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Abstract. Let q be a prime power. It is shown that for any hypergraph ~,~ = {F~,..., Fdtq_~)+~ } 
whose maximal degree is d, there exists Z ¢ ~o c ~,  such that IUF~oFI =-- 0 (rood q). 

For  integers d, m __ 1 let fe(m) denote  the minimal t such that for any hypergraph 
-~ = {Fz . . . . .  Ft} whose maximal degree is d, there exists ~ ¢ o~ o c Y,  such that  
I~F~ ~oFI -= 0 (mod m). 

Here  we determine fd(m) when m is a pr ime power, and remark on the general 
case .  

Example. Let Aij 1 < i <_ m - 1, 1 <_ j < d, be pairwise disjoint sets, each of cardi- 
nality m, and let {v~ . . . . .  v,,_a } be disjoint from all the Aii's. Now ~" = {Aq U {vi}: 
1 < i < m -  1,1 _< j _< d} satisfies ] ~ l  = d ( m -  1 ) b u t ] U e ~ o  t ~ 0 (mod m) for any 
~Z~ # ~o c ~ .  Hence fa(m) _> d(m - 1) + 1. 

T h e o r e m  1. I f  q is a prime power than fd(q) = d(q - 1) + 1. 

Proof. Let  ~ = {F 1 . . . . .  Ft}, t = d(q - 1) + 1, be a hypergraph of degree <d ,  and 
consider the polynomial:  

P(Xl . . . . .  xt) = Z ( -  1)J11+l" i0, F, "I-I xi. 
~2~I~[t] i a l  

We shall need the following result of Baker  and Schmidt [2]. We sketch a short 
proof  based on a method  of Alon, Fr iedland and Kalai  [1]: 

T h e o r e m  2 (Baker-Schmidt  [2]). Let  q = pr, p prime. I f  t >_ d(q - 1) + 1 and 
h ( x l , . . . , x t )  ~ Z [ x l  . . . . .  xt] satisfies h(O)= O, and degh  <_ d, then there exists an 
0 ~ ~ e {0, 1} t such that h(e) =- 0 (mod q). 
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Proof.  Suppose h(~) ~ 0 (mod q) f o r  all 0 ¢ e • {0, 1} t, and let u(x) = I]~-_2~ (h(x) - i). 
Denote by s the smallest power of p that does not divide ( q -  1)[, i.e., s = 
p . m a x { p ' ; p q ( q  - 1)[}. 

The proof of the following simple fact is omitted: 

Lemma 1. For  every  integer a, 1-[~2_~ (a - i) = 0 (mod s) i f f  a ~ 0 (mod q). []  

By Lemma 1 u(e) = 0 (rood s) for all 0 ¢ e • {0, 1} t, and u(0) ~ 0 (mod s). Let g(x) 
denote the multilinear polynomial obtained from u(x) by replacing each monomial 
xi~ ~ . . .  x l f  j, el . . . . .  ej > 1, by xh . . .  xij. 

The following Lemma can be easily proved by induction on t: 

Lemma 2 [1]. I f  g (x  1 . . . . .  x ,)  is a mult i l inear polynomial  in Z [x  l , .  . ., x t]  and g(e) =- 0 
(mod s) f o r  all e • {0, 1}', then g ( x l , . . .  , x , )  = 0 (mod s) [] 

Now g(x)  = g(x) - u(O). [I~=1 (1 - xi) satisfies the assumptions of Lemma 2, hence 
g(x) = u(0)" M~=I (1 - x i )  (mod s), and so deg g _> t. But deg ~ _< deg u = (deg 
h) q-1 <_ d(q - 1) < t, a contradiction. []  

Returning to the proof of Theorem 1, we note that deg p <_ d and p(0) = 0. Hence by 
Theorem 2 p(e) =- 0 (rood q) for some 0 ¢ e • {0, 1} t. Now by Inclusion - Exclusion 
p(e) = q ~){~,=1} F~[, and so IU{i:,,=I}F~[ = 0 (mod q). []  

Following [2] let g~(m) denote the minimal t such that for any h • Z [ x ~  . . . .  , x , ]  
which satisfies h(0)= 0, and deg h < d, there exists an 0 ¢ ~ • {0, 1}' such that 
h(e) = 0 (rood m). The proof of Theorem 1 shows that fd(m) <<- ga(m). Hence Theorem 
6 in [2], implies that for any m, fa(m) < C(d)" m 2~e!. 

We next prove the following proposition that shows that the number theoretic 
problem of determining ge(m) is equivalent to the combinatorial problem of deter- 
mining fe(m). 

Proposition. fd(m) --- ga(m). 

Proof .  It suffices to show that for any multilinear polynomial h e Zm[x  1 . . . .  , xt] of 
degree < d  which satisfies h(0) = 0, there exists a hypergraph ~ = {F 1 . . . .  , Ft} of 
degree < d such that h is realized by ~', i.e., 

h(x~ . . . . .  x , ) =  E ( -1) l ' t+"  ( ' ] F i [ ' I - l x  / (modm). 

b 

~ l c [ t ]  i ~ l  [ i e l  

For any ~ ¢ J ~ It], the polynomial 

Us(X ) = 1 -  r I ( 1 - x f l =  ~ ( - 1 )  ItL+l.l-Ix, 
j e J  ~ l c J  i ~ I  

can clearly be realized by a hypergraph with maximal degree IJ[. (Simply take IJI 
pairwise disjoint sets of size m each and add a common point to all of them). To 
complete the proof it suffices to show that if h and g are realized by hypergraphs of 
degree < d, then so is h + g, and that any multilinear polynomial of degree _< d in 
Z J x ~ , . . . ,  x~] that vanishes at 0 can be written as a linear combination (with Zm 
coefficients) of uj's with J ~ [t] and 0 < I JI -~ d. 
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If h is realized by the hypergraph ] g  = {H1 . . . .  , Hi1) and g is realized by 
f¢ = {G1 . . . . .  Gt2} and the degrees of both hypergraphs are at most  d we first observe 
that we may assume that t~ = t2 since otherwise we can add sufficiently many empty 
edges to one of the hypergraphs. Put t = ta = t2, assume the hypergraphs are 
realized on pairwise disjoint sets of vertices, and consider the hypergraph Y = 
(H~ U G 1 . . . . .  H t U Gt}. It is easy to check that this hypergraph realizes the poly- 
nomial h + g. 

I t  remains to show that any multilinear polynomial of degree < d  in 
Zm[Xl . . . .  , Xt] that vanishes at 0 can be written as a linear combination (with Zm 
coefficients) of uj 's with J c I t ]  and 0 < J J[ < d. Each such polynomial can ob- 
viously be written as a linear combination of the above polynomials us and 1. 
However, the coefficient of 1 must be 0 since our polynomial, as well as all the 
polynomials uj vanish when all the variables are 0. []  

It  is worth mentioning that some (very weak) upper bounds for f~(m) can be obtained 
by applying Ramsey Theory. By the last proposition the same bounds follow for 
gd(m). Although these estimates are (much) weaker than the best known bounds for 
gd(m) this shows that it is conceivable that the number  theoretic function 9d(m) can 
be studied be purely combinatorial  methods. 

We conclude the note mentioning that by considering the dual of our Theorem 
1 (or by applying a similar proof) we can prove the following result, whose detailed 
proof  is left to the reader. 

Theorem 3. I f  q is a prime power then any hypergraph with n > (q - 1)d vertices and 
with e edges, each of  size at most d, contains an induced sub-hypergraph on less than 
n vertices whose number of edges is congruent to e modulo q. [] 
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