Homology of Balanced Complexes via the Fourier Transform

Roy Meshulam *

April 6, 2012

Abstract

Let G_{0}, \ldots, G_{k} be finite abelian groups and let $G_{0} * \cdots * G_{k}$ be the join of the 0 -dimensional complexes G_{i}. We give a characterization of the the integral k-coboundaries of subcomplexes of $G_{0} * \cdots * G_{k}$ in terms of the Fourier transform on the group $G_{0} \times \cdots \times G_{k}$. This provides a short proof of an extension of a recent result of Musiker and Reiner on a topological interpretation of the cyclotomic polynomial.

1 Introduction

Let G_{0}, \ldots, G_{k} be finite abelian groups with the discrete topology and let $N=\prod_{i=0}^{k}\left(\left|G_{i}\right|-1\right)$. The simplicial join $Y=G_{0} * \cdots * G_{k}$ is homotopy equivalent to a wedge of $N k$-dimensional spheres (see e.g. Theorem 1.3 in [1]). Subcomplexes of Y are called balanced complexes (see [5]). Denote the $(k-1)$-dimensional skeleton of Y by $Y^{(k-1)}$. Let A be a subset of $G_{0} \times \cdots \times G_{k}$. Regarding each $a \in A$ as an oriented k-simplex of Y, we consider the balanced complex

$$
X(A)=X_{G_{0}, \ldots, G_{k}}(A)=Y^{(k-1)} \cup A
$$

In this note we characterize the integral k-coboundaries of $X(A)$ in terms of the Fourier transform on the group $G_{0} \times \cdots \times G_{k}$. As an application we

[^0]give a short proof of an extension of a recent result of Musiker and Reiner [4] on a topological interpretation of the cyclotomic polynomial.

We recall some terminology. Let $R[G]$ denote the group algebra of a finite abelian group G with coefficients in a ring R. By writing $f=\sum_{x \in G} f(x) x \in$ $R[G]$ we identify elements of $R[G]$ with R-valued functions on G. For a subset $A \subset G$ let $R[A]=\{f \in R[G]: \operatorname{supp}(f) \subset A\}$. A character of G is a homomorphism of G into the multiplicative group $\mathbb{C}-\{0\}$. Let \widehat{G} be the character group of G and let $\mathbf{1}$ be the trivial character of G. The orthogonality relation asserts that for $\chi \in \widehat{G}$

$$
\begin{equation*}
\sum_{g \in G} \chi(g)=|G| \cdot \delta(\chi, \mathbf{1}) \tag{1}
\end{equation*}
$$

where $\delta(\chi, \mathbf{1})=1$ if $\chi=\mathbf{1}$ and is zero otherwise. The Fourier transform is the linear bijection $\mathcal{F}: \mathbb{C}[G] \rightarrow \mathbb{C}[\widehat{G}]$ given on $f \in \mathbb{C}[G]$ and $\chi \in \widehat{G}$ by

$$
\mathcal{F}(f)(\chi)=\widehat{f}(\chi)=\sum_{x \in G} f(x) \chi(x) .
$$

Let $G=G_{0} \times \cdots \times G_{k}$ then $\widehat{G}=\widehat{G}_{0} \times \cdots \times \widehat{G}_{k}$. For $0 \leq i \leq k$ let

$$
L_{i}=G_{0} \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_{k} .
$$

We identify the group of integral k-cochains $C^{k}(X(A) ; \mathbb{Z})$ with $\mathbb{Z}[A]$ and the group of integral $(k-1)$-cochains $C^{k-1}(X(A) ; \mathbb{Z})=C^{k-1}(X(G) ; \mathbb{Z})$ with the $(k+1)$-tuples $\psi=\left(\psi_{0}, \ldots, \psi_{k}\right)$ where $\psi_{i} \in \mathbb{Z}\left[L_{i}\right]$. The coboundary map

$$
d_{k-1}: C^{k-1}(X(G) ; \mathbb{Z}) \rightarrow C^{k}(X(G) ; \mathbb{Z})
$$

is given by

$$
d_{k-1} \psi\left(g_{0}, \ldots, g_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \psi_{i}\left(g_{0}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{k}\right) .
$$

For $0 \leq i \leq k$ let $\mathbf{1}_{i}$ denote the trivial character of G_{i} and let

$$
\widehat{G}^{+}=\left(\widehat{G}_{0}-\left\{\mathbf{1}_{0}\right\}\right) \times \cdots \times\left(\widehat{G}_{k}-\left\{\mathbf{1}_{k}\right\}\right) .
$$

For $A \subset G$ and $f \in \mathbb{Z}[G]$ let $f_{\mid A} \in \mathbb{Z}[A]$ be the restriction of f to A. The group

$$
\mathrm{B}^{k}(X(A) ; \mathbb{Z})=\left\{d_{k-1} \psi_{\mid A}: \psi \in C^{k-1}(X(G) ; \mathbb{Z})\right\}
$$

of integral k-coboundaries of $X(A)$ is characterized by the following

Proposition 1.1. For any $A \subset G$

$$
\mathrm{B}^{k}(X(A) ; \mathbb{Z})=\left\{f_{\mid A}: f \in \mathbb{Z}[G] \text { such that } \operatorname{supp}(\widehat{f}) \subset \widehat{G}-\widehat{G}^{+}\right\}
$$

As an application of Proposition 1.1 we study the homology of a family of balanced complexes introduced by Musiker and Reiner [4]. Let p_{0}, \ldots, p_{k} be distinct primes and for $0 \leq i \leq k$ let $G_{i}=\mathbb{Z} / p_{i} \mathbb{Z}=\mathbb{Z}_{p_{i}}$. Writing $n=\prod_{i=0}^{k} p_{i}$ let

$$
\theta: \mathbb{Z}_{n} \rightarrow G=G_{0} \times \cdots \times G_{k}
$$

be the standard isomorphism given by

$$
\theta(x)=\left(x\left(\bmod p_{0}\right), \ldots, x\left(\bmod p_{k}\right)\right) .
$$

For any ℓ let $\mathbb{Z}_{\ell}^{\times}=\left\{m \in \mathbb{Z}_{\ell}: \operatorname{gcd}(m, \ell)=1\right\}$. Let $\varphi(n)=\left|\mathbb{Z}_{n}^{\times}\right|=\prod_{i=0}^{k}\left(p_{i}-1\right)$ be the Euler function of n and let $A_{0}=\{\varphi(n)+1, \varphi(n)+2, \ldots, n-2, n-1\}$. For $A \subset\{0, \ldots, \varphi(n)\}$ consider the complex

$$
K_{A}=X\left(\theta\left(A \cup A_{0}\right)\right) \subset \mathbb{Z}_{p_{0}} * \cdots * \mathbb{Z}_{p_{k}} .
$$

Let $\omega=\exp \left(\frac{2 \pi i}{n}\right)$ be a fixed primitive n-th root of unity. The n-th cyclotomic polynomial (see e.g. [2]) is given by

$$
\Phi_{n}(z)=\prod_{j \in \mathbb{Z}_{n}^{\times}}\left(z-\omega^{j}\right)=\sum_{j=0}^{\varphi(n)} c_{j} z^{j} \in \mathbb{Z}[z] .
$$

Musiker and Reiner [4] discovered the following remarkable connection between the coefficients of $\Phi_{n}(z)$ and the homology of the complexes $K_{\{j\}}$.

Theorem 1.2 (Musiker and Reiner). For any $j \in\{0, \ldots, \varphi(n)\}$

$$
\tilde{\mathrm{H}}_{i}\left(K_{\{j\}} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} / c_{j} \mathbb{Z} & i=k-1 \\ \mathbb{Z} & i=k \text { and } c_{j}=0 \\ 0 & \text { otherwise. }\end{cases}
$$

The next result extends Theorem 1.2 to general K_{A} 's. Let

$$
c_{A}=\left(c_{j}: j \in A\right) \in \mathbb{Z}^{A}
$$

and

$$
d_{A}= \begin{cases}\operatorname{gcd}\left(c_{A}\right) & c_{A} \neq 0 \\ 0 & c_{A}=0\end{cases}
$$

Theorem 1.3. For any $A \subset\{0, \ldots, \varphi(n)\}$

$$
\tilde{\mathrm{H}}^{i}\left(K_{A} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} & i=k-1 \text { and } d_{A}=0 \\ \mathbb{Z}^{|A|-1} \oplus \mathbb{Z} / d_{A} \mathbb{Z} & i=k \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\tilde{\mathrm{H}}_{i}\left(K_{A} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} / d_{A} \mathbb{Z} & i=k-1 \\ \mathbb{Z}^{||| |} & i=k \text { and } d_{A}=0 \\ \mathbb{Z}^{|A|-1} & i=k \text { and } d_{A} \neq 0 \\ 0 & \text { otherwise. }\end{cases}
$$

Proposition 1.1 is proved in Section 2. It is then used in Section 3 to obtain an explicit form of the k-coboundaries of K_{A} (Proposition 3.1) that directly implies Theorem 1.3.

$2 k$-Coboundaries and Fourier Transform

Proof of Proposition 1.1. It suffices to consider the case $A=G$. Let $\psi=$ $\left(\psi_{0}, \ldots, \psi_{k}\right) \in C^{k-1}(X(G) ; \mathbb{Z})$. Using (1) it follows for any $\chi=\left(\chi_{0}, \ldots, \chi_{k}\right) \in$ \widehat{G}

$$
\begin{gathered}
\widehat{d_{k-1} \psi}(\chi)=\sum_{g=\left(g_{0}, \ldots, g_{k}\right) \in G} d_{k-1} \psi(g) \chi(g)= \\
\sum_{\left(g_{0}, \ldots, g_{k}\right)} \sum_{i=0}^{k}(-1)^{i} \psi_{i}\left(g_{0}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{k}\right) \prod_{j=0}^{k} \chi_{j}\left(g_{j}\right)= \\
\sum_{\left(g_{0}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{k}\right)}^{k} \psi_{i}\left(g_{0}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{k}\right) \prod_{j \neq i} \chi_{j}\left(g_{j}\right) \sum_{g_{i}} \chi_{i}\left(g_{i}\right)= \\
\sum_{i=0}^{k}(-1)^{i} \widehat{\psi_{i}}\left(\chi_{0}, \ldots, \chi_{i-1}, \chi_{i+1}, \ldots, \chi_{k}\right)\left|G_{i}\right| \delta\left(\chi_{i}, \mathbf{1}_{i}\right) .
\end{gathered}
$$

Therefore $\operatorname{supp}\left(\widehat{d_{k-1} \psi}\right) \subset \widehat{G}-\widehat{G}^{+}$and so

$$
U_{1} \stackrel{\text { def }}{=} \mathrm{B}^{k}(X(G) ; \mathbb{Z}) \subset\left\{f \in \mathbb{Z}[G]: \operatorname{supp}(\widehat{f}) \subset \widehat{G}-\widehat{G}^{+}\right\} \stackrel{\text { def }}{=} U_{2} .
$$

Since $X(G)$ is homotopy equivalent to a wedge of $\prod_{i=0}^{k}\left(\left|G_{i}\right|-1\right)=\left|\widehat{G}^{+}\right|$ k-dimensional spheres, it follows that $\mathrm{H}^{k}(X(G) ; \mathbb{Z})=\mathbb{Z}[G] / U_{1}$ is free of rank $\left|\widehat{G}^{+}\right|$and hence $\operatorname{rank} U_{1}=|\widehat{G}|-\left|\widehat{G}^{+}\right|$. On the other hand, the injectivity of the Fourier transform implies that

$$
\operatorname{rank} U_{2} \leq \operatorname{dim}_{\mathbb{C}}\left\{f \in \mathbb{C}[G]: \operatorname{supp}(\widehat{f}) \subset \widehat{G}-\widehat{G}^{+}\right\}=|\widehat{G}|-\left|\widehat{G}^{+}\right|
$$

and therefore $\operatorname{rank} U_{2} / U_{1}=0$. Since $U_{2} / U_{1} \subset \mathrm{H}^{k}(X(G) ; \mathbb{Z})$ is free it follows that $U_{1}=U_{2}$.

3 The Homology of K_{A}

Recall that, in the context of Theorems 1.2 and 1.3, one chooses $G=$ $\mathbb{Z}_{p_{0}} \times \cdots \times \mathbb{Z}_{p_{k}}$ and $n=\prod_{j=0}^{k} p_{j}$. For $h \in \mathbb{Z}[G]$ let $\theta^{*} h \in \mathbb{Z}\left[\mathbb{Z}_{n}\right]$ be the pullback of h given by $\theta^{*} h(x)=h(\theta(x))$. For any ℓ we identify the character group $\widehat{\mathbb{Z}}_{\ell}$ with \mathbb{Z}_{ℓ} via the isomorphism $\eta_{\ell}: \mathbb{Z}_{\ell} \rightarrow \widehat{\mathbb{Z}}_{\ell}$ given by $\eta_{\ell}(y)(x)=\exp (2 \pi i x y / \ell)$. The Fourier transform on \mathbb{Z}_{ℓ} is then regarded as the automorphism of $\mathbb{C}\left[\mathbb{Z}_{\ell}\right]$ given by

$$
\widehat{f}(y)=\sum_{x \in \mathbb{Z}_{\ell}} f(x) \exp \left(\frac{2 \pi i x y}{\ell}\right)
$$

Proposition 1.1 implies the following characterization of the integral k coboundaries of K_{A}. For $A \subset\{0, \ldots, \varphi(n)\}$ let θ_{A} denote the restriction of θ to $A \cup A_{0}$ and let θ_{A}^{*} be the induced isomorphism from $\mathbb{Z}\left[\theta\left(A \cup A_{0}\right)\right]$ to $\mathbb{Z}\left[A \cup A_{0}\right]$. Let

$$
\mathcal{B}(A)=\left\{f_{\mid A \cup A_{0}}: f \in \mathbb{Z}\left[\mathbb{Z}_{n}\right] \text { such that } \widehat{f}(1)=0\right\} .
$$

Proposition 3.1.

$$
\theta_{A}^{*}\left(\mathrm{~B}^{k}\left(K_{A} ; \mathbb{Z}\right)\right)=\mathcal{B}(A)
$$

Proof. We first examine the relation between the Fourier transforms on \mathbb{Z}_{n} and on G. Let

$$
\lambda=\sum_{j=0}^{k} \prod_{t \neq j} p_{t} \in \mathbb{Z}_{n}^{\times}
$$

For any $h \in \mathbb{Z}[G]$ and $m \in \mathbb{Z}_{n}$

$$
\widehat{\theta^{*} h}(\lambda m)=\sum_{x \in \mathbb{Z}_{n}} \theta^{*} h(x) \exp \left(\frac{2 \pi i x \lambda m}{n}\right)=
$$

$$
\begin{equation*}
\sum_{x \in \mathbb{Z}_{n}} h(\theta(x)) \exp \left(\sum_{j=0}^{k} \frac{2 \pi i x m}{p_{j}}\right)=\widehat{h}(\theta(m)) . \tag{2}
\end{equation*}
$$

Noting that

$$
\theta^{-1}\left(\widehat{G}^{+}\right)=\theta^{-1}\left(\mathbb{Z}_{p_{0}}^{\times} \times \cdots \times \mathbb{Z}_{p_{k}}^{\times}\right)=\mathbb{Z}_{n}^{\times}=\lambda \mathbb{Z}_{n}^{\times}
$$

it follows from Proposition 1.1 and Eq. (2) that

$$
\begin{gather*}
\mathrm{B}^{k}\left(K_{A} ; \mathbb{Z}\right)=\left\{h_{\mid \theta\left(A \cup A_{0}\right)}: h \in \mathbb{Z}[G] \text { such that } \operatorname{supp}(\widehat{h}) \subset \widehat{G}-\widehat{G}^{+}\right\}= \\
\left(\theta_{A}^{*}\right)^{-1}\left\{f_{\mid A \cup A_{0}}: f \in \mathbb{Z}\left[\mathbb{Z}_{n}\right] \text { such that } \operatorname{supp}(\widehat{f}) \subset \mathbb{Z}_{n}-\mathbb{Z}_{n}^{\times}\right\} . \tag{3}
\end{gather*}
$$

Let $\mathcal{P}_{n}=\left\{\omega^{m}: m \in \mathbb{Z}_{n}^{\times}\right\}$be the set of primitive n-th roots of 1 . The Galois $\operatorname{group} \operatorname{Gal}(\mathbb{Q}(\omega) / \mathbb{Q})$ acts transitively on \mathcal{P}_{n}. Hence, by Eq. (3):

$$
\begin{gathered}
\theta_{A}^{*}\left(\mathrm{~B}^{k}\left(K_{A} ; \mathbb{Z}\right)\right)=\left\{f_{\mid A \cup A_{0}}: f \in \mathbb{Z}\left[\mathbb{Z}_{n}\right] \text { such that } \operatorname{supp}(\widehat{f}) \subset \mathbb{Z}_{n}-\mathbb{Z}_{n}^{\times}\right\}= \\
\left\{f_{\mid A \cup A_{0}}: f \in \mathbb{Z}\left[\mathbb{Z}_{n}\right] \text { such that } \widehat{f}(m)=\sum_{x \in \mathbb{Z}_{n}} f(x) \omega^{m x}=0 \text { for all } m \in \mathbb{Z}_{n}^{\times}\right\}= \\
\left\{f_{\mid A \cup A_{0}}: f \in \mathbb{Z}\left[\mathbb{Z}_{n}\right] \text { such that } \widehat{f}(1)=0\right\}=\mathcal{B}(A) .
\end{gathered}
$$

Corollary 3.2. θ_{A}^{*} induces an isomorphism between $\mathrm{H}^{k}\left(K_{A} ; \mathbb{Z}\right)$ and

$$
\mathcal{H}(A) \stackrel{\text { def }}{=} \mathbb{Z}\left[A \cup A_{0}\right] / \mathcal{B}(A)
$$

For $j \in A \cup A_{0}$ let $g_{j} \in \mathbb{Z}\left[A \cup A_{0}\right]$ be given by $g_{j}(i)=1$ if $i=j$ and $g_{j}(i)=0$ otherwise. Let $\left[g_{j}\right]$ be the image of g_{j} in $\mathcal{H}(A)$. The computation of $\mathcal{H}(A)$ depends on the following

Claim 3.3.

(i) $\mathcal{H}(A)$ is generated by $\left\{\left[g_{j}\right]: j \in A\right\}$.
(ii) The minimal relation between $\left\{\left[g_{j}\right]\right\}_{j \in A}$ is $\sum_{j \in A} c_{j}\left[g_{j}\right]=0$.

Proof of (i). Let $t \in A_{0}$. There exist $u_{0}, \ldots, u_{\varphi(n)-1} \in \mathbb{Z}$ such that

$$
\sum_{\ell=0}^{\varphi(n)-1} u_{\ell} \omega^{\ell}+\omega^{t}=0
$$

Let $f \in \mathbb{Z}\left[\mathbb{Z}_{n}\right]$ be given by

$$
f(\ell)= \begin{cases}u_{\ell} & 0 \leq \ell \leq \varphi(n)-1 \\ 1 & \ell=t \\ 0 & \text { otherwise }\end{cases}
$$

Since

$$
\widehat{f}(1)=\sum_{\ell=0}^{\varphi(n)-1} u_{\ell} \omega^{\ell}+\omega^{t}=0
$$

it follows that

$$
\sum_{j \in A} u_{j} g_{j}+g_{t}=f_{\mid A \cup A_{0}} \in \mathcal{B}(A)
$$

Hence $\left[g_{t}\right]=-\sum_{j \in A} u_{j}\left[g_{j}\right]$.
Proof of (ii). Let $f \in \mathbb{Z}\left[\mathbb{Z}_{n}\right]$ be given by $f(\ell)=c_{\ell}$ if $0 \leq \ell \leq \varphi(n)$ and zero otherwise. Since $\widehat{f}(1)=\Phi_{n}(\omega)=0$, it follows that

$$
\sum_{j \in A} c_{j} g_{j}=f_{\mid A \cup A_{0}} \in \mathcal{B}(A)
$$

Hence $\sum_{j \in A} c_{j}\left[g_{j}\right]=0$. Conversely, suppose that $\sum_{j \in A} \alpha_{j}\left[g_{j}\right]=0$ for integers $\left\{\alpha_{j}\right\}_{j \in A}$. Then there exists an $h \in \mathbb{Z}\left[\mathbb{Z}_{n}\right]$ such that $\widehat{h}(1)=0$ and $h_{\mid A \cup A_{0}}=$ $\sum_{j \in A} \alpha_{j} g_{j}$. In particular $h(\ell)=0$ for $\ell \geq \varphi(n)+1$. Let $p(z)=\sum_{\ell=0}^{\varphi(n)} h(\ell) z^{\ell}$ then $p(\omega)=\widehat{h}(1)=0$. Hence $p(z)=r \Phi_{n}(z)$ for some $r \in \mathbb{Z}$. Therefore $\alpha_{j}=h(j)=r c_{j}$ for all $j \in A$.

Proof of Theorem 1.3. Corollary 3.2 and Claim 3.3 imply that

$$
\begin{equation*}
\mathrm{H}^{k}\left(K_{A} ; \mathbb{Z}\right) \cong \mathcal{H}(A)=\mathbb{Z}[A] / \mathbb{Z} c_{A} \cong \mathbb{Z}^{|A|-1} \oplus \mathbb{Z} / d_{A} \mathbb{Z} \tag{4}
\end{equation*}
$$

The remaining parts of Theorem 1.3 are formal consequences of (4) and the universal coefficient theorem (see e.g. [3]):

$$
\begin{equation*}
0 \leftarrow \operatorname{Hom}\left(\mathrm{H}_{p}\left(K_{A} ; \mathbb{Z}\right), \mathbb{Z}\right) \leftarrow \mathrm{H}^{p}\left(K_{A} ; \mathbb{Z}\right) \leftarrow \operatorname{Ext}\left(\mathrm{H}_{p-1}\left(K_{A} ; \mathbb{Z}\right), \mathbb{Z}\right) \leftarrow 0 \tag{5}
\end{equation*}
$$

First consider the case $c_{A}=0$. By (4) and (5)

$$
0 \leftarrow \operatorname{Hom}\left(\mathrm{H}_{k}\left(K_{A} ; \mathbb{Z}\right), \mathbb{Z}\right) \leftarrow \mathbb{Z}^{|A|} \leftarrow \operatorname{Ext}\left(\mathrm{H}_{k-1}\left(K_{A} ; \mathbb{Z}\right), \mathbb{Z}\right) \leftarrow 0
$$

Therefore $\mathrm{H}_{k}\left(K_{A} ; \mathbb{Z}\right) \cong \mathbb{Z}^{|A|}$ and $\mathrm{H}_{k-1}\left(K_{A} ; \mathbb{Z}\right)$ is torsion free. The EulerPoincaré relation

$$
\begin{equation*}
\operatorname{rank} \mathrm{H}_{k}\left(K_{A} ; \mathbb{Z}\right)=\operatorname{rank} \tilde{\mathrm{H}}_{k-1}\left(K_{A} ; \mathbb{Z}\right)+|A|-1 \tag{6}
\end{equation*}
$$

then implies that $\tilde{\mathrm{H}}_{k-1}\left(K_{A} ; \mathbb{Z}\right) \cong \mathbb{Z}$ and

$$
\tilde{\mathrm{H}}^{k-1}\left(K_{A} ; \mathbb{Z}\right) \cong \operatorname{Hom}\left(\tilde{\mathrm{H}}_{k-1}\left(K_{A} ; \mathbb{Z}\right), \mathbb{Z}\right) \cong \mathbb{Z}
$$

Next assume that $c_{A} \neq 0$. By (4) and (5)

$$
0 \leftarrow \operatorname{Hom}\left(\mathrm{H}_{k}\left(K_{A} ; \mathbb{Z}\right), \mathbb{Z}\right) \leftarrow \mathbb{Z}^{|A|-1} \oplus \mathbb{Z} / d_{A} \mathbb{Z} \leftarrow \operatorname{Ext}\left(\mathrm{H}_{k-1}\left(K_{A} ; \mathbb{Z}\right), \mathbb{Z}\right) \leftarrow 0
$$

Therefore $\mathrm{H}_{k}\left(K_{A} ; \mathbb{Z}\right) \cong \mathbb{Z}^{|A|-1}$ and $\operatorname{Ext}\left(\mathrm{H}_{k-1}\left(K_{A} ; \mathbb{Z}\right), \mathbb{Z}\right)=\mathbb{Z} / d_{A} \mathbb{Z}$. It follows by (6) that rank $\tilde{\mathrm{H}}_{k-1}\left(K_{A} ; \mathbb{Z}\right)=0$. Hence $\tilde{\mathrm{H}}_{k-1}\left(K_{A} ; \mathbb{Z}\right)=\mathbb{Z} / d_{A} \mathbb{Z}$ and $\tilde{\mathrm{H}}^{k-1}\left(K_{A} ; \mathbb{Z}\right)=0$.

Remark: In the proof of (ii) it was observed that the function $f \in \mathbb{Z}\left[\mathbb{Z}_{n}\right]$ given by $f(\ell)=c_{\ell}$ if $0 \leq \ell \leq \varphi(n)$ and zero otherwise, is the image under θ^{*} of a k-coboundary of $X(G)$. This fact also appears (with a different proof) in Proposition 24 of [4] and is attributed there to D. Fuchs.

Acknowledgement: The author would like to thank Vic Reiner for his helpful comments.

References

[1] A. Björner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. in Math. 52(1984) 173-212.
[2] S. Lang, Algebra, 3rd Edition, Springer-Verlag, New York (2002).
[3] J.R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA (1984).
[4] G. Musiker and V. Reiner, The cyclotomic polynomial topologically, arXiv:1012.1844 .
[5] R. Stanley, Combinatorics and Commutative Algebra, 2nd Edition, Birkhäuser, Boston (1996).

[^0]: *Department of Mathematics, Technion, Haifa 32000, Israel. e-mail: meshulam@math.technion.ac.il . Supported by ISF and BSF grants.

