Tpi = qi for all 1 ≤ i ≤ n + 1.
Furthermore

Tpn+2 = [gun+2] =

[

g

n+1
∑

i=1

αiui

]

=

[

n+1
∑

i=1

g(αiui)

]

=

[

n+1
∑

i=1

βivi

]

= [vn+2] = qn+2.

(28)

For the uniqueness, assume that Spi = qi for 1 ≤ i ≤ n + 2, for some S = h. Then there exists nonzero
γ1, . . . , γn+2 such that h(αiui) = γivi. Then

[

n+1
∑

i=1

βivi

]

= qn+2 = Spn+2 = [hun+2]

=

[

h

(

n+1
∑

i=1

αiui

)]

=

[

n+1
∑

i=1

h(αiui)

]

=

[

∑

i=1

γivi

]

.

(29)

It follows that there exists a θ 6= 0 such that γi = θβi for all 1 ≤ i ≤ n+ 1. Therefore

h(αiui) = γiui = θβivi = θg(αiui).

Thus S = h = g = T .

�

11



2.2 Desargue and Pappus Theorems

Theorem 2.2 (Desargue). Let L1, L2, L3 be three distinct lines in FP 2 that intersect in a point p.
Consider three pairs of distinct points a1, a2 ∈ L1 \ {p}, b1, b2 ∈ L2 \ {p} and c1, c2 ∈ L3 \ {p}. Let
q1 = b1c1 ∩ b2c2, q2 = a1c1 ∩ a2c2 and q3 = a1b1 ∩ a2b2. Then q1, q2, q3 are collinear.

Proof. We identify a projective point with any of its representatives in F
3\{0}. There exist α1, α2, β1, β2, γ1, γ2 ∈

F such that
p = α1a1 + α2a2 = β1b1 + β2b2 = γ1c1 + γ2c2.

It follows that α1a1 − β1b1 = β2b2 − α2a2. As α1a1 − β1b1 ∈ a1b1 and β2b2 − α2a2 ∈ a2b2, it follows that
q3 = α1a1 − β1b1. Similarly q1 = β1b1 − γ1c1 and q2 = γ1c1 − α1a1. Summing the three equalities, we
obtain that q1 + q2 + q3 = 0. Hence q1, q2, q3 are collinear.

�

b2

a1

a2

c1

c2

p

q2

q1

q3

L2

L1

L3

b1

Figure 5: Desargue Theorem

Remark: It turns out that the dual to Desargue theorem is the converse to Desargue theorem (check!).

Theorem 2.3 (Pappus). Let L1, L2 be two distinct lines in FP
2 and let q = L1 ∩ L2. Let a1, a2, a3

be distinct points in L1 \ {q}, and let b1, b2, b3 be distinct points in L2 \ {q}. Let c1 = a2b3 ∩ a3b2,
c2 = a1b3 ∩ a3b1 and c3 = a1b2 ∩ a2b1. Then c1, c2, c3 are collinear.

Proof. Without loss of generality, the points a1, b1, c1, a3 are in general position. We may therefore
assume that a1 = [1, 0, 0], [b1 = [0, 1, 0], c1 = 0, 0, 1] and a3 = [1, 1, 1]. It follows that

Φ(a2c1) = [1,−p, 0],

Φ(a1c2) = [0, 1,−q],

Φ(b1b2) = [−r, 0, 1].

(30)

As
a2c1 ∩ a1c2 ∩ b1b2 = b3,
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it follows that

0 = det





1 −p 0
0 1 −q
−r 0 1



 = 1− pqr.

Therefore pqr = 1. Now

Φ(a2b1) = [1, 0,−p],

Φ(a1b2) = [0,−r, 1],

Φ(c1c2) = [−q, 1, 0].

(31)

Now

det





1 0 −p
0 −r 1
−q 1 0



 = −1 + pqr = 0.

It follows that
{c3} ∩ c1c2 =

(

a2b1 ∩ a1b2
)

∩ c1c2).

Thus c1, c2, c3 are collinear.

�

b1 = [0, 1, 0]

a1 = [1, 0, 0]

a2 = [p, 1, 1]
a3 = [1, 1, 1]

c1 = [0, 0, 1]

c3
c2 = [1, q, 1]

b3 b2 = [1, 1, r]

Figure 6: Pappus Theorem: first proof

We next give a different proof of Pappus theorem. We need some preliminaries. Let A ∈ Mn(F). For
subsets I = {i1 < · · · < ik}, J = {j1 < · · · < jk} ⊂ [n], let B = A[I, J ] ∈ Mk(F) be given by Bst = Aisjt.
For a subset K ⊂ [n], let K = [n] \ K. For a partition [n] = I ∪ I where I = {i1 < · · · < ik},
I = {j1 < · · · < jn−k}, let

σI,I =

(

1 · · · k k + 1 · · · n
i1 · · · ik j1 · · · jn−k

)

.

Proposition 2.4 (Laplace Expansion). Let K ∪K be a partition of [n] with |K| = k, and let A ∈ Mn(F).
Then

detA =
∑

I∈([n]
k )

sgn
(

σI,I

)

detA[K, I] · detA[K, I ]. (32)

For vectors u1, . . . , un ∈ F
n we abbreviate [u1, . . . , un] = det(u1, . . . , un).

Proposition 2.5 (Plücker relation). Let u1, . . . , u4 ∈ F
2. Then

[u1, u2] · [u3, u4]− [u1, u3] · [u2, u4] + [u1, u4] · [u2, u3] = 0. (33)
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Proof. Let

A =

[

u1 u2 u3 u4
u1 u2 u3 u4

]

∈ M4(F).

Then rk(A) ≤ 2, so in particular detA = 0. On the other hand, by Proposition 2.4:

detA = 2 ([u1, u2] · [u3, u4]− [u1, u3] · [u2, u4] + [u1, u4] · [u2, u3]) .
�

Corollary 2.6. Let u0, . . . , u4 ∈ F
3. Then:

[u0, u1, u2] · [u0, u3, u4]− [u0, u1, u3] · [u0, u2, u4] + [u0, u1, u4] · [u0, u2, u3] = 0. (34)

Proof. For u0 = e1, Eq. (34) follows from (33). In general, Let T ∈ GL3(F) such that Tu0 = e1. Then

0 = [Tu0, Tu1, Tu2] · [Tu0, Tu3, Tu4]− [Tu0, Tu1, Tu3] · [Tu0, Tu2, Tu4] + [Tu0, Tu1, Tu4] · [Tu0, Tu2, Tu3]
= det(T )2 ([u0, u1, u2] · [u0, u3, u4]− [u0, u1, u3] · [u0, u2, u4] + [u0, u1, u4] · [u0, u2, u3]) .

�

Another proof of Pappus Theorem.

9

1
2

3

4 5 6

7

8

Figure 7: Pappus Theorem: second proof

Using the Plücker relation for each of the 8 lines in the configuration we obtain:

[147] · [123] − [142] · [173] + [143] · [172] = 0 ⇒ [142] · [173] = [143] · [172],
[147] · [159] − [145] · [179] + [149] · [175] = 0 ⇒ [145] · [179] = [149] · [175],
[147] · [186] − [148] · [176] + [146] · [178] = 0 ⇒ [148] · [176] = [146] · [178],
[471] · [456] − [475] · [416] + [476] · [415] = 0 ⇒ [475] · [416] = [476] · [415],
[471] · [483] − [478] · [413] + [473] · [418] = 0 ⇒ [478] · [413] = [473] · [418],
[471] · [429] − [472] · [419] + [479] · [412] = 0 ⇒ [472] · [419] = [479] · [412],
[714] · [726] − [712] · [746] + [716] · [742] = 0 ⇒ [712] · [746] = [716] · [742],
[714] · [753] − [715] · [743] + [713] · [745] = 0 ⇒ [715] · [743] = [713] · [745].

Multiplying the columns and cancelling equal terms, we obtain

[719] · [748] = [718] · [749].
On the other hand

[714] · [789] − [719] · [748] + [718] · [749] = 0.

Hence [789] = 0 and therefore 7, 8, 9 are collinear.

�
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2.3 Conic Sections and Quadratic Forms

Consider the cone C = {(x, y, z) ∈ R
3 : z2 = x2 + y2}. A conic section is the intersection of C with a

plane H. There are several possibilities.

1. H = e⊥3 . Then H ∩ C is the single point {0}.

2. H = e⊥2 . Then H ∩ C is the two intersecting lines span(e1 − e3) ∪ span(e1 + e3).

3. H = (e1 − e3)
⊥. Then H ∩ C is the line span{e1 + e3).

4. H = He1,1. Then H ∩ C is the hyperbola {(1, y, z) : 1 + y2 = z2}.

5. H = He1+e3,−1. Then H ∩ C is the parabola {y2−1
2 , y,−y2+1

2 ) : y ∈ R}.

6. H = He3,1. Then H ∩ C is the circle {(x, y, 1) : x2 + y2 = 1}.

Let A be a real symmetric matrix in Mn(R). The associated quadratic form is qA(x) = xTAx. Two
symmetric matrices A and B are congruent if there exists a matrix P ∈ GLn(R) such that B = PAP T .
Let n+ (n−) be the number of positive (negative) eigenvalues of A. The signature of A is (n+, n−).

Proposition 2.7 (Sylvester’s Inertia Theorem). Let A,B ∈ Mn(R) be symmetric. Then:
(i) A is congruent to a diagonal matrix Dn+,n− = diag(d1, . . . , dn) where

di =







+1 1 ≤ i ≤ n+

−1 n+ + 1 ≤ i ≤ n+ + n−
0 n+ + n− + 1 ≤ i ≤ n.

(ii) A and B are congruent iff they have the same rank and the same signature.

Proof. (i) Let n+, n− denote respectively the number of positive and negative eigenvalues of A. Let
{λi}ni=1 denote the eigenvalues of A. We may assume that λi > 0 for 1 ≤ i ≤ n+ and λi < 0 for
n+ + 1 ≤ i ≤ n+ + n−. Let S ∈ O(n) such that SAS−1 = diag(λ1, . . . , λn). Let

µi =











1√
λi

1 ≤ i ≤ n+
1√
−λi

n+ + 1 ≤ i ≤ n+ + n−
1 n+ + n− + 1 ≤ i ≤ n.

and let T = diag(µ1, . . . , µn)S. Then TAT t is of the required form. (ii) It suffices to show that if
A = Dn+,n− is congruent to B = Dm+,m− then (n+, n−) = (m+,m−). Clearly, n+ + n− = rk(A) =
rk(B) = m+ +m−. Write B = TAT t, and let u1, . . . , un be the rows of T . Then

m+
∑

i=1

x2i −
m++m−
∑

i=m++1

x2i =

n+
∑

j=1

(uj · x)2 −
n++n−
∑

j=n++1

(uj · x)2. (35)

Suppose for contradiction that (n+, n−) 6= (m+,m−). We may assume that n+ > m+. As m++(n−n+) <
n, there exists a nonzero θ = (θ1, . . . , θn) ∈ R

n such that θi = 0 for 1 ≤ i ≤ m+ and uj · θ = 0 for j > n+.
It follows that the left hand side of (35) is negative, while the right hand side of (35) is non-negative, a
contradiction.

�

Let A ∈ Mn+1(R) be a symmetric matrix with a quadratic form qA(x). The corresponding quadratic
(n − 1)-dimensional surface is QA = {[x] ∈ RP

n : qA(x) = 0}. Sets S1, S2 ⊂ P(V ) are projectively
equivalent if there exists a projective transformation T ∈ PGL(V ) such that TS1 = S2.

Claim 2.8. QA and QB are projectively equivalent iff A is congruent to either B or to −B.
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Proof. If B = P TAP for P ∈ GLn+1(R) then

[x] ∈ QB ⇔ xTBx = 0 ⇔ (Px)TA(Px) = 0 ⇔ Px ∈ QA ⇔ [x] ∈ P−1QA.

Hence QB = P−1QA. If −B = P TAP then QB = Q−B = P−1QA. Conversely, suppose QB = TQA for
some T ∈ PGLn+1(R). It follows that there exist two bases u1, . . . , un+1 and v1, . . . , vn+1 of Rn+1 such
that

k
∑

i=1

(uix)
2 −

k+ℓ
∑

i=k+1

(uix)
2 = 0 ⇔

k′
∑

i=1

(vix)
2 −

k′+ℓ′
∑

i=k′+1

(vix)
2 = 0. (36)

By replacing B with −B if necessary, we may assume that k ≥ ℓ and k′ ≥ ℓ′. We claim that k = k′ and
ℓ = ℓ′ and therefore A is congruent to B. Indeed, suppose to the contrary that k > k′. Then there exists
a nonzero x ∈ R

n+1 such that

• vix = vi+k′x for 1 ≤ i ≤ ℓ′.

• vix = 0 for ℓ′ + 1 ≤ i ≤ k′.

• uix = 0 for k + 1 ≤ i ≤ n+ 1.

It follows that there exists an 1 ≤ i0 ≤ k such that uix 6= 0, and then the right hand side of (36) is zero,
while the left hand side is positive, a contradiction. Thus k = k′. The proof that ℓ = ℓ′ is similar.

�

Using Proposition 2.7 and Claim 2.8, quadrics in P2R are classified as follows:

n+ n− equation quadric

1 0 x2 = 0 double line: x = 0

1 1 x2 − y2 = 0 two lines: x = y and x = −y

3 0 x2 + y2 + z2 = 0 ∅
2 1 x2 + y2 = z2 ellipse
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Proposition 2.9. Let S = {p1, . . . , p5} be 5 points in general position in P
2(R). Then there exists a

unique quadric QA that contains S.

Proof. By Claim 2.1 we may assume that pi = [ei] for i = 1, 2, 3 and p4 = [1, 1, 1]. Let p5 = [α, β, γ].
Then αβγ 6= 0 and the unique quadric containing S is

f(x, y, z) = (β − γ)αyz + (γ − α)βxz + (α− β)γxy.

�

2.4 Cross-Ratios and Pascal’s Theorem

Let U be 2-dimensional space over F, and let p, q, r, s ∈ P (U) such that p, q, r are distinct. The cross-
ratio (p, q; r, s) is defined as follows. Write p = [u], q = [v], r = [w], s = [w′]. Let w = αu + βv and
w′ = α′u+ β′v. Note that α, β 6= 0, and if β′ = 0 then α′ 6= 0. Then

(p, q; r, s) =
α′ · β
α · β′ ∈ F ∪ {∞}. (37)

It is straightforward to check that (p, q; r, s) is well defined and that if T ∈ PGL(V ) then (Tp, T q;Tr, Ts) =
(p, q; r, s). Pick an arbitrary basis z1, z2 for U . For an element u = λ1z1 +λ2z2, let ϕ(u) =

λ1
λ2

∈ F∪{∞}.

Claim 2.10.

(p, q; r, s) =
(ϕ(p) − ϕ(r)) · (ϕ(q)− ϕ(s))

(ϕ(p) − ϕ(s))(ϕ(q) − ϕ(r))
. (38)

Proof. Let p = [u], q = [v], r = [w], s = [w′]. Write u = a1z1 + a2z2, v = b1z1 + b2z2, w = c1z1 + c2z2,
and w′ = d1z1 + d2z2. Let r = αu+ βv and s = α′u+ β′v. Then

c1z1 + c2z2 = w = αu+ βv = α(a1z1 + a2z2) + β(b1z1 + b2z2)

= (a1α+ b1β)z1 + (a2α+ b2β)z2.
(39)

and

d1z1 + d2z2 = w′ = α′u+ β′v = α′(a1z1 + a2z2) + β′(b1z1 + b2z2)

= (a1α
′ + b1β

′)z1 + (a2α
′ + b2β

′)z2.
(40)

It follows that
[

c1
c2

]

=

[

a1 b1
a2 b2

]

·
[

α
β

]

,

[

d1
d2

]

=

[

a1 b1
a2 b2

]

·
[

α′

β′

]

. (41)

Using Cramer’s rule it follows that

α

β
=

det

[

c1 b1
c2 b2

]

det

[

a1 c1
a2 c2

] =
c1b2 − c2b1
a1c2 − a2c1

,

α′

β′ =

det

[

d1 b1
d2 b2

]

det

[

a1 d1
a2 d2

] =
d1b2 − d2b1
a1d2 − a2d1

.

(42)
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Hence

(ϕ(p)− ϕ(r)) · (ϕ(q)− ϕ(s))

(ϕ(p)− ϕ(s))(ϕ(q) − ϕ(r))
=

(

a1
a2

− c1
c2

)

·
(

b1
b2

− d1
d2

)

(

a1
a2

− d1
d2

)

·
(

b1
b2

− c1
c2

)

=
(a1c2 − a2c1) · (b1d2 − b2d1)

(a1d2 − a2d1) · (b1c2 − b2c1)

=
(a1c2 − a2c1) · (b1d2 − b2d1)

(a1d2 − a2d1) · (b1c2 − b2c1)

=
α′β
αβ′ = (p, q; r, s).

(43)

�

Proposition 2.11. Let a, b, c, d distinct points on a line ℓ, and let p 6∈ ℓ, all in the projective plane
P
2(F). Let pa, pb, pc, pd be the four lines through p, and let a1, b1, c1, d1 be their dual points. Then

(a1, b1; c1, d1) = (a, b; c, d). In particular, if ℓ̃ is another line that does not contain p, and ℓ′ ∩ pa = a′,
ℓ′ ∩ pb = b′, ℓ′ ∩ pc = c′, ℓ′ ∩ pd = d′, then (a, b; c, d) = (a′, b′; c′, d′).

Proof. Write p = [w], a = [u], b = [v], c = [αu + βv], d = [α′u + β′v]. Let a1 = [u1], b1 = [v1]. Thus
u1 ⊥ u,w and v1 ⊥ v,w. It follows that c1 = α1u1 + β1v1 and d1 = α′

1u1 + β′
1v1, where α1 = α(v1 · u),

β1 = −β(u1 · v), and α′
1 = α′(v1 · u), β′

1 = −β′(u1 · v) (check!). It follows that

(a1, b1; c1, d1) =
α′
1β1

α1β′
1

=
α′β
αβ′ = (a, b; c, d).

�

c⊥1

p

b

c

d

a

a′

b′

c′

d′d⊥1

a⊥1

b⊥1

Figure 8: (a, b; c, d) = (a1, b1; c1, d1) = (a′, b′; c′, d′)

For four intersecting lines ℓ1, ℓ2, ℓ3, ℓ4 in P
2(F), define

(ℓ1, ℓ2; ℓ3, ℓ4) = (Φ(ℓ1),Φ(ℓ2); Φ(ℓ3),Φ(ℓ4)).

The dual form of Proposition 2.11 is the following

Proposition 2.12. Let a, b, c, d be points on a line ℓ and let p, q 6∈ ℓ. Then

(pa, pb; pc, pd) = (a, b; c, d) = (qa, qb; qc, qd).
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The following result is a version of Proposition 2.12, where the degenerate conic ℓ is replaced by a
nonsingular conic.

Proposition 2.13. Let p, q, a, b, c, d be distinct points on a nonsingular conic C. Then

(pa, pb; pc, pd) = (qa, qb; qc, qd). (44)

Proof. Let pa = u⊥a , pb = u⊥b , pc = (ua + ub)
⊥, qa = v⊥a , qb = v⊥b , qc = (va + vb)

⊥. It follows that
C = {[x] ∈ P

2(R) : f(x) = 0} where

f(x) = (uax) · (vbx)− (ubx) · (vax).

Let pd = (αua + βub)
⊥ and qd = (α′va + β′vb)⊥. Then α(uad) + β(ubd) = 0 and α′(vad) + β′(vbd) = 0.

On the other hand (uad) · (vbd) = (ubd)(vbd). Therefore

(pa, pb; pc, pd) =
α

β
=

α′

β′ = (qa, qb; qc, qd).

�

p

q

d

b
a

c

Figure 9: (pa, pb; pc, pd) = (qa, qb; qc, qd)
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Theorem 2.14 (Pascal). Let C be a nonsingluar quadric in P
2(R), and let a1, a2, a3, b1, b2, b3 be distinct

points on C. Then the points c1 = a3b2 ∩ a2b3, c2 = a1b3 ∩ a3b1 and c3 = a1b2 ∩ a3b2 are collinear.

Proof. Let s = a3b2 ∩ a1b3, t = a3b1 ∩ a1b2. Then

(a3, c1; s, b2) = (b3a3, b3c1; b3s, b3b2) = (b3a3, b3a2; b3a1, b3b2)

= (b1a3, b1a2; b1a1, b1b2) = (b1t, b1c3; b1a1, b1b2)

= (t, c3; a1, b2).

(45)

Therefore
(c2a3, c2c1; c2s, c2b2) = (c2t, c2c3; c2a1, c2b2) = (c2a3, c2c3; c2s, c2b2). (46)

It follows that c2c1 = c2c3, i.e. c1, c2, c3 are collinear.

�

s

a1

a2

a3

b1

b2

b3

c1

c2

c3

t

Figure 10: Pascal Theorem: c1, c2, c3 are collinear

2.5 Metric Aspects of P
2(R)

Let L(γ) denote the length of a path γ : [0, 1] → R
3. Define a metric on the unit sphere S2 by d(u, v) =

minL(γ) where γ ranges over all γ : [0, 1] → S2 such that γ(0) = u, γ(1) = v.

Claim 2.15. d(u, v) = arccos(u · v).

Proof. We may assume that u = (0, 0, 1) and v = (sinα, 0, cos α). Let γ be a path in S2 between u and
v, and write

γ(t) = (sin(φ(t)) cos(θ(t)), sin(φ(t)) sin(θ(t)), cos(φ(t))),

where φ(0) = 0, φ(1) = α, θ(0) = θ(1) = 0. Then

L(γ) =

∫ 1

t=0
|γ̇(t)|dt =

∫ 1

t=0

√

φ̇(t)2 + θ(t)2 sin2 φ(t)dt

≥
∫ 1

t=0
|φ̇(t)|dt ≥

∫ 1

t=0
φ̇(t)dt = φ(1) − φ(0) = α.

(47)

�

For a point u ∈ S2, let A+
u = {v ∈ S2 : u · v > 0}, A−

u = {v ∈ S2 : u · v < 0}. Let u1, u2, u3 be distinct
points in S2, and consider the interior B = ∩3

i=1A
+
ui

of the spherical triangle determined by u1, u2, u3. Let
αi be the angle between uj, uk where {i, j, k} = {1, 2, 3}.
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Claim 2.16. µ(B) =
∑3

i=1 αi − π.

Proof. Let Bij = A+
ui

∩ A+
uj
. Then µ(Bij) = 2αk where {i, j, k} = {1, 2, 3}. Let C = ∪1≤i<j≤3Bij . Then

C ∪ (−C) = S2 \ ∂B is a partition. It follows that µ(C) = 2π. On the other hand,

µ(C) =
∑

1≤i<j≤3

µ(Bij)− 2µ(B) = 2

3
∑

i=1

αi − 2µ(B).

It follows that 2π = 2
∑3

i=1 αi − 2µ(B).

�

We recall the cross product in R
3. For u, v ∈ R

3, let u × v be the unique element of R3 such that for
det(u, v, x) = (u × v) · x for any x ∈ R

3. Then u × v ⊥ u, v and |u × v| = |u| · |v| · sinα where α is the
angle between u and v.

Claim 2.17.

(i) (u1 × u2)× v = −(v · u2)u1 + (v · u1)u2.
(ii) (u1 × u2) · (v1 × v2) = (u1 · v1) · (u2 · v2)− (u1 · v2) · (u2 · v1).
Let T be a spherical triangle with vertices u, v, w ∈ S2. Let d(v,w) = a, d(u,w) = b, d(u, v) = c and let
α, β, γ be the angles at u, v, w respectively.

Proposition 2.18 (Spherical Cosine Formula).

cos γ =
cos c− cos a cos b

sin a sin b
. (48)

Proof. We have |v × w| = sin a, |u×w| = sin b. It follows that

cos c− cos a cos b = u · v − (u · w)(w · v)
= (u× w) · (v × w) = |u× w| · |v × w| · cos γ

= sin a sin b cos γ.

(49)

�

Corollary 2.19 (Spherical Pythagoras Theorem). If γ = π
2 , then cos c = cos a cos b.

Proposition 2.20 (Spherical Sine Formula). Let V be the volume of the parallelepiped spanned by u, v, w.
Then

sin2 α

sin2 a
=

sin2 β

sin2 b
=

sin2 γ

sin2 c
=

V 2

sin2 a · sin2 b · sin2 c . (50)

Proof. We may assume that u = (0, 0, 1) and v = (sin c, 0, cos c). Then w = (sin b cosα, sin b sinα, cos b).
It follows that

V 2 = det(u, v, w)2 = det





0 0 1
sin c 0 cos c

sin b cosα sin b sinα cos b





2

= sin2 c · sin2 b · sin2 α.

Similarly
V 2 = sin2 a · sin2 b · sin2 γ = sin2 a · sin2 c · sin2 β.

This implies (50).

�

Define a a function on d : P2 × P
2 → R by

d([u], [v]) = arccos

( |u · v|
|u| · |v|

)

.

Proposition 2.21. d(·, ·) defines a metric on P
2.
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3 The Hyperbolic Plane

We first recall the following (abridged) definition of Riemmanian metrics. Let U be an open set in R
n

and let S(x) = (sij(x))
n
i,j=1 be a positive definite symmetric matrix, where the sij : U → R are smooth

functions. For a smooth curve γ : [a, b] → U , define the length of γ with respect to S by

L(γ) =

∫ b

a

(

γ̇(t)TS(γ(t))γ̇(t)
)

1
2 dt. (51)

It can be check that L(γ) is independent of the parametrization of γ. The riemannian distance determined
by S(x) is given by d(p, q) = infγ L(γ), where γ ranges over all smooth paths γ : [0, 1] → U with
γ(0) = p, γ(1) = q. The riemannian volume of A ⊂ U is given by

vol(A) =

∫

A

√

detS(x)dx.

In this section we will study two models of the hyperbolic plane using the relevant riemannian metrics.

3.1 The Upper Half Plane Model

The points of the Hyperbolic Plane is the set H = {(x, y) : y > 0}. The hyperbolic lines are of two types:

• ℓ = {(x0, y) : y > 0} for some x0 ∈ R.

• ℓ = {(x, y) : (x− x0)
2 + y2 = r20 , y > 0} for some x0 ∈ R, 0 < r0 ∈ R.

Claim 3.1. Any two distinct points in H are contained in a unique line. For any line ℓ and p 6∈ ℓ there
exist infinitely many lines through p that are disjoint from ℓ.

The metric of the hyperbolic plane is defined by the matrix S(x, y) = 1
y2
I. Thus the hyperbolic length

of γ : [a, b] → H where γ(t) = (x(t), y(t)) is given by

LH(γ) =

∫ b

a

√

ẋ(t)2 + ẏ(t)2

y(t)
dt.

The hyperbolic area of A ⊂ H is given by

areaH(A) =

∫

(x,y)∈A

dx dy

y2
.

We will show that the shortest path between p, q ∈ H is attained by the hyperbolic segment connecting
these two points. For example, if 0 < a < b and p = (x0, a), q = (x0, b) and γ(t) = (x0, t) for 0 < a ≤ t ≤ b,
then

dH(p, q) = LH(γ) =

∫ b

a

dt

t
= ln

b

a
.

In the sequel, we identify H with {z ∈ C : Im z > 0}. Let SL2(R) = {A ∈ GL2(R) : detA = 1} and

let PSL2(R) = SL2(R)/±I . g =

(

a b
c d

)

∈ PSL2(R) acts on H by fractional linear transformation

g(z) = az+b
cz+d

.

Claim 3.2. PSL2(R) transforms lines into lines.

Claim 3.3. Let γ : [a, b] → H be a smooth path and let g ∈ PSL2(R). Then LH(g(γ)) = LH(γ).
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Proof. Let Γ(t) = g(γ(t)). Then

Γ′(t) =
(ad− bc)γ′(t)
(cγ(t) + d)2

=
γ′(t)

(cγ(t) + d)2
.

On the other hand

ImΓ(t) =
(ad− bc)

|cγ(t) + d|2 · Im γ(t) =
Im γ(t)

|cγ(t) + d|2 .

It follows that
|Γ′(t)|
ImΓ(t)

=
|γ′(t)|
Im γ(t)

.

�

The hyperbolic distance dH(p, q) between two point p, q ∈ H is defined as dH(z, w) = inf LH(γ) where the
infimum is taken over all paths γ in H with endpoints z, w.

Proposition 3.4.

dH(z, w) = ln
|z − w|+ |z − w|
|z − w| − |z − w| . (52)

Proof. Note that both sides are invariant under the action of PSL2(R). If z = ip and w = iq then (52)
can be checked directly. Indeed, suppose γ(t) = x(t)+ iy(t) ∈ H such that γ(0) = ip and γ(1) = iq. Then

LH(γ) =

∫ 1

0

√

ẋ(t)2 + ẏ(t)2

y(t)
dt

≥
∫ 1

0

|ẏ(t)|
y(t)

dt = | ln p

q
|.

(53)

Suppose now that z and w are not on the same vertical line. There is a unique Euclidean semicircle C
with radius R and center α+ R that contains z and w. Let g(z) = 1− 2R

z−α
. Then g(z) and g(w) are on

the line it and the result follows.

�

Proposition 3.5. Let T be a hyperbolic triangle with angles α, β, γ. Then

areaH(T ) = π − (α+ β + γ). (54)

�

We next discuss some aspects of hyperbolic trigonometry. Recall the hyperbolic trigonometric functions
cosh x = ex+e−x

2 and sinhx = ex−e−x

2 .

Claim 3.6. Let z, w ∈ H. Then

cosh dH(z, w) = 1 +
|z − w|2

2 Im z Imw
.

Proof. By (52)

cosh dH(z, w) =
1

2

( |z − w|+ |z − w|
|z − w| − |z − w| +

|z − w| − |z − w|
|z − w|+ |z − w|

)

|z − w|2 + |z − w|2
|z − w|2 − |z − w|2 = 1 +

2(|z − w|2)
|z − w|2 − |z − w|2

= 1 +
|z − w|2

Re (zw)− Re (zw)
= 1 +

|z − w|2
2 Im z Imw

.

(55)

�
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3.2 The Hyperboloid Model

Define the Lorentz bilinear form in R
3 as follows. For x = (x0, x1, x2), y = (y0, y1, y2) ∈ R

3 let

Q(x, y) = −x0y0 + x1y1 + x2y2.

Let
H̃ = {x ∈ R

3 : Q(x, x) = −1, x0 > 0}.
The points of the hyperboloid model are the elements of H̃, and the lines are nonempty intersections of
H̃ with 2-dimensional linear subspaces of R3.

Claim 3.7. Any two distinct points in H̃ are contained in a unique line. For any line ℓ and p 6∈ ℓ there
exist infinitely many lines through p that are disjoint from ℓ.

Claim 3.8. If γ : [a, b] → H̃ is a differentiable curve then Q(γ̇(t), γ̇(t)) ≥ 0.

Proof. Write γ(t) = (x0(t), x1(t), x2(t)) ∈ H̃. Then x0(t) ≥ 1 and x0(t)
2 = 1 + x1(t)

2 + x2(t)
2.

Differentiating we obtain x0(t)ẋ0(t) = x1(t)ẋ1(t) + x2(t)ẋ2(t). Hence

ẋ0(t)
2 =

(x1(t)ẋ1(t) + x2(t)ẋ2(t))
2

x0(t)2

≤ x1(t)
2 + x2(t)

2

x0(t)2
·
(

ẋ1(t)
2 + ẋ2(t)

2
)

=
x0(t)

2 − 1

x0(t)2
·
(

ẋ1(t)
2 + ẋ2(t)

2
)

≤ ẋ1(t)
2 + ẋ2(t)

2.

�

Define the length of γ by

L
H̃
(γ) =

∫ b

a

√

Q(γ̇(t), γ̇(t))dt.

Let

η =





−1 0 0
0 1 0
0 0 1



 .

The Lorentz group L = O(1, 2) is defined by

L = {g ∈ GL3(R) : Q(gx, gx) = Q(x, x) for all x ∈ R
3}

= {g ∈ GL3(R) : g
T ηg = η}.

(56)

The Proper Lorentz Group is the connected component of I ∈ L:

L0 = {g = (gij)
2
i,j=0 ∈ L : g00 > 0,det g = 1}.

Claim 3.9. All elements of L0 are bijective self-maps of H̃.

Proof. Let u = (u0, u1, u2) ∈ H̃ and let g = (gij) ∈ L0. Note that gT ∈ L0, hence −g200 + g210 + g220 = −1.
Write gu = v = (v0, v1, v2). Then g00 > 0 and −u20 + u21 + u22 = −1. Hence, by Cauchy-Schwartz

v0 = g00u0 + g10u1 + g20u2 =
√

1 + g210 + g220

√

1 + u21 + u22 + g10u1 + g20u2

≥
√

1 + g210 + g220

√

1 + u21 + u22 −
√

g210 + g220

√

u21 + u22 > 0.
(57)
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We single out two families of elements in L0. For θ ∈ R let

R(θ) =

[

cos θ − sin θ
sin θ cos θ

]

∈ O(2) , R̃(θ) =

[

1 0
0 Rθ

]

∈ L0

For λ ∈ R let

L(λ) =

[

coshλ − sinhλ
− sinhλ coshλ

]

, L̃(λ) =

[

L(λ) 0
0 1

]

∈ L0

Claim 3.10. L0 acts transitively on H̃.

Proof. Let u ∈ H̃. We will show that there exists a g ∈ L0 such that gu = (1, 0, 0). Write
u = (

√
r2 + 1, r cos θ, r sin θ). Then R̃(−θ)u = (

√
r2 + 1, r, 0). Now let λ = ln(

√
1 + r2 + r). Then

L̃(λ)(
√
r2 + 1, r, 0)T = (1, 0, 0)T .

�

Corollary 3.11. For any u, v ∈ H̃ there exists a g ∈ L0 such that gu = (1, 0, 0) and gv = (
√
1 + α2, α, 0)

for some α.

Proof. By Claim 3.10 there exists a g1 ∈ L0 such that g1u = (1, 0, 0)T . Write g1v = (
√
1 + r2, r cos θ, r sin θ)T .

Then g = R̃(−θ)g1 satisfies the required conditions.

�

Claim 3.12. Let γ : [a, b] → H̃ be a smooth path and let g ∈ L0. Then L
H̃
(g(γ)) = L

H̃
(γ).

Proof. Let γ(t) = (x0(t), x1(t), x2(t)) and Γ(t) = g(γ(t)). Then Γ̇(t) = gγ̇(t) and hence

L
H̃
(Γ) =

∫ b

a

√

Q(Γ̇(t), Γ̇(t))dt

=

∫ b

a

√

Q(gγ̇(t), gγ̇(t))dt

=

∫ b

a

√

Q(γ̇(t), γ̇(t))dt = L
H̃
(γ).

(58)

Proposition 3.13. For u, v ∈ H̃

cosh d
H̃
(u, v) = −Q(u, v).

Proof. In view of Claim 3.12 and Corollary 3.11, it suffices to consider the case u = (1, 0, 0), v =
(
√
1 + α2, α, 0). Let γ : [0, 1] → H̃ such that γ(0) = u, γ(1) = v. Write γ(t) = (x0(t), x1(t), x2(t)). Let

w(t) =
√

x1(t)2 + x2(t)2. Then w(t)2 = x1(t)
2 + x2(t)

2 = x0(t)
2 − 1. Therefore

w(t)|ẇ(t)| = |ẋ1(t)x1(t) + ẋ2(t)x2(t)|
≤
√

ẋ1(t)2 + ẋ1(t)2 ·
√

x1(t)2 + x1(t)2

= w(t)
√

ẋ1(t)2 + ẋ1(t)2.

(59)

Hence
ẋ1(t)

2 + ẋ1(t)
2 ≥ ẇ(t)2. (60)

Moreover x0(t)ẋ0(t) = w(t)ẇ(t), and hence

ẋ0(t)
2 =

w(t)2ẇ(t)2

x0(t)2
=

w(t)2ẇ(t)2

w(t)2 + 1
. (61)
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Combining (60) and (60) we obtain

L
H̃
(γ) =

∫ 1

0

(

−ẋ0(t)
2 + ẋ1(t)

2 + ẋ2(t)
2
)

1
2 dt

≥
∫ 1

0

(

ẇ(t)2 − ẋ0(t)
2
)

1
2 dt

=

∫ 1

0

(

ẇ(t)2 − w(t)2ẇ(t)2

w(t)2 + 1

)
1
2

dt

=

∫ 1

0

ẇ(t)dt
√

w(t)2 + 1

= ln
(

w(t) +
√

w(t)2 + 1
)

|t=1
t=0

= ln(α+
√

α2 + 1).

(62)

Therefore

coshL
H̃
(γ) ≥ 1

2

(

α+
√

α2 + 1 +
1

α+
√
α2 + 1

)

=
√

α2 + 1 = −Q(u, v).

(63)

On the other hand, taking γ(t) = (
√
1 + t2, t, 0) for 0 ≤ t ≤ α, we get

coshL
H̃
(γ) = cosh

(
∫ α

0

dt√
1 + t2

)

= cosh
(

ln(α +
√

α2 + 1)
)

=
√

α2 + 1 = −Q(u, v).

�

Proposition 3.14. Let u, v ∈ H̃ and let d = d
H̃
(u, v). Let z = v−cosh(d)u

sinh(d) . Then γ : [0, d] → H̃ given by

γ(t) = cosh(t)u+ sinh(t)z is a geodesic between u and v.

Proof. First note that

Q(z, z) =

(

v − cosh(d)u

sinh(d)
,
v − cosh(d)u

sinh(d)

)

=
Q(v − cosh(d)u, v − cosh(d)u)

sinh2(d)

=
Q(u, u) + cosh2(d)Q(u, u) − 2 cosh(d)Q(u, v)

sinh2(d)

=
−1− cosh2 d+ 2cosh2 d

sinh2(d)
=

sinh2(d)

sinh2(d)
= 1.

(64)

Next observe that γ̇(t) = sinh(t)u+ cosh(t)z, and that

Q(u, z) = Q

(

u,
v − cosh(d)u

sinh(d)

)

=
Q(u, v) − cosh(d)Q(u, u)

sinh2(d)

=
− cosh(d) + cosh(d)

sinh2(d)
= 0.

(65)

Hence

Q (γ(t), γ(t)) = Q (cosh(t)u+ sinh(t)z, cosh(t)u+ sinh(t)z)

= cosh2(t)Q(u, u) + sinh2(t)Q(z, z) + cosh(t) sinh(t)Q(u, z)

= − cosh2(t) + sinh2(t) = −1.

(66)
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It follows that γ(t) ∈ H̃. Furthermore

Q (γ̇(t), γ̇(t)) = Q(sinh(t)u+ cosh(t)z, sinh(t)u+ cosh(t)z)

= sinh2(t)Q(u, u) + cosh2(t)Q(z, z)

= − sinh2(t) + cosh2(t) = 1.

(67)

Therefore
∫ d

t=0

√

Q (γ̇(t), γ̇(t))dt = d,

and hence γ is a geodesic between u and v.

�

3.3 Hyperbolic Trigonometry

The hyperbolic cross product u ×Q v of u, v ∈ R
3 is defined as the unique element of R

3 such that
det(u, v, w) = Q(u ×Q v,w). Defining R : R3 → R

3 by R(u1, u2, u3) = (−u1, u2, u3), we have Q(u, v) =
(Ru) · v and u×Q v = R(u× v) = −(Ru1)× (Ru2). Define the hyperbolic norm of an element u ∈ R

3 by

|u|Q =

{
√

Q(u, u) Q(u, u) ≥ 0,

i
√

−Q(u, u) Q(u, u) < 0.

For example, if u ∈ H̃ then |u|Q = i.

Corollary 3.15. Let u, v ∈ H̃. Then

|u×Q v|Q = sinh d
H̃
(u, v). (68)

Proof.

Q(u×Q v, u×Q v) = Q(u, v)2 −Q(u, u) ·Q(v, v) = cosh2 d
H̃
(u, v)− 1 = sinh2 d

H̃
(u, v).

As d
H̃
(u, v) ≥ 0, it follows that Q(u×Q v, u×Q v) ≥ 0 and sinh d

H̃
(u, v) ≥ 0. Hence

|u×Q v|Q =
√

Q(u×Q v, u×Q v) = sinh d
H̃
(u, v).

�

The hyperbolic counterpart of Claim 2.17 is the following

Claim 3.16.

(i) (u1 ×Q u2)×Q v = Q(u2, v)u1 −Q(u1, v)u2.
(ii) Q(u1 ×Q u2, v1 ×Q v2) = Q(u1, v2)Q(u2, v1)−Q(u1, v1)Q(u2, v2).

Proof. (i)

(u1 ×Q u2)×Q v = −R(u1 ×Q u2)×Rv = −(u1 × u2)×Rv

= (Rv · u2)u1 − (Rv · u1)u2
= Q(u2, v)u1 −Q(u1, v)u2.

(ii)

Q(u1 ×Q u2, v1 ×Q v2) = R(u1 ×Q u2) · (v1 ×Q v2)

= (u1 × u2) · (v1 ×Q v2) = −(u1 × u2) · (Rv1 ×Rv2)

= −(u1 ·Rv1)(u2 ·Rv2) + (u1 · Rv2)(u2 · Rv1)

= Q(u1, v2)Q(u2, v1)−Q(u1, v1)Q(u2, v2).
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Let T be a hyperbolic triangle with vertices u, v, w ∈ H̃. Let d
H̃
(v,w) = a, d

H̃
(u,w) = b, d

H̃
(u, v) = c and

let α, β, γ be the angles at u, v, w respectively.

Claim 3.17.

cos γ =
Q(u×Q w, v ×Q w)

|u×Q w| · |v ×Q w| . (69)

Proposition 3.18 (Hyperbolic Cosine Formula).

cos γ =
cosh a cosh b− cosh c

sinh a sinh b
. (70)

Proof. By Proposition 3.13, cosh a = −Q(v,w), cosh b = −Q(u,w) and cosh c = −Q(u, v). By Corollary
3.15

|u×Q w|Q = sinh d
H̃
(u,w) = sinh b

and
|v ×Q w|Q = sinh d

H̃
(v,w) = sinh a.

Substituting in (3.17) we obtain

cos γ =
Q(u×Q w, v ×Q w)

|u×Q w| · |v ×Q w|

=
Q(u,w)Q(v,w) −Q(u, v)Q(w,w)

sinh a sinh b

=
cosh a cosh b− cosh c

sinh a sinh b
.

(71)

�

Proposition 3.19. For any 0 < α < (n−2)π
n

there exists a regular n-gon in H̃ with all angles equal to α.

Proof. For x > 0 and 0 ≤ k ≤ n− 1 let

uk,n(x) =

(

cosh x, sinhx cos
2πk

n
, sinhx sin

2πk

n

)

.

Let Pn(x) denote the n-gon with vertices {uk,n(x)}n−1
k=0 . Let dn(x) denote the edge length of Pn(x). Then

cosh dn(x) = −Q (u0,n(x), u1,n(x))

= −Q

(

(coshx, sinhx, 0), (cosh x, sinhx cos
2π

n
, sinhx sin

2π

n
)

)

= cosh2 x− sinh2 x cos
2π

n

= 1 + sinh2 x(1− cos
2π

n
).

(72)

Let en(x) = d
H̃
(u0(x), u2(x)). Then

cosh en(x) = −Q (u0,n(x), u2,n(x))

= −Q

(

(cosh x, sinhx, 0), (cosh x, sinhx cos
4π

n
, sinhx sin

2π

n
)

)

= cosh2 x− sinh2 x cos
4π

n

= 1 + sinh2 x(1− cos
4π

n
).

(73)
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Let γn(x) denote the angle of Pn(x). By the hyperbolic cosine theorem

cos γn(x) =
cosh2 dn(x)− cosh en(x)

sinh2 dn(x)

=

(

1 + sinh2 x(1− cos 2π
n
)
)2 −

(

1 + sinh2 x(1− cos 4π
n
)
)

(

1 + sinh2 x(1− cos 2π
n
)
)2 − 1

.

(74)

Therefore

lim
x→0

cos γn(x) = lim
x→0

(

1 + sinh2 x(1− cos 2π
n
)
)2 −

(

1 + sinh2 x(1− cos 4π
n
)
)

(

1 + sinh2 x(1− cos 2π
n
)
)2 − 1

= lim
t→0

(

1 + 2t(1− cos 2π
n
)
)

−
(

1 + t(1− cos 4π
n
)
)

(

1 + 2t(1− cos 2π
n
)
)

− 1

=
1− 2 cos 2π

n
+ cos 4π

n

2(1− cos 2π
n
)

=
cos2 2π

n
− cos 2π

n

1− cos 2π
n

= − cos
2π

n
= cos

(n− 2)π

n
.

(75)

It follows limx→0 γn(x) =
(n−2)π

n
. On the other hand

lim
x→∞

cos γn(x) = lim
x→∞

(

1 + sinh2 x(1− cos 2π
n
)
)2 −

(

1 + sinh2 x(1− cos 4π
n
)
)

(

1 + sinh2 x(1− cos 2π
n
)
)2 − 1

= lim
t→∞

(

1 + t(1− cos 2π
n
)
)2 −

(

1 + t(1− cos 4π
n
)
)

(

1 + t(1− cos 2π
n
)
)2 − 1

= 1.

(76)

It follows limx→∞ γn(x) = 0. By continuity, for any 0 < α < (n−2)π
n

there exists an x such that γn(x) = α.

�
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