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Abstract

Let Gy, ..., Gy be finite abelian groups and let G * - - - * G, be the
join of the 0-dimensional complexes G;. We give a characterization
of the the integral k-coboundaries of subcomplexes of Gg * - * G
in terms of the Fourier transform on the group Gy X - -+ x Gj. This
provides a short proof of an extension of a recent result of Musiker and
Reiner on a topological interpretation of the cyclotomic polynomial.

1 Introduction

Let Gy, ...,Gy be finite abelian groups with the discrete topology and
let N = Hf:0(|G,~| —1). The simplicial join Y = Gy * - - - x G} is homotopy
equivalent to a wedge of N k-dimensional spheres (see e.g. Theorem 1.3 in
[1]). Subcomplexes of Y are called balanced complezes (see [5]). Denote the
(k—1)-dimensional skeleton of Y by Y *~1_ Let A be a subset of Gox- - - x G.
Regarding each a € A as an oriented k-simplex of Y, we consider the balanced
complex

X(A) = Xgy..q(A) =Y*DyA

In this note we characterize the integral k-coboundaries of X (A) in terms
of the Fourier transform on the group Gg X - -+ X ). As an application we
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give a short proof of an extension of a recent result of Musiker and Reiner
[4] on a topological interpretation of the cyclotomic polynomial.

We recall some terminology. Let R[G] denote the group algebra of a finite
abelian group G with coefficients in a ring R. By writing f = > . f(z)z
R[G] we identify elements of R[G] with R-valued functions on G. For a
subset A C G let R[A] = {f € R[G] : supp(f) C A}. A character of
G is a homomorphism of G into the multiplicative group C — {0}. Let G
be the character group of G and let 1 be the trivial character of G. The
orthogonality relation asserts that for y € G

S x(9) = 161 - 6(x, 1) (1)
geG

where §(x,1) = 1 if x = 1 and is zero otherwise. The Fourier transform is

the linear bijection F : C[G] — C[G] given on f € C[G] and y € G by
FH0) =00 = fla)x
zelG

LetG:Gox---kathen@:@OX---x@k. For 0 <i¢ <k let
Li:G()X"'XGi,lXGiJrlX"'XGk.

We identify the group of integral k-cochains C*(X (A);Z) with Z[A] and the
group of integral (k — 1)-cochains C*"1(X (A);Z) = C* (X (G); Z) with the
(k + 1)-tuples ¢ = (¢, ..., ¥x) where ¢; € Z[L;]. The coboundary map

iy : C*H(X(G); Z) — CH(X(G); Z)

is given by

k

dk*lw(gm e 7gk> = Z(_l)zwl(goa o 9i-1, i1, - - - 7gk)

i=0
For 0 <17 < k let 1; denote the trivial character of GG; and let
Gt = (Go— {10}) x -+ x (G — {1i}).

For A C G and f € Z[G] let fia € Z[A] be the restriction of f to A. The

group
BH(X(A); Z) = {dy1vya < ¥ € C1(X(G); 2)}

of integral k-coboundaries of X (A) is characterized by the following
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Proposition 1.1. For any A C G
BY(X(A);Z) = {fia: f € Z|G] such that supp(f) cG-GT}.

As an application of Proposition 1.1 we study the homology of a family of
balanced complexes introduced by Musiker and Reiner [4]. Let po, ..., px be
distinct primes and for 0 < ¢ < k let G; = Z/p,Z = Z,,. Writing n = Hf:o Di
let

QIZnHGIGOX"'XGk

be the standard isomorphism given by
0(z) = (z(mod py), ..., z(mod pg)).

For any ( let Z) = {m € Zq : ged(m, () = 1}. Let p(n) = |ZX| = [T_y(pi—1)
be the Euler function of n and let Ay = {¢(n)+1,¢(n)+2,...,n—2,n—1}.
For A C {0,...,p(n)} consider the complex

Ky=X(0(AUAy)) CZLy,*---*ZLy, .

Let w = exp(%) be a fixed primitive n-th root of unity. The n-th cyclo-
tomic polynomial (see e.g. [2]) is given by
‘ o)
Ou(z) = [[ (=) =D ;2 €Z[2].
JELy 3=0

Musiker and Reiner [4] discovered the following remarkable connection be-
tween the coefficients of ®,(z) and the homology of the complexes Kyjy.

Theorem 1.2 (Musiker and Reiner). For any j € {0,...,¢(n)}

) Z/ch i=k—1
0 otherwise.

The next result extends Theorem 1.2 to general K4’s. Let
ca=(c;:jeA) ez
and

g ged(ca) ca#0
4 0 cq=0.



Theorem 1.3. For any A C{0,...,¢(n)}

B Z i=k—1land dyq =0
H(KgZ) 2 ZAY S Z/daZ 0=k
0 otherwise

and
Z]dsZ i=k—1
3 )z i=kanddys=0
H;(K4;Z) = ZA=1 i =kand ds #0
0 otherwise.

Proposition 1.1 is proved in Section 2. It is then used in Section 3 to
obtain an explicit form of the k-coboundaries of K4 (Proposition 3.1) that
directly implies Theorem 1.3.

2 k-Coboundaries and Fourier Transform

Proof of Proposition 1.1. It suffices to consider the case A = G. Let ¢ =
(Yo, ..., ¥x) € C* X (G);Z). Using (1) it follows for any x = (x0,- .-, X&) €
G

=N
e

SN =D "ilg0, -5 gim1. girs 90 [ [ i(gy) =

(90,--,gk) ©=0 j=0
k
Z(—l)i Z ¢i(907'")gi—lagi-i—l;"-ka)HXj(Qj)ZXi(Qi) =
i=0 (905--+:9i—1,Gi+15--,9k) J#i gi
k o~
> (=1 i(x0s -5 Ximts Xists - - Xe)|Gild (xa, 1),
i=0

Therefore Supp(m) C G — G* and so

def N

U, € B¥X(G):Z) c {f € Z[G] : supp(f) ¢ G — G*} € U,
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Since X (G) is homotopy equivalent to a wedge of Hf:0(|Gi| —1)= |@+|
k-dimensional spheres, it follows that H*(X (G); Z) = Z[G] /Uy is free of rank
|G*| and hence rank U; = |G| — |G*|. On the other hand, the injectivity of
the Fourier transform implies that

rank Us < dimef{f € C[G] : supp(f) € G — Gt} = |G| — |G|

and therefore rank U, /U; = 0. Since Uy /U; C H*(X(G);Z) is free it follows
that U1 U2 O

3 The Homology of K4

Recall that, in the context of Theorems 1.2 and 1.3, one chooses G =
Lipy X+ - - X Ly, and n = H?:o p;. For h € Z|G] let 0*h € Z[Z,) be the pullback
of h given by 6*h(x) = h(6(x)). For any ¢ we identify the character group Zy

with Z, via the isomorphism 1, : Z¢ — Zy given by n,(y)(z) = exp(2mizy/L).
The Fourier transform on Z, is then regarded as the automorphism of C[Z,]

given by
27Tz:cy
=) f(x)exp(——).
TELy

Proposition 1.1 implies the following characterization of the integral k-
coboundaries of K4. For A C {0,...,p(n)} let 64 denote the restriction of
0 to AU Ay and let 6% be the induced isomorphism from Z[#(A U Ag)] to
Z[A U Ay). Let

~

B(A) = {fiava, : [ € Z|Zy,) such that f(1)=0}.

Proposition 3.1.
04 (B"(Ka;2)) = B(A).

Proof. We first examine the relation between the Fourier transforms on Z,,

and on G. Let i
=S In ez
=0 t#)

For any h € Z[G] and m € Z,

Z 0" h(x) exp 27mx>\m) _
n

ern




Noting that
01 (GY) =01 2Ly x - X L) =1L} = \L

it follows from Proposition 1.1 and Eq. (2) that

=)
N
)
|
D
+
—
|

B¥(Ka;Z) = {hjptavao) : h € Z|G] such that supp(

~

(03" fravn : f € Z[Za) such that supp(f) C Zo — L2} (3)

Let P, = {w™ : m € Z;} be the set of primitive n-th roots of 1. The Galois
group Gal(Q(w)/Q) acts transitively on P,. Hence, by Eq. (3):

04 (B¥(K a3 Z)) = {fiava, [ € Z[Zy)] such that supp(f) C Z, — Z}} =

{flava, : f € Z[Z,) such that f(m) = Z f@)w™ =0 forall meZ,} =
TELny

~

{flava, : f € Z[Zy) such that f(1) =0} = B(A).

Corollary 3.2. 0% induces an isomorphism between H*(K 4;7Z) and
H(A) < Z[AU Ao]/B(A).
0

For j € AU A let g; € Z[A U Ap] be given by g¢;(i) = 1 if i = j and
gj(7) = 0 otherwise. Let [g;] be the image of ¢g; in H(A). The computation
of H(A) depends on the following

Claim 3.3.
(i) H(A) is generated by {[g;] : j € A}.
(i1) The minimal relation between {[g;]}jea is 3 ;c 4 ¢ilg;] = 0.
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Proof of (i). Let t € Ay. There exist ug, ..., Upm)—1 € Z such that

p(n)—

Z Wu) +w' =0.

Let f € Z[Z,] be given by

u 0<l<¢pn)—1
flhy=¢ 1 (=t

0  otherwise.

Since
p(n)—1
= Z upw’ +wt =0,
(=0

it follows that
> uigi+ g0 = flava, € B(A).

JjeEA
Hence [g] = =224 usl95]-

Proof of (ii). Let f € Z[Z,] be given by f({) = ¢, if 0 < £ < ¢(n)
)=

and zero otherwise. Since f ( n(w) =0, it follows that

> 95 = flaua, € B(A).

jeA

Hence ZjeA ¢jlg;] = 0. Conversely, suppose that ZjeA a;]g;] = 0 for integers
{c;}jea. Then there exists an h € Z[Z,] such that h(1) = 0 and h‘AuAO

> iea@;gj- In particular h(¢) = 0 for £ > p(n) + 1. Let p(z) = Zz o h(0)z*
then p(w) = h(1) = 0. Hence p(z) = r®,(z) for some r € Z. Therefore
aj = h(j) =rc; for all j € A.

O

Proof of Theorem 1.3. Corollary 3.2 and Claim 3.3 imply that

HY(K 4 Z) =2 H(A) = Z[A) [ Zca 2 7 @ Z)dAT . (4)



The remaining parts of Theorem 1.3 are formal consequences of (4) and the
universal coefficient theorem (see e.g. [3]):

0 — Hom(H,(K4;Z),Z) «— HP(K4;Z) — Ext(H,_1(Ka;Z),Z) — 0. (5)
First consider the case ¢4 = 0. By (4) and (5)
0« Hom(Hy(K4;Z),Z) «— Z — Ext(H;_1(K4;Z),Z) <0 .

Therefore Hy(K4;7Z) = ZM and Hy_,(K4;7Z) is torsion free. The Euler-
Poincaré relation

rank Hy(Ka; Z) = rank Hy_y(Ka;Z) + |A| — 1 (6)
then implies that H,_; (K 4;Z) = Z and
0 Y (K43 Z) = Hom(H,_ (K A3 Z),Z) = 7.
Next assume that ¢4 # 0. By (4) and (5)
0« Hom(Hy(K4;Z),Z) — ZM ' @ Z/dsZ — Ext(Hy_1(K4;Z),Z) 0 .

Therefore Hy,(K4;Z) = ZMI=1 and Ext(Hy_y(K4;Z),Z) = Z/daZ. 1t fol-
lows by (6) that rank Hy_1(Ka;Z) = 0. Hence Hy_1(K;Z) = Z/dsZ and
[F1(K 43 Z) = 0.

O

Remark: In the proof of (ii) it was observed that the function f € Z[Z,]
given by f(¢) = ¢, if 0 < ¢ < p(n) and zero otherwise, is the image under 6*
of a k-coboundary of X(G). This fact also appears (with a different proof)
in Proposition 24 of [4] and is attributed there to D. Fuchs.
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