Set Systems with No Union of Cardinality 0 Modulo m

N. Alon¹, D. Kleitman², R. Lipton³, R. Meshulam⁴, M. Rabin⁵ and J. Spencer⁶

¹ IBM Research Division K53/802, Almaden Research Center, 650 Harry Road, San Jose, CA95120-6099, USA

- ² Math. Dept, 2-382-MIT, Cambridge, MA02139, USA
- ³ Princeton University, Princeton, NJ08544, USA
- ⁴ Math. Dept., 2-382-MIT, Cambridge, MA02139, USA
- ⁵ Hebrew University and Harvard University, Cambridge, MA02138, USA
- ⁶ Courant Institute, New York University, 251 Mercer Street, NY10012, USA

Abstract. Let q be a prime power. It is shown that for any hypergraph $\mathscr{F} = \{F_1, \ldots, F_{d(q-1)+1}\}$ whose maximal degree is d, there exists $\emptyset \neq \mathscr{F}_0 \subset \mathscr{F}$, such that $|\bigcup_{F \in \mathscr{F}_0} F| \equiv 0 \pmod{q}$.

For integers $d, m \ge 1$ let $f_d(m)$ denote the minimal t such that for any hypergraph $\mathscr{F} = \{F_1, \ldots, F_t\}$ whose maximal degree is d, there exists $\mathscr{O} \neq \mathscr{F}_0 \subset \mathscr{F}$, such that $|\bigcup_{F \in \mathscr{F}_0} F| \equiv 0 \pmod{m}$.

Here we determine $f_d(m)$ when m is a prime power, and remark on the general case.

Example. Let $A_{ij} \ 1 \le i \le m-1, \ 1 \le j \le d$, be pairwise disjoint sets, each of cardinality *m*, and let $\{v_1, \ldots, v_{m-1}\}$ be disjoint from all the A_{ij} 's. Now $\mathscr{F} = \{A_{ij} \cup \{v_i\}: 1 \le i \le m-1, 1 \le j \le d\}$ satisfies $|\mathscr{F}| = d(m-1)$ but $|\bigcup_{F \in \mathscr{F}_0}| \ne 0 \pmod{m}$ for any $\emptyset \ne \mathscr{F}_0 \subset \mathscr{F}$. Hence $f_d(m) \ge d(m-1) + 1$.

Theorem 1. If q is a prime power than $f_d(q) = d(q-1) + 1$.

Proof. Let $\mathscr{F} = \{F_1, \ldots, F_t\}$, t = d(q - 1) + 1, be a hypergraph of degree $\leq d$, and consider the polynomial:

$$p(x_1,\ldots,x_t) = \sum_{\varnothing \neq I \subset [t]} (-1)^{|I|+1} \cdot \left| \bigcap_{i \in I} F_i \right| \cdot \prod_{i \in I} x_i.$$

We shall need the following result of Baker and Schmidt [2]. We sketch a short proof based on a method of Alon, Friedland and Kalai [1]:

Theorem 2 (Baker-Schmidt [2]). Let $q = p^r$, p prime. If $t \ge d(q-1) + 1$ and $h(x_1, \ldots, x_t) \in \mathbb{Z}[x_1, \ldots, x_t]$ satisfies h(0) = 0, and deg $h \le d$, then there exists an $0 \ne \varepsilon \in \{0, 1\}^t$ such that $h(\varepsilon) \equiv 0 \pmod{q}$.

Proof. Suppose $h(\varepsilon) \neq 0 \pmod{q}$ for all $0 \neq \varepsilon \in \{0, 1\}^t$, and let $u(x) = \prod_{i=1}^{q-1} (h(x) - i)$. Denote by s the smallest power of p that does not divide (q-1)!, i.e., s = $p \cdot max\{p^r; p^r | (q-1)!\}.$

The proof of the following simple fact is omitted:

Lemma 1. For every integer
$$a$$
, $\prod_{i=1}^{q-1} (a-i) \equiv 0 \pmod{s}$ iff $a \not\equiv 0 \pmod{q}$.

By Lemma 1 $u(\varepsilon) \equiv 0 \pmod{s}$ for all $0 \neq \varepsilon \in \{0, 1\}^t$, and $u(0) \neq 0 \pmod{s}$. Let $\overline{u}(x)$ denote the multilinear polynomial obtained from u(x) by replacing each monomial $x_{i_1}^{\alpha_1} \dots x_{i_j}^{\alpha_j}, \alpha_1, \dots, \alpha_j \ge 1$, by $x_{i_1} \dots x_{i_j}$. The following Lemma can be easily proved by induction on t:

Lemma 2 [1]. If $g(x_1,...,x_t)$ is a multilinear polynomial in $Z[x_1,...,x_t]$ and $g(\varepsilon) \equiv 0$ (mod s) for all $\varepsilon \in \{0,1\}^t$, then $g(x_1,\ldots,x_t) \equiv 0 \pmod{s}$

Now $g(x) = \overline{u}(x) - u(0) \cdot \prod_{i=1}^{t} (1 - x_i)$ satisfies the assumptions of Lemma 2, hence $\overline{u}(x) \equiv u(0) \cdot \prod_{i=1}^{t} (1 - x_i) \pmod{s}$, and so deg $\overline{u} \geq t$. But deg $\overline{u} \leq \deg u = (\deg$ $h)^{q-1} \leq d(q-1) < t$, a contradiction. Π

Returning to the proof of Theorem 1, we note that deg $p \le d$ and p(0) = 0. Hence by Theorem 2 $p(\varepsilon) \equiv 0 \pmod{q}$ for some $0 \neq \varepsilon \in \{0, 1\}^t$. Now by Inclusion – Exclusion $p(\varepsilon) = |\bigcup_{\{i:\varepsilon_i=1\}} F_i|, \text{ and so } |\bigcup_{\{i:\varepsilon_i=1\}} F_i| \equiv 0 \pmod{q}.$

Following [2] let $g_d(m)$ denote the minimal t such that for any $h \in Z[x_1, ..., x_t]$ which satisfies h(0) = 0, and deg $h \le d$, there exists an $0 \ne \varepsilon \in \{0, 1\}^t$ such that $h(\varepsilon) \equiv 0 \pmod{m}$. The proof of Theorem 1 shows that $f_d(m) \leq g_d(m)$. Hence Theorem 6 in [2], implies that for any m, $f_d(m) \le C(d) \cdot m^{2^{dd!}}$.

We next prove the following proposition that shows that the number theoretic problem of determining $g_d(m)$ is equivalent to the combinatorial problem of determining $f_d(m)$.

Proposition. $f_d(m) = g_d(m)$.

Proof. It suffices to show that for any multilinear polynomial $h \in Z_m[x_1, \ldots, x_t]$ of degree $\leq d$ which satisfies h(0) = 0, there exists a hypergraph $\mathscr{F} = \{F_1, \ldots, F_t\}$ of degree $\leq d$ such that h is realized by \mathcal{F} , i.e.,

$$h(x_1,\ldots,x_t) = \sum_{\emptyset \neq I \subset [t]} (-1)^{|I|+1} \cdot \left| \bigcap_{i \in I} F_i \right| \cdot \prod_{i \in I} x_i \pmod{m}.$$

For any $\emptyset \neq J \subset [t]$, the polynomial

$$u_J(x) = 1 - \prod_{j \in J} (1 - x_j) = \sum_{\emptyset \neq I \subset J} (-1)^{|I| + 1} \cdot \prod_{i \in I} x_i$$

can clearly be realized by a hypergraph with maximal degree |J|. (Simply take |J|pairwise disjoint sets of size m each and add a common point to all of them). To complete the proof it suffices to show that if h and g are realized by hypergraphs of degree $\leq d$, then so is h + g, and that any multilinear polynomial of degree $\leq d$ in $Z_m[x_1,\ldots,x_l]$ that vanishes at 0 can be written as a linear combination (with Z_m coefficients) of u_J 's with $J \subset [t]$ and $0 < |J| \le d$.

Set Systems with No Union of Cardinality 0 Modulo m

If h is realized by the hypergraph $\mathscr{H} = \{H_1, \ldots, H_{t_1}\}$ and g is realized by $\mathscr{G} = \{G_1, \ldots, G_{t_2}\}$ and the degrees of both hypergraphs are at most d we first observe that we may assume that $t_1 = t_2$ since otherwise we can add sufficiently many empty edges to one of the hypergraphs. Put $t = t_1 = t_2$, assume the hypergraphs are realized on pairwise disjoint sets of vertices, and consider the hypergraph $\mathscr{F} = \{H_1 \cup G_1, \ldots, H_t \cup G_t\}$. It is easy to check that this hypergraph realizes the polynomial h + g.

It remains to show that any multilinear polynomial of degree $\leq d$ in $Z_m[x_1, \ldots, x_t]$ that vanishes at 0 can be written as a linear combination (with Z_m coefficients) of u_J 's with $J \subset [t]$ and $0 < |J| \leq d$. Each such polynomial can obviously be written as a linear combination of the above polynomials u_J and 1. However, the coefficient of 1 must be 0 since our polynomial, as well as all the polynomials u_J vanish when all the variables are 0.

It is worth mentioning that some (very weak) upper bounds for $f_a(m)$ can be obtained by applying Ramsey Theory. By the last proposition the same bounds follow for $g_d(m)$. Although these estimates are (much) weaker than the best known bounds for $g_d(m)$ this shows that it is conceivable that the number theoretic function $g_d(m)$ can be studied be purely combinatorial methods.

We conclude the note mentioning that by considering the dual of our Theorem 1 (or by applying a similar proof) we can prove the following result, whose detailed proof is left to the reader.

Theorem 3. If q is a prime power then any hypergraph with n > (q - 1)d vertices and with e edges, each of size at most d, contains an induced sub-hypergraph on less than n vertices whose number of edges is congruent to e modulo q.

References

- Alon, N., Friedland, S. and Kalai, G.: Regular subgraphs of almost regular graphs. J. Comb. Theory, Ser. B. 37, 79-91 (1984)
- Baker, R.C., Schmidt, W.M.: Diophantine problems in variables restricted to the values 0 and 1. J. Number Theory 12, 460-486 (1980)

Received: May 18, 1990 Revised: June 25, 1990