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Abstract

Let G0, . . . , Gk be finite abelian groups and let G0 ∗ · · · ∗Gk be the
join of the 0-dimensional complexes Gi. We give a characterization
of the the integral k-coboundaries of subcomplexes of G0 ∗ · · · ∗ Gk

in terms of the Fourier transform on the group G0 × · · · × Gk. This
provides a short proof of an extension of a recent result of Musiker and
Reiner on a topological interpretation of the cyclotomic polynomial.

1 Introduction

Let G0, . . . , Gk be finite abelian groups with the discrete topology and
let N =

∏k
i=0(|Gi| − 1). The simplicial join Y = G0 ∗ · · · ∗ Gk is homotopy

equivalent to a wedge of N k-dimensional spheres (see e.g. Theorem 1.3 in
[1]). Subcomplexes of Y are called balanced complexes (see [5]). Denote the
(k−1)-dimensional skeleton of Y by Y (k−1). Let A be a subset of G0×· · ·×Gk.
Regarding each a ∈ A as an oriented k-simplex of Y , we consider the balanced
complex

X(A) = XG0,...,Gk
(A) = Y (k−1) ∪ A.

In this note we characterize the integral k-coboundaries of X(A) in terms
of the Fourier transform on the group G0 × · · · × Gk. As an application we
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give a short proof of an extension of a recent result of Musiker and Reiner
[4] on a topological interpretation of the cyclotomic polynomial.

We recall some terminology. Let R[G] denote the group algebra of a finite
abelian group G with coefficients in a ring R. By writing f =

∑
x∈G f(x)x ∈

R[G] we identify elements of R[G] with R-valued functions on G. For a
subset A ⊂ G let R[A] = {f ∈ R[G] : supp(f) ⊂ A}. A character of

G is a homomorphism of G into the multiplicative group C − {0}. Let Ĝ
be the character group of G and let 1 be the trivial character of G. The
orthogonality relation asserts that for χ ∈ Ĝ∑

g∈G

χ(g) = |G| · δ(χ,1) (1)

where δ(χ,1) = 1 if χ = 1 and is zero otherwise. The Fourier transform is

the linear bijection F : C[G]→ C[Ĝ] given on f ∈ C[G] and χ ∈ Ĝ by

F(f)(χ) = f̂(χ) =
∑
x∈G

f(x)χ(x) .

Let G = G0 × · · · ×Gk then Ĝ = Ĝ0 × · · · × Ĝk. For 0 ≤ i ≤ k let

Li = G0 × · · · ×Gi−1 ×Gi+1 × · · · ×Gk.

We identify the group of integral k-cochains Ck(X(A); Z) with Z[A] and the
group of integral (k− 1)-cochains Ck−1(X(A); Z) = Ck−1(X(G); Z) with the
(k + 1)-tuples ψ = (ψ0, . . . , ψk) where ψi ∈ Z[Li]. The coboundary map

dk−1 : Ck−1(X(G); Z)→ Ck(X(G); Z)

is given by

dk−1ψ(g0, . . . , gk) =
k∑
i=0

(−1)iψi(g0, . . . , gi−1, gi+1, . . . , gk).

For 0 ≤ i ≤ k let 1i denote the trivial character of Gi and let

Ĝ+ = (Ĝ0 − {10})× · · · × (Ĝk − {1k}).

For A ⊂ G and f ∈ Z[G] let f|A ∈ Z[A] be the restriction of f to A. The
group

Bk(X(A); Z) = {dk−1ψ|A : ψ ∈ Ck−1(X(G); Z)}
of integral k-coboundaries of X(A) is characterized by the following
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Proposition 1.1. For any A ⊂ G

Bk(X(A); Z) = {f|A : f ∈ Z[G] such that supp(f̂) ⊂ Ĝ− Ĝ+}.

As an application of Proposition 1.1 we study the homology of a family of
balanced complexes introduced by Musiker and Reiner [4]. Let p0, . . . , pk be
distinct primes and for 0 ≤ i ≤ k let Gi = Z/piZ = Zpi

. Writing n =
∏k

i=0 pi
let

θ : Zn → G = G0 × · · · ×Gk

be the standard isomorphism given by

θ(x) = (x(mod p0), . . . , x(mod pk)).

For any ` let Z×` = {m ∈ Z` : gcd(m, `) = 1}. Let ϕ(n) = |Z×n | =
∏k

i=0(pi−1)
be the Euler function of n and let A0 = {ϕ(n)+1, ϕ(n)+2, . . . , n−2, n−1}.
For A ⊂ {0, . . . , ϕ(n)} consider the complex

KA = X(θ(A ∪ A0)) ⊂ Zp0 ∗ · · · ∗ Zpk
.

Let ω = exp(2πi
n

) be a fixed primitive n-th root of unity. The n-th cyclo-
tomic polynomial (see e.g. [2]) is given by

Φn(z) =
∏
j∈Z×n

(z − ωj) =

ϕ(n)∑
j=0

cjz
j ∈ Z[z].

Musiker and Reiner [4] discovered the following remarkable connection be-
tween the coefficients of Φn(z) and the homology of the complexes K{j}.

Theorem 1.2 (Musiker and Reiner). For any j ∈ {0, . . . , ϕ(n)}

H̃i(K{j}; Z) ∼=


Z/cjZ i = k − 1
Z i = k and cj = 0
0 otherwise.

The next result extends Theorem 1.2 to general KA’s. Let

cA = (cj : j ∈ A) ∈ ZA

and

dA =

{
gcd(cA) cA 6= 0
0 cA = 0.
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Theorem 1.3. For any A ⊂ {0, . . . , ϕ(n)}

H̃i(KA; Z) ∼=


Z i = k − 1 and dA = 0
Z|A|−1 ⊕ Z/dAZ i = k
0 otherwise

and

H̃i(KA; Z) ∼=


Z/dAZ i = k − 1
Z|A| i = k and dA = 0
Z|A|−1 i = k and dA 6= 0
0 otherwise.

Proposition 1.1 is proved in Section 2. It is then used in Section 3 to
obtain an explicit form of the k-coboundaries of KA (Proposition 3.1) that
directly implies Theorem 1.3.

2 k-Coboundaries and Fourier Transform

Proof of Proposition 1.1. It suffices to consider the case A = G. Let ψ =
(ψ0, . . . , ψk) ∈ Ck−1(X(G); Z). Using (1) it follows for any χ = (χ0, . . . , χk) ∈
Ĝ

d̂k−1ψ(χ) =
∑

g=(g0,...,gk)∈G

dk−1ψ(g)χ(g) =

∑
(g0,...,gk)

k∑
i=0

(−1)iψi(g0, . . . , gi−1, gi+1, . . . , gk)
k∏
j=0

χj(gj) =

k∑
i=0

(−1)i
∑

(g0,...,gi−1,gi+1,...,gk)

ψi(g0, . . . , gi−1, gi+1, . . . , gk)
∏
j 6=i

χj(gj)
∑
gi

χi(gi) =

k∑
i=0

(−1)iψ̂i(χ0, . . . , χi−1, χi+1, . . . , χk)|Gi|δ(χi,1i).

Therefore supp(d̂k−1ψ) ⊂ Ĝ− Ĝ+ and so

U1
def
= Bk(X(G); Z) ⊂ {f ∈ Z[G] : supp(f̂) ⊂ Ĝ− Ĝ+} def

= U2.
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Since X(G) is homotopy equivalent to a wedge of
∏k

i=0(|Gi| − 1) = |Ĝ+|
k-dimensional spheres, it follows that Hk(X(G); Z) = Z[G]/U1 is free of rank

|Ĝ+| and hence rank U1 = |Ĝ| − |Ĝ+|. On the other hand, the injectivity of
the Fourier transform implies that

rank U2 ≤ dimC{f ∈ C[G] : supp(f̂) ⊂ Ĝ− Ĝ+} = |Ĝ| − |Ĝ+|

and therefore rank U2/U1 = 0. Since U2/U1 ⊂ Hk(X(G); Z) is free it follows
that U1 = U2.

3 The Homology of KA

Recall that, in the context of Theorems 1.2 and 1.3, one chooses G =
Zp0×· · ·×Zpk

and n =
∏k

j=0 pj. For h ∈ Z[G] let θ∗h ∈ Z[Zn] be the pullback

of h given by θ∗h(x) = h(θ(x)). For any ` we identify the character group Ẑ`

with Z` via the isomorphism η` : Z` → Ẑ` given by η`(y)(x) = exp(2πixy/`).
The Fourier transform on Z` is then regarded as the automorphism of C[Z`]
given by

f̂(y) =
∑
x∈Z`

f(x) exp(
2πixy

`
).

Proposition 1.1 implies the following characterization of the integral k-
coboundaries of KA. For A ⊂ {0, . . . , ϕ(n)} let θA denote the restriction of
θ to A ∪ A0 and let θ∗A be the induced isomorphism from Z[θ(A ∪ A0)] to
Z[A ∪ A0]. Let

B(A) = {f|A∪A0 : f ∈ Z[Zn] such that f̂(1) = 0}.

Proposition 3.1.
θ∗A(Bk(KA; Z)) = B(A).

Proof. We first examine the relation between the Fourier transforms on Zn

and on G. Let

λ =
k∑
j=0

∏
t6=j

pt ∈ Z×n .

For any h ∈ Z[G] and m ∈ Zn

θ̂∗h(λm) =
∑
x∈Zn

θ∗h(x) exp(
2πixλm

n
) =
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∑
x∈Zn

h(θ(x)) exp(
k∑
j=0

2πixm

pj
) = ĥ(θ(m)). (2)

Noting that

θ−1(Ĝ+) = θ−1(Z×p0 × · · · × Z×pk
) = Z×n = λZ×n ,

it follows from Proposition 1.1 and Eq. (2) that

Bk(KA; Z) = {h|θ(A∪A0) : h ∈ Z[G] such that supp(ĥ) ⊂ Ĝ− Ĝ+} =

(θ∗A)−1{f|A∪A0 : f ∈ Z[Zn] such that supp(f̂) ⊂ Zn − Z×n }. (3)

Let Pn = {ωm : m ∈ Z×n } be the set of primitive n-th roots of 1. The Galois
group Gal(Q(ω)/Q) acts transitively on Pn. Hence, by Eq. (3):

θ∗A(Bk(KA; Z)) = {f|A∪A0 : f ∈ Z[Zn] such that supp(f̂) ⊂ Zn − Z×n } =

{f|A∪A0 : f ∈ Z[Zn] such that f̂(m) =
∑
x∈Zn

f(x)ωmx = 0 for all m ∈ Z×n } =

{f|A∪A0 : f ∈ Z[Zn] such that f̂(1) = 0} = B(A).

�

Corollary 3.2. θ∗A induces an isomorphism between Hk(KA; Z) and

H(A)
def
= Z[A ∪ A0]/B(A).

�

For j ∈ A ∪ A0 let gj ∈ Z[A ∪ A0] be given by gj(i) = 1 if i = j and
gj(i) = 0 otherwise. Let [gj] be the image of gj in H(A). The computation
of H(A) depends on the following

Claim 3.3.

(i) H(A) is generated by {[gj] : j ∈ A}.

(ii) The minimal relation between {[gj]}j∈A is
∑

j∈A cj[gj] = 0.
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Proof of (i). Let t ∈ A0. There exist u0, . . . , uϕ(n)−1 ∈ Z such that

ϕ(n)−1∑
`=0

u`ω
` + ωt = 0.

Let f ∈ Z[Zn] be given by

f(`) =


u` 0 ≤ ` ≤ ϕ(n)− 1
1 ` = t
0 otherwise.

Since

f̂(1) =

ϕ(n)−1∑
`=0

u`ω
` + ωt = 0 ,

it follows that ∑
j∈A

ujgj + gt = f|A∪A0 ∈ B(A).

Hence [gt] = −
∑

j∈A uj[gj].

Proof of (ii). Let f ∈ Z[Zn] be given by f(`) = c` if 0 ≤ ` ≤ ϕ(n)

and zero otherwise. Since f̂(1) = Φn(ω) = 0, it follows that∑
j∈A

cjgj = f|A∪A0 ∈ B(A).

Hence
∑

j∈A cj[gj] = 0. Conversely, suppose that
∑

j∈A αj[gj] = 0 for integers

{αj}j∈A. Then there exists an h ∈ Z[Zn] such that ĥ(1) = 0 and h|A∪A0 =∑
j∈A αjgj. In particular h(`) = 0 for ` ≥ ϕ(n) + 1. Let p(z) =

∑ϕ(n)
`=0 h(`)z`

then p(ω) = ĥ(1) = 0. Hence p(z) = rΦn(z) for some r ∈ Z. Therefore
αj = h(j) = rcj for all j ∈ A.

�

Proof of Theorem 1.3. Corollary 3.2 and Claim 3.3 imply that

Hk(KA; Z) ∼= H(A) = Z[A]/ZcA ∼= Z|A|−1 ⊕ Z/dAZ . (4)
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The remaining parts of Theorem 1.3 are formal consequences of (4) and the
universal coefficient theorem (see e.g. [3]):

0← Hom(Hp(KA; Z),Z)← Hp(KA; Z)← Ext(Hp−1(KA; Z),Z)← 0 . (5)

First consider the case cA = 0. By (4) and (5)

0← Hom(Hk(KA; Z),Z)← Z|A| ← Ext(Hk−1(KA; Z),Z)← 0 .

Therefore Hk(KA; Z) ∼= Z|A| and Hk−1(KA; Z) is torsion free. The Euler-
Poincaré relation

rank Hk(KA; Z) = rank H̃k−1(KA; Z) + |A| − 1 (6)

then implies that H̃k−1(KA; Z) ∼= Z and

H̃k−1(KA; Z) ∼= Hom(H̃k−1(KA; Z),Z) ∼= Z.

Next assume that cA 6= 0. By (4) and (5)

0← Hom(Hk(KA; Z),Z)← Z|A|−1 ⊕ Z/dAZ← Ext(Hk−1(KA; Z),Z)← 0 .

Therefore Hk(KA; Z) ∼= Z|A|−1 and Ext(Hk−1(KA; Z),Z) = Z/dAZ. It fol-
lows by (6) that rank H̃k−1(KA; Z) = 0. Hence H̃k−1(KA; Z) = Z/dAZ and
H̃k−1(KA; Z) = 0.

�

Remark: In the proof of (ii) it was observed that the function f ∈ Z[Zn]
given by f(`) = c` if 0 ≤ ` ≤ ϕ(n) and zero otherwise, is the image under θ∗

of a k-coboundary of X(G). This fact also appears (with a different proof)
in Proposition 24 of [4] and is attributed there to D. Fuchs.
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