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Abstract

Let b(M) denote the maximal number of disjoint bases in a matroid M . It is shown that
if M is a matroid of rank d+ 1, then for any continuous map f from the matroidal complex
M into Rd there exist t ≥

√
b(M)/4 disjoint independent sets σ1, . . . , σt ∈ M such that⋂t

i=1 f(σi) 6= ∅.

1 Introduction

Tverberg’s theorem [15] asserts that if V ⊂ Rd satisfies |V | ≥ (k − 1)(d+ 1) + 1, then there
exists a partition V = V1 ∪ · · · ∪ Vk such that

⋂k
i=1 conv(Vi) 6= ∅. Tverberg’s theorem and some

of its extensions may be viewed in the following general context. For a simplicial complex X
and d ≥ 1, let the affine Tverberg number T (X, d) be the maximal t such that for any piecewise
linear map f : X → Rd, there exist disjoint simplices σ1, . . . , σt ∈ X such that

⋂t
i=1 f(σi) 6= ∅.

The topological Tverberg number TT (X, d) is defined similarly where now f : X → Rd can be
an arbitrary continuous map.

Let ∆n denote the n-simplex and let ∆(d)
n be its d-skeleton. Using the above terminol-

ogy, Tverberg’s theorem is equivalent to T (∆(k−1)(d+1), d) = k which is clearly the same as

T (∆(d)
(k−1)(d+1), d) = k. Similarly, the topological Tverberg theorem of Bárány, Shlosman and

Szűcs [2] states that if p is prime then TT (∆(p−1)(d+1), d) = p. Schöneborn and Ziegler [14] proved

that this implies the stronger statement TT (∆(d)
(p−1)(d+1), d) = p. This result was extended by

Özaydin [13] for the case when p is a prime power. The question whether the topological Tver-
berg theorem holds for every p that is not a prime power had been open for long. Very recently,
and quite surprisingly, Frick [7] has constructed a counterexample for every non-prime power p.
His construction is built on work by Mabillard and Wagner [10]. See also [4] and [1] for further
counterexamples.

There is a colourful version of Tverberg theorem. To state it let n = r(d + 1) − 1 and
assume that the vertex set V of ∆n is partitioned into d + 1 classes (called colours) and that
each colour class contains exactly r vertices. We define Yr,d as the subcomplex of ∆n (or ∆(d)

n )
consisting of those σ ⊂ V that contain at most one vertex from each colour class. The colourful
Tverberg theorem of Živaljević and Vrećica [16] asserts that TT (Y2p−1,d, d) ≥ p for prime p
which implies that TT ((Y4k−1,d, d) ≥ k for arbitrary k. A neat and more recent theorem of
Blagojević, Matschke, and Ziegler [5] says that TT (Yr,d, d) = r if r + 1 is a prime, which is
clearly best possible. Further information on Tverberg’s theorem can be found in Matoušek’s
excellent book [12].

1



Let M be a matroid (possibly with loops) with rank function ρ on the set V . We identify
M with the simplicial complex on V whose simplices are the independent sets of M . It is well
known (see e.g. Theorem 7.8.1 in [3]) that M is (ρ(V ) − 2)-connected. Note that both ∆(d)

n

and Yr,d are matroids of rank d+ 1. In this note we are interested in bounding TT (M,d) for a
general matroidal complex M . Let b(M) denote the maximal number of pairwise disjoint bases
in M . Our main result is the following

Theorem 1. Let M be a matroid of rank d+ 1. Then

TT (M,d) ≥
√
b(M)/4 .

In Section 2 we give a lower bound on the topological connectivity of the deleted join of
matroids. In Section 3 we use this bound and the approach of [2, 16] to prove Theorem 1.

2 Connectivity of Deleted Joins of Matroids

We recall some definitions. For a simplicial complex Y on a set V and an element v ∈ V such
that {v} ∈ Y , denote the star and link of v in Y by

st(Y, v) = {σ ⊂ V : {v} ∪ σ ∈ Y }
lk(Y, v) = {σ ∈ st(Y, v) : v 6∈ σ}.

For a subset V ′ ⊂ V let Y [V ′] = {σ ⊂ V ′ : σ ∈ Y } be the induced complex on V ′. We
regard st(Y, v), lk(Y, v) and Y [V ′] as complexes on the original set V (keeping in mind that
not all elements of V have to be vertices of these complexes). Let fi(Y ) denote the number of
i-simplices in Y . Let X1, . . . , Xk be simplicial complexes on the same set V and let V1, . . . , Vk

be k disjoint copies of V with bijections πi : V → Vi. The join X1 ∗ · · · ∗ Xk is the simplicial
complex on

⋃k
i=1 Vi with simplices

⋃k
i=1 πi(σi) where σi ∈ Xi. The deleted join (X1 ∗ · · · ∗Xk)∆

is the subcomplex of the join consisting of all simplices
⋃k

i=1 πi(σi) such that σi ∩ σj = ∅ for
1 ≤ i 6= j ≤ k. When all Xi are equal to X, we denote their deleted join by X∗k∆ . Note that Zk

acts freely on X∗k∆ by cyclic shifts.

Claim 2. Let M1, . . . ,Mk be matroids on the same set V , with rank functions ρ1, . . . , ρk. Sup-
pose A1, . . . , Ak are disjoint subsets of V such that Ai is a union of at most m independent sets
in Mi. Then Y = (M1 ∗ · · · ∗Mk)∆ is (d 1

m+1

∑k
i=1 |Ai|e − 2)-connected.

Proof: Let c = d 1
m+1

∑k
i=1 |Ai|e − 2. If k = 1 then ρ1(V ) ≥

⌈
|A1|
m

⌉
and hence Y = M1 is

(
⌈
|A1|
m

⌉
−2)-connected. For k ≥ 2 we establish the Claim by induction on f0(Y ) =

∑k
i=1 f0(Mi).

If f0(Y ) = 0 then all Ai’s are empty and the Claim holds. We henceforth assume that f0(Y ) > 0
and consider two cases:
a) If Mi = Mi[Ai] for all 1 ≤ i ≤ k then Y = M1 ∗ · · · ∗Mk is a matroid of rank

k∑
i=1

ρi(V ) ≥
k∑

i=1

⌈
|Ai|
m

⌉
≥

⌈∑k
i=1 |Ai|
m

⌉
.

Hence Y is (
⌈∑k

i=1 |Ai|
m

⌉
− 2)-connected.

b) Otherwise there exists an 1 ≤ i0 ≤ k such that Mi0 6= Mi0 [Ai0 ]. Choose an element v ∈
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V − Ai0 such that {v} ∈ Mi0 . Without loss of generality we may assume that i0 = 1 and that
v 6∈

⋃k−1
i=1 Ai. Let S =

⋃k
i=1 Vi and let Y1 = Y [S − {π1(v)}], Y2 = st(Y, π1(v)). Then

Y1 = (M1[V − {v}] ∗M2 ∗ · · · ∗Mk)∆.

Noting that f0(Y1) = f0(Y )− 1 and applying the induction hypothesis to the matroids M1[V −
{v}],M2, . . . ,Mk and the sets A1, . . . , Ak, it follows that Y1 is c-connected. We next consider
the connectivity of Y1 ∩ Y2. Write A1 =

⋃t
j=1Cj where t ≤ m, Cj ∈ M1 for all 1 ≤ j ≤ t, and

the Cj ’s are pairwise disjoint. Since {v} ∈ M1, it follows that there exist {C ′j}tj=1 such that
C ′j ⊂ Cj , |C ′j | ≥ |Cj | − 1, and C ′j ∈ lk(M1, v) for all 1 ≤ j ≤ t. Let

M ′i =
{

lk(M1, v) i = 1,
Mi[V − {v}] 2 ≤ i ≤ k,

and

A′i =


⋃t

j=1C
′
j i = 1,

Ai 2 ≤ i ≤ k − 1,
Ak − {v} i = k.

Observe that
Y1 ∩ Y2 = lk(Y, π1(v)) = (M ′1 ∗ · · · ∗M ′k)∆

and that A′i is a union of at most m independent sets in M ′i for all 1 ≤ i ≤ k. Noting that
f0(Y1 ∩ Y2) ≤ f0(Y )− 1 and applying the induction hypothesis to the matroids M ′1, . . . ,M

′
k and

the sets A′1, . . . , A
′
k, it follows that Y1 ∩ Y2 is c′-connected where

c′ =

⌈
1

m+ 1

k∑
i=1

|A′i|

⌉
− 2

=

 1
m+ 1

 t∑
j=1

|C ′j |+
k−1∑
i=2

|Ai|+ |Ak − {v}|

− 2

≥

⌈
1

m+ 1

(
|A1| −m+

k−1∑
i=2

|Ai|+ |Ak| − 1

)⌉
− 2 = c− 1.

As Y1 is c-connected, Y2 is contractible and Y1∩Y2 is (c−1)-connected, it follows that Y = Y1∪Y2

is c-connected.

�

Let M be a matroid on V with b(M) = b disjoint bases B1, . . . , Bb. Let I1∪· · ·∪Ik be a partition
of [b] into almost equal parts b b

kc ≤ |Ii| ≤ d
b
ke. Applying Claim 2 with M1 = · · · = Mk = M

and Ai = ∪j∈IiBj , we obtain:

Corollary 3. The connectivity of M∗k∆ is at least

bρ(V )
d b

ke+ 1
− 2 .

We suggest the following:
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Conjecture 4. For any k ≥ 1 there exists an f(k) such that if b(M) ≥ f(k) then M∗k∆ is
(kρ(V )− 2)-connected.

Remark: Let M be the rank 1 matroid on m points M = ∆(0)
m−1. The chessboard complex

C(k,m) is the k-fold deleted join M∗k∆ . Chessboard complexes play a key role in the works of
Živaljević and Vrećica [16] and Blagojević, Matschke, and Ziegler [5] on the colourful Tverberg
theorem. Let k ≥ 2. Garst [9] and Živaljević and Vrećica [16] proved that C(k, 2k−1) is (k−2)-
connected. On the other hand, Friedman and Hanlon [8] showed that H̃k−2(C(k, 2k−2); Q) 6= 0,
so C(k, 2k − 2) is not (k − 2)-connected. This implies that the function f(k) in Conjecture 4
must satisfy f(k) ≥ 2k − 1.

3 A Tverberg Type Theorem for Matroids

We recall some well-known topological facts (see [2]). For m ≥ 1, k ≥ 2 we identify the sphere
Sm(k−1)−1 with the space{

(y1, . . . , yk) ∈ (Rm)k :
k∑

i=1

|yi|2 = 1 ,
k∑

i=1

yi = 0 ∈ Rm

}
.

The cyclic shift on this space defines a Zk action on Sm(k−1)−1. The action is free for prime k.
The k-fold deleted product of a space X is the Zk-space given by

Xk
D = Xk − {(x, . . . , x) ∈ Xk : x ∈ X} .

For m ≥ 1 define a Zk-map
φm,k : (Rm)k

D → Sm(k−1)−1

by

φm,k(x1, . . . , xk) =
(x1 − 1

k

∑k
i=1 xi, . . . , xk − 1

k

∑k
i=1 xi)

(
∑k

j=1 |xj − 1
k

∑k
i=1 xi|2)1/2

.

We’ll also need the following result of Dold [6] (see also Theorem 6.2.6 in [11]):

Theorem 5 (Dold). Let p be a prime and suppose X and Y are free Zp-spaces such that
dimY = k and X is k-connected. Then there does not exist a Zp-map from X to Y .

Proof of Theorem 1: Let M be a matroid on the vertex set V , and let f : M → Rd be a
continuous map. Let b = b(M) and choose a prime

√
b/4 ≤ p ≤

√
b/2. We’ll show that there

exist disjoint simplices (i.e. independent sets) σ1, . . . , σp ∈M such that
⋂p

i=1 f(σi) 6= ∅. Suppose
for contradiction that

⋂p
i=1 f(σi) = ∅ for all such choices of σi’s. Then f induces a continuous

Zp-map
f∗ : M∗p∆ → (Rd+1)p

D

as follows. If x1, . . . , xp have pairwise disjoint supports in M and (t1, . . . , tp) ∈ Rp
+ satisfies∑p

i=1 ti = 1 then

f∗(t1π1(x1) + · · ·+ tpπp(xp)) = (t1, t1f(x1), . . . , tp, tpf(xp)) ∈ (Rd+1)p
D .
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Hence φd+1,pf∗ is a Zp-map between the free Zp-spaces M∗p∆ and S(d+1)(p−1)−1. This however
contradicts Dold’s Theorem since by Corollary 3 the connectivity of M∗p∆ is at least

b(d+ 1)
d b

pe+ 1
− 2 ≥ (d+ 1)(p− 1)− 1

by the choice of p.

�
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[5] P. V. M. Blagojević, B. Matschke, G. M. Ziegler, Optimal bounds for the colored Tverberg
problem, J. European Math. Soc. 17 (2015) 739–754.

[6] A. Dold, Simple proofs of some Borsuk-Ulam results, Contemp. Math. 19(1983) 65-69.

[7] F. Frick, Counterexamples to the topological Tverberg conjecture, (2015), 3 pages
arXiv:1502.00947

[8] J. Friedman and P. Hanlon, On the Betti numbers of chessboard complexes, J. Algebraic
Combin. 8 (1998) 193-203.

[9] P. Garst, Cohen-Macaulay complexes and group actions, Ph.D.Thesis, The University of
Wisconsin - Madison, 1979.

[10] I. Mabillard and U. Wagner, Eliminating higher-multiplicity intersections, I. A Whitney
trick for Tverberg-type problems, (2015), 46 pages, arXiv:1508.02349
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