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Abstract

Let b(M) denote the maximal number of disjoint bases in a matroid M. It is shown that
if M is a matroid of rank d + 1, then for any continuous map f from the matroidal complex
M into R there exist ¢t > /b(M)/4 disjoint independent sets oy,...,0, € M such that

Mizy f(oi) # 0.

1 Introduction

Tverberg’s theorem [15] asserts that if V' C R? satisfies |[V| > (k — 1)(d + 1) + 1, then there
exists a partition V = V; U--- UV}, such that ﬂle conv(V;) # 0. Tverberg’s theorem and some
of its extensions may be viewed in the following general context. For a simplicial complex X
and d > 1, let the affine Tverberg number T'(X,d) be the maximal ¢ such that for any piecewise
linear map f : X — RY, there exist disjoint simplices o71,...,0; € X such that ﬂ§:1 f(oi) #0.
The topological Tverberg number TT(X,d) is defined similarly where now f : X — RY can be
an arbitrary continuous map.

Let A, denote the n-simplex and let A%d) be its d-skeleton. Using the above terminol-
ogy, Tverberg’s theorem is equivalent to T’ (A(k—l)(d-f—l)ad) = k which is clearly the same as

(d)
T(A(k—l)(d—‘rl)’

Sztics [2] states that if p is prime then TT(A,—1)(441), d) = p. Schoneborn and Ziegler [14] proved

that this implies the stronger statement T'T (AEZ{U (d+1

()zaydin [13] for the case when p is a prime power. The question whether the topological Tver-
berg theorem holds for every p that is not a prime power had been open for long. Very recently,
and quite surprisingly, Frick [7] has constructed a counterexample for every non-prime power p.
His construction is built on work by Mabillard and Wagner [10]. See also [4] and [1] for further
counterexamples.

There is a colourful version of Tverberg theorem. To state it let n = r(d + 1) — 1 and
assume that the vertex set V' of A, is partitioned into d + 1 classes (called colours) and that

d) = k. Similarly, the topological Tverberg theorem of Bardny, Shlosman and

) d) = p. This result was extended by

each colour class contains exactly r vertices. We define Y, 4 as the subcomplex of A,, (or A%d))
consisting of those ¢ C V that contain at most one vertex from each colour class. The colourful
Tverberg theorem of Zivaljevi¢ and Vreéica [16] asserts that TT(Y2p—1,4,d) > p for prime p
which implies that T7T((Yik—1,4,d) > k for arbitrary k. A neat and more recent theorem of
Blagojevi¢, Matschke, and Ziegler [5] says that TT(Y, q,d) = r if r + 1 is a prime, which is
clearly best possible. Further information on Tverberg’s theorem can be found in MatouSek’s
excellent book [12].



Let M be a matroid (possibly with loops) with rank function p on the set V. We identify
M with the simplicial complex on V whose simplices are the independent sets of M. It is well
known (see e.g. Theorem 7.8.1 in [3]) that M is (p(V) — 2)-connected. Note that both Al
and Y, 4 are matroids of rank d + 1. In this note we are interested in bounding 7T'(M, d) for a
general matroidal complex M. Let b(M) denote the maximal number of pairwise disjoint bases
in M. Our main result is the following

Theorem 1. Let M be a matroid of rank d + 1. Then
TT(M,d) > \/b(M)/4 .

In Section 2 we give a lower bound on the topological connectivity of the deleted join of
matroids. In Section 3 we use this bound and the approach of [2, 16] to prove Theorem 1.

2 Connectivity of Deleted Joins of Matroids

We recall some definitions. For a simplicial complex Y on a set V' and an element v € V such
that {v} € Y, denote the star and link of v in Y by

st(Yv)={cCcV:{v}UoceY}
k(Y,v) ={o est(Y,v):v o}

For a subset V! C V let Y[V'] = {oc C V' : ¢ € Y} be the induced complex on V'. We
regard st(Y,v), 1k(Y,v) and Y[V'] as complexes on the original set V (keeping in mind that
not all elements of V' have to be vertices of these complexes). Let f;(Y) denote the number of
i-simplices in Y. Let Xi,..., X} be simplicial complexes on the same set V and let Vi,..., Vi
be k disjoint copies of V' with bijections m; : V' — V;. The join X * --- * X} is the simplicial
complex on Ule V; with simplices Ule m;i(0;) where o; € X;. The deleted join (X1 % -+ % Xg)a
is the subcomplex of the join consisting of all simplices Ule m;(0;) such that o; No; = 0 for
1 <i#j <k. When all X; are equal to X, we denote their deleted join by sz. Note that Zy
acts freely on X3* by cyclic shifts.

Claim 2. Let My,..., My be matroids on the same set V, with rank functions p1,..., pr. Sup-
pose Ay, ..., A are disjoint subsets of V such that A; is a union of at most m independent sets
in M. ThenY = (My *---x My)a is ([ﬁ Zle |A;|] — 2)-connected.

Proof: Let ¢ = (#H Zle |A;|] —2. If Kk = 1 then p1(V) > {%—‘ and hence Y = M; is

If fo(Y) = 0 then all A;’s are empty and the Claim holds. We henceforth assume that fo(Y) > 0
and consider two cases:
a) If M; = M;[A;] for all 1 <i <k then Y = My % --- % M}, is a matroid of rank
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i=1 =1

({@—‘ —2)-connected. For k > 2 we establish the Claim by induction on fo(Y') = Zle fo(DM).

v

k .
Hence Y is ({%—‘ — 2)-connected.

b) Otherwise there exists an 1 < iy < k such that M;, # M;,[A;,]. Choose an element v €



V — A, such that {v} € M;,. Without loss of generality we may assume that iop = 1 and that
v Uil Ap Let S =R, Vi and let Yy = Y[S — {m1(v)}], Ya = st(Y, 71 (v)). Then

Y1 = (Ml[V—{v}]*Mg**Mk)A

Noting that fo(Y1) = fo(Y) — 1 and applying the induction hypothesis to the matroids M;[V —
{v}], Ma, ..., M} and the sets Aq,..., Ay, it follows that Y7 is c-connected. We next consider
the connectivity of Y1 NYs. Write A; = U§:1 C; where t <m, C; € My for all 1 < j < ¢, and
the Cj’s are pairwise disjoint. Since {v} € My, it follows that there exist {C’;};Zl such that
Ci C Gy, |C}] = |Cj = 1, and C € Ik(My,v) for all 1 < j <t. Let

v = | k(M) i=1,
Tl MV - {v}] 2<i<k,

and
Ui ¢ i=1,
A=< A 2<i<k-—1,
Ak—{U} 1=k.

Observe that
YiNYy =1k(Y,m(v)) = (Mj %+ % M})a

and that A; is a union of at most m independent sets in M/ for all 1 < ¢ < k. Noting that
fo(Y1NY3) < fo(Y) — 1 and applying the induction hypothesis to the matroids Mj, ..., M and
the sets A7,..., A}, it follows that Y3 NY3 is ¢-connected where

/: A/ _2
¢ m+lz| —‘

t k—1

- DIC+ 2+ 1A= (o)) | -2

r k—1
1
> (|A1\—m+§ \A|+\Ak\—1>-‘—2:c—1.

=2

As Y; is c-connected, Y3 is contractible and Y1NY5 is (¢—1)-connected, it follows that Y = Y1UY;
is c-connected.

0

Let M be a matroid on V' with b(M) = b disjoint bases By, ..., By. Let I; U- - -UIj be a partition
of [b] into almost equal parts | 2] < |I;] < [2]. Applying Claim 2 with My = --- = My = M
and A; = Ujer, Bj, we obtain:

Corollary 3. The connectivity of MZ’“ 1s at least
be(V)
[F1+1

We suggest the following:



Conjecture 4. For any k > 1 there exists an f(k) such that if b(M) > f(k) then M is
(kp(V) — 2)-connected.

Remark: Let M be the rank 1 matroid on m points M = Agg)_l. The chessboard complex
C(k,m) is the k-fold deleted join MZ’“. Chessboard complexes play a key role in the works of
Zivaljevi¢ and Vreéica [16] and Blagojevié¢, Matschke, and Ziegler [5] on the colourful Tverberg
theorem. Let k > 2. Garst [9] and Zivaljevié¢ and Vredica [16] proved that C(k, 2k —1) is (k —2)-
connected. On the other hand, Friedman and Hanlon [8] showed that Hj_o(C (k, 2k —2); Q) # 0,
so C(k,2k — 2) is not (k — 2)-connected. This implies that the function f(k) in Conjecture 4
must satisfy f(k) > 2k — 1.

3 A Tverberg Type Theorem for Matroids

We recall some well-known topological facts (see [2]). For m > 1,k > 2 we identify the sphere
Smk=1)=1 with the space

k k
{(y177yk)€(Rm)kZ’yl’2_la ZyI_OERm}
=1 =1

The cyclic shift on this space defines a Zj action on Smk=1)=1 The action is free for prime k.

The k-fold deleted product of a space X is the Zg-space given by
XE=XxF_{(z,....2) e XF:zeX}.
For m > 1 define a Zg-map
S (R — ST

by

(21— § Yy T Tk~ § Y4 B)
(Cje g = Xy al?)?

We’ll also need the following result of Dold [6] (see also Theorem 6.2.6 in [11]):

Gmp(x1, ..., x5) =

Theorem 5 (Dold). Let p be a prime and suppose X and Y are free Z,-spaces such that
dimY =k and X is k-connected. Then there does not exist a Zp-map from X to Y.

Proof of Theorem 1: Let M be a matroid on the vertex set V, and let f : M — R? be a
continuous map. Let b = b(M) and choose a prime vb/4 < p < v/b/2. We’ll show that there
exist disjoint simplices (i.e. independent sets) o1, ..., 0, € M such that (_; f(o;) # 0. Suppose
for contradiction that (!_; f(c;) = 0 for all such choices of o;’s. Then f induces a continuous
Zip-map

fos M — (RS,

as follows. If x1,...,x, have pairwise disjoint supports in M and (t1,...,t,) € RE satisfies
P, t; =1 then

feltimi(@n) + -+ tpmp(ap) = (b, 1 f (1), -t tpf () € (RHTD,



Hence ¢gy1pf+ is a Zy,-map between the free Z,-spaces MZP and S(@DE-1-1 " This however
contradicts Dold’s Theorem since by Corollary 3 the connectivity of sz is at least
b(d+1)
21 +1

2>d+1)(p-1) -1

by the choice of p.
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