Homology of Balanced Complexes via the Fourier Transform

Roy Meshulam *

April 6, 2012

Abstract

Let G_0, \ldots, G_k be finite abelian groups and let $G_0 * \cdots * G_k$ be the join of the 0-dimensional complexes G_i . We give a characterization of the the integral k-coboundaries of subcomplexes of $G_0 * \cdots * G_k$ in terms of the Fourier transform on the group $G_0 \times \cdots \times G_k$. This provides a short proof of an extension of a recent result of Musiker and Reiner on a topological interpretation of the cyclotomic polynomial.

1 Introduction

Let G_0, \ldots, G_k be finite abelian groups with the discrete topology and let $N = \prod_{i=0}^k (|G_i| - 1)$. The simplicial join $Y = G_0 * \cdots * G_k$ is homotopy equivalent to a wedge of N k-dimensional spheres (see e.g. Theorem 1.3 in [1]). Subcomplexes of Y are called *balanced complexes* (see [5]). Denote the (k-1)-dimensional skeleton of Y by $Y^{(k-1)}$. Let A be a subset of $G_0 \times \cdots \times G_k$. Regarding each $a \in A$ as an oriented k-simplex of Y, we consider the balanced complex

$$X(A) = X_{G_0, \dots, G_k}(A) = Y^{(k-1)} \cup A.$$

In this note we characterize the integral k-coboundaries of X(A) in terms of the Fourier transform on the group $G_0 \times \cdots \times G_k$. As an application we

^{*}Department of Mathematics, Technion, Haifa 32000, Israel. e-mail: meshu-lam@math.technion.ac.il . Supported by ISF and BSF grants.

give a short proof of an extension of a recent result of Musiker and Reiner [4] on a topological interpretation of the cyclotomic polynomial.

We recall some terminology. Let R[G] denote the group algebra of a finite abelian group G with coefficients in a ring R. By writing $f = \sum_{x \in G} f(x)x \in$ R[G] we identify elements of R[G] with R-valued functions on G. For a subset $A \subset G$ let $R[A] = \{f \in R[G] : \operatorname{supp}(f) \subset A\}$. A character of G is a homomorphism of G into the multiplicative group $\mathbb{C} - \{0\}$. Let \widehat{G} be the character group of G and let **1** be the trivial character of G. The orthogonality relation asserts that for $\chi \in \widehat{G}$

$$\sum_{g \in G} \chi(g) = |G| \cdot \delta(\chi, \mathbf{1}) \tag{1}$$

let

where $\delta(\chi, \mathbf{1}) = 1$ if $\chi = \mathbf{1}$ and is zero otherwise. The Fourier transform is the linear bijection $\mathcal{F} : \mathbb{C}[G] \to \mathbb{C}[\widehat{G}]$ given on $f \in \mathbb{C}[G]$ and $\chi \in \widehat{G}$ by

$$\mathcal{F}(f)(\chi) = \widehat{f}(\chi) = \sum_{x \in G} f(x)\chi(x) .$$

Let $G = G_0 \times \cdots \times G_k$ then $\widehat{G} = \widehat{G}_0 \times \cdots \times \widehat{G}_k$. For $0 \le i \le k$
 $L_i = G_0 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_k.$

We identify the group of integral k-cochains $C^k(X(A); \mathbb{Z})$ with $\mathbb{Z}[A]$ and the group of integral (k-1)-cochains $C^{k-1}(X(A); \mathbb{Z}) = C^{k-1}(X(G); \mathbb{Z})$ with the (k+1)-tuples $\psi = (\psi_0, \ldots, \psi_k)$ where $\psi_i \in \mathbb{Z}[L_i]$. The coboundary map

$$d_{k-1}: C^{k-1}(X(G); \mathbb{Z}) \to C^k(X(G); \mathbb{Z})$$

is given by

$$d_{k-1}\psi(g_0,\ldots,g_k) = \sum_{i=0}^k (-1)^i \psi_i(g_0,\ldots,g_{i-1},g_{i+1},\ldots,g_k).$$

For $0 \leq i \leq k$ let $\mathbf{1}_i$ denote the trivial character of G_i and let

$$\widehat{G}^+ = (\widehat{G}_0 - \{\mathbf{1}_0\}) \times \cdots \times (\widehat{G}_k - \{\mathbf{1}_k\}).$$

For $A \subset G$ and $f \in \mathbb{Z}[G]$ let $f_{|A} \in \mathbb{Z}[A]$ be the restriction of f to A. The group

$$B^{k}(X(A); \mathbb{Z}) = \{ d_{k-1}\psi_{|A} : \psi \in C^{k-1}(X(G); \mathbb{Z}) \}$$

of integral k-coboundaries of X(A) is characterized by the following

Proposition 1.1. For any $A \subset G$

 $\mathbf{B}^{k}(X(A);\mathbb{Z}) = \{f_{|A} : f \in \mathbb{Z}[G] \text{ such that } \operatorname{supp}(\widehat{f}) \subset \widehat{G} - \widehat{G}^{+}\}.$

As an application of Proposition 1.1 we study the homology of a family of balanced complexes introduced by Musiker and Reiner [4]. Let p_0, \ldots, p_k be distinct primes and for $0 \le i \le k$ let $G_i = \mathbb{Z}/p_i\mathbb{Z} = \mathbb{Z}_{p_i}$. Writing $n = \prod_{i=0}^k p_i$ let

$$\theta: \mathbb{Z}_n \to G = G_0 \times \cdots \times G_k$$

be the standard isomorphism given by

$$\theta(x) = (x \pmod{p_0}, \dots, x \pmod{p_k}).$$

For any ℓ let $\mathbb{Z}_{\ell}^{\times} = \{m \in \mathbb{Z}_{\ell} : \gcd(m, \ell) = 1\}$. Let $\varphi(n) = |\mathbb{Z}_{n}^{\times}| = \prod_{i=0}^{k} (p_{i}-1)$ be the Euler function of n and let $A_{0} = \{\varphi(n)+1, \varphi(n)+2, \ldots, n-2, n-1\}$. For $A \subset \{0, \ldots, \varphi(n)\}$ consider the complex

$$K_A = X(\theta(A \cup A_0)) \subset \mathbb{Z}_{p_0} * \cdots * \mathbb{Z}_{p_k}$$
.

Let $\omega = \exp(\frac{2\pi i}{n})$ be a fixed primitive *n*-th root of unity. The *n*-th cyclotomic polynomial (see e.g. [2]) is given by

$$\Phi_n(z) = \prod_{j \in \mathbb{Z}_n^{\times}} (z - \omega^j) = \sum_{j=0}^{\varphi(n)} c_j z^j \in \mathbb{Z}[z].$$

Musiker and Reiner [4] discovered the following remarkable connection between the coefficients of $\Phi_n(z)$ and the homology of the complexes $K_{\{j\}}$.

Theorem 1.2 (Musiker and Reiner). For any $j \in \{0, \ldots, \varphi(n)\}$

$$\tilde{\mathrm{H}}_{i}(K_{\{j\}};\mathbb{Z}) \cong \begin{cases} \mathbb{Z}/c_{j}\mathbb{Z} & i=k-1\\ \mathbb{Z} & i=k \text{ and } c_{j}=0\\ 0 & \text{otherwise.} \end{cases}$$

The next result extends Theorem 1.2 to general K_A 's. Let

$$c_A = (c_j : j \in A) \in \mathbb{Z}^A$$

and

$$d_A = \begin{cases} \gcd(c_A) & c_A \neq 0\\ 0 & c_A = 0. \end{cases}$$

Theorem 1.3. For any $A \subset \{0, \ldots, \varphi(n)\}$

$$\tilde{\mathrm{H}}^{i}(K_{A};\mathbb{Z}) \cong \begin{cases} \mathbb{Z} & i = k - 1 \text{ and } d_{A} = 0\\ \mathbb{Z}^{|A|-1} \oplus \mathbb{Z}/d_{A}\mathbb{Z} & i = k\\ 0 & \text{otherwise} \end{cases}$$

and

$$\tilde{\mathrm{H}}_{i}(K_{A};\mathbb{Z}) \cong \begin{cases} \mathbb{Z}/d_{A}\mathbb{Z} & i = k - 1\\ \mathbb{Z}^{|A|} & i = k \text{ and } d_{A} = 0\\ \mathbb{Z}^{|A|-1} & i = k \text{ and } d_{A} \neq 0\\ 0 & \text{otherwise.} \end{cases}$$

Proposition 1.1 is proved in Section 2. It is then used in Section 3 to obtain an explicit form of the k-coboundaries of K_A (Proposition 3.1) that directly implies Theorem 1.3.

2 k-Coboundaries and Fourier Transform

Proof of Proposition 1.1. It suffices to consider the case A = G. Let $\psi = (\psi_0, \ldots, \psi_k) \in C^{k-1}(X(G); \mathbb{Z})$. Using (1) it follows for any $\chi = (\chi_0, \ldots, \chi_k) \in \widehat{G}$

$$\bar{d}_{k-1}\bar{\psi}(\chi) = \sum_{g=(g_0,\dots,g_k)\in G} d_{k-1}\psi(g)\chi(g) =$$

$$\sum_{(g_0,\dots,g_k)} \sum_{i=0}^k (-1)^i \psi_i(g_0,\dots,g_{i-1},g_{i+1},\dots,g_k) \prod_{j=0}^k \chi_j(g_j) =$$

$$\sum_{i=0}^k (-1)^i \sum_{(g_0,\dots,g_{i-1},g_{i+1},\dots,g_k)} \psi_i(g_0,\dots,g_{i-1},g_{i+1},\dots,g_k) \prod_{j\neq i} \chi_j(g_j) \sum_{g_i} \chi_i(g_i) =$$

$$\sum_{i=0}^k (-1)^i \widehat{\psi}_i(\chi_0,\dots,\chi_{i-1},\chi_{i+1},\dots,\chi_k) |G_i| \delta(\chi_i,\mathbf{1}_i).$$

Therefore $\operatorname{supp}(\widehat{d_{k-1}\psi}) \subset \widehat{G} - \widehat{G}^+$ and so

$$U_1 \stackrel{\text{def}}{=} \mathbf{B}^k(X(G); \mathbb{Z}) \subset \{ f \in \mathbb{Z}[G] : \operatorname{supp}(\widehat{f}) \subset \widehat{G} - \widehat{G}^+ \} \stackrel{\text{def}}{=} U_2$$

Since X(G) is homotopy equivalent to a wedge of $\prod_{i=0}^{k} (|G_i| - 1) = |\widehat{G}^+|$ k-dimensional spheres, it follows that $\mathrm{H}^k(X(G); \mathbb{Z}) = \mathbb{Z}[G]/U_1$ is free of rank $|\widehat{G}^+|$ and hence rank $U_1 = |\widehat{G}| - |\widehat{G}^+|$. On the other hand, the injectivity of the Fourier transform implies that

 $rank \ U_2 \le \dim_{\mathbb{C}} \{ f \in \mathbb{C}[G] : \operatorname{supp}(\widehat{f}) \subset \widehat{G} - \widehat{G}^+ \} = |\widehat{G}| - |\widehat{G}^+|$

and therefore rank $U_2/U_1 = 0$. Since $U_2/U_1 \subset \mathrm{H}^k(X(G);\mathbb{Z})$ is free it follows that $U_1 = U_2$.

3 The Homology of K_A

Recall that, in the context of Theorems 1.2 and 1.3, one chooses $G = \mathbb{Z}_{p_0} \times \cdots \times \mathbb{Z}_{p_k}$ and $n = \prod_{j=0}^k p_j$. For $h \in \mathbb{Z}[G]$ let $\theta^* h \in \mathbb{Z}[\mathbb{Z}_n]$ be the pullback of h given by $\theta^* h(x) = h(\theta(x))$. For any ℓ we identify the character group $\widehat{\mathbb{Z}}_{\ell}$ with \mathbb{Z}_{ℓ} via the isomorphism $\eta_{\ell} : \mathbb{Z}_{\ell} \to \widehat{\mathbb{Z}}_{\ell}$ given by $\eta_{\ell}(y)(x) = \exp(2\pi i x y/\ell)$. The Fourier transform on \mathbb{Z}_{ℓ} is then regarded as the automorphism of $\mathbb{C}[\mathbb{Z}_{\ell}]$ given by

$$\widehat{f}(y) = \sum_{x \in \mathbb{Z}_{\ell}} f(x) \exp(\frac{2\pi i x y}{\ell}).$$

Proposition 1.1 implies the following characterization of the integral kcoboundaries of K_A . For $A \subset \{0, \ldots, \varphi(n)\}$ let θ_A denote the restriction of θ to $A \cup A_0$ and let θ_A^* be the induced isomorphism from $\mathbb{Z}[\theta(A \cup A_0)]$ to $\mathbb{Z}[A \cup A_0]$. Let

$$\mathcal{B}(A) = \{ f_{|A \cup A_0} : f \in \mathbb{Z}[\mathbb{Z}_n] \text{ such that } \widehat{f}(1) = 0 \}.$$

Proposition 3.1.

$$\theta_A^*(\mathbf{B}^k(K_A;\mathbb{Z})) = \mathcal{B}(A).$$

Proof. We first examine the relation between the Fourier transforms on \mathbb{Z}_n and on G. Let

$$\lambda = \sum_{j=0}^{k} \prod_{t \neq j} p_t \in \mathbb{Z}_n^{\times}.$$

For any $h \in \mathbb{Z}[G]$ and $m \in \mathbb{Z}_n$

$$\widehat{\theta^*h}(\lambda m) = \sum_{x \in \mathbb{Z}_n} \theta^*h(x) \exp(\frac{2\pi i x \lambda m}{n}) =$$

$$\sum_{x \in \mathbb{Z}_n} h(\theta(x)) \exp(\sum_{j=0}^k \frac{2\pi i x m}{p_j}) = \widehat{h}(\theta(m)).$$
(2)

Noting that

$$\theta^{-1}(\widehat{G}^+) = \theta^{-1}(\mathbb{Z}_{p_0}^{\times} \times \cdots \times \mathbb{Z}_{p_k}^{\times}) = \mathbb{Z}_n^{\times} = \lambda \mathbb{Z}_n^{\times}$$

it follows from Proposition 1.1 and Eq. (2) that

$$B^{k}(K_{A};\mathbb{Z}) = \{h_{|\theta(A\cup A_{0})} : h \in \mathbb{Z}[G] \text{ such that } \operatorname{supp}(\widehat{h}) \subset \widehat{G} - \widehat{G}^{+}\} = (\theta_{A}^{*})^{-1}\{f_{|A\cup A_{0}} : f \in \mathbb{Z}[\mathbb{Z}_{n}] \text{ such that } \operatorname{supp}(\widehat{f}) \subset \mathbb{Z}_{n} - \mathbb{Z}_{n}^{\times}\}.$$
(3)

Let $\mathcal{P}_n = \{\omega^m : m \in \mathbb{Z}_n^{\times}\}$ be the set of primitive *n*-th roots of 1. The Galois group $\operatorname{Gal}(\mathbb{Q}(\omega)/\mathbb{Q})$ acts transitively on \mathcal{P}_n . Hence, by Eq. (3):

$$\theta_A^*(\mathcal{B}^k(K_A;\mathbb{Z})) = \{f_{|A\cup A_0} : f \in \mathbb{Z}[\mathbb{Z}_n] \text{ such that } \operatorname{supp}(\widehat{f}) \subset \mathbb{Z}_n - \mathbb{Z}_n^\times\} = \{f_{|A\cup A_0} : f \in \mathbb{Z}[\mathbb{Z}_n] \text{ such that } \widehat{f}(m) = \sum_{x \in \mathbb{Z}_n} f(x)\omega^{mx} = 0 \text{ for all } m \in \mathbb{Z}_n^\times\} = \{f_{|A\cup A_0} : f \in \mathbb{Z}[\mathbb{Z}_n] \text{ such that } \widehat{f}(1) = 0\} = \mathcal{B}(A).$$

Corollary 3.2. θ_A^* induces an isomorphism between $\mathrm{H}^k(K_A;\mathbb{Z})$ and

$$\mathcal{H}(A) \stackrel{\text{def}}{=} \mathbb{Z}[A \cup A_0] / \mathcal{B}(A).$$

For $j \in A \cup A_0$ let $g_j \in \mathbb{Z}[A \cup A_0]$ be given by $g_j(i) = 1$ if i = j and $g_j(i) = 0$ otherwise. Let $[g_j]$ be the image of g_j in $\mathcal{H}(A)$. The computation of $\mathcal{H}(A)$ depends on the following

Claim 3.3.

(i) $\mathcal{H}(A)$ is generated by $\{[g_j] : j \in A\}$.

(ii) The minimal relation between $\{[g_j]\}_{j \in A}$ is $\sum_{j \in A} c_j[g_j] = 0$.

Proof of (i). Let $t \in A_0$. There exist $u_0, \ldots, u_{\varphi(n)-1} \in \mathbb{Z}$ such that

$$\sum_{\ell=0}^{\varphi(n)-1} u_\ell \omega^\ell + \omega^t = 0.$$

Let $f \in \mathbb{Z}[\mathbb{Z}_n]$ be given by

$$f(\ell) = \begin{cases} u_{\ell} & 0 \le \ell \le \varphi(n) - 1\\ 1 & \ell = t\\ 0 & \text{otherwise.} \end{cases}$$

Since

$$\widehat{f}(1) = \sum_{\ell=0}^{\varphi(n)-1} u_{\ell} \omega^{\ell} + \omega^t = 0 ,$$

it follows that

$$\sum_{j \in A} u_j g_j + g_t = f_{|A \cup A_0|} \in \mathcal{B}(A).$$

Hence $[g_t] = -\sum_{j \in A} u_j[g_j].$

Proof of (ii). Let $f \in \mathbb{Z}[\mathbb{Z}_n]$ be given by $f(\ell) = c_\ell$ if $0 \leq \ell \leq \varphi(n)$ and zero otherwise. Since $\widehat{f}(1) = \Phi_n(\omega) = 0$, it follows that

$$\sum_{j \in A} c_j g_j = f_{|A \cup A_0|} \in \mathcal{B}(A).$$

Hence $\sum_{j \in A} c_j[g_j] = 0$. Conversely, suppose that $\sum_{j \in A} \alpha_j[g_j] = 0$ for integers $\{\alpha_j\}_{j \in A}$. Then there exists an $h \in \mathbb{Z}[\mathbb{Z}_n]$ such that $\hat{h}(1) = 0$ and $h_{|A \cup A_0|} = \sum_{j \in A} \alpha_j g_j$. In particular $h(\ell) = 0$ for $\ell \ge \varphi(n) + 1$. Let $p(z) = \sum_{\ell=0}^{\varphi(n)} h(\ell) z^\ell$ then $p(\omega) = \hat{h}(1) = 0$. Hence $p(z) = r\Phi_n(z)$ for some $r \in \mathbb{Z}$. Therefore $\alpha_j = h(j) = rc_j$ for all $j \in A$.

Proof of Theorem 1.3. Corollary 3.2 and Claim 3.3 imply that

$$\mathrm{H}^{k}(K_{A};\mathbb{Z}) \cong \mathcal{H}(A) = \mathbb{Z}[A]/\mathbb{Z}c_{A} \cong \mathbb{Z}^{|A|-1} \oplus \mathbb{Z}/d_{A}\mathbb{Z} .$$

$$\tag{4}$$

The remaining parts of Theorem 1.3 are formal consequences of (4) and the universal coefficient theorem (see e.g. [3]):

$$0 \leftarrow \operatorname{Hom}(\operatorname{H}_{p}(K_{A};\mathbb{Z}),\mathbb{Z}) \leftarrow \operatorname{H}^{p}(K_{A};\mathbb{Z}) \leftarrow \operatorname{Ext}(\operatorname{H}_{p-1}(K_{A};\mathbb{Z}),\mathbb{Z}) \leftarrow 0 .$$
(5)

First consider the case $c_A = 0$. By (4) and (5)

$$0 \leftarrow \operatorname{Hom}(\operatorname{H}_{k}(K_{A};\mathbb{Z}),\mathbb{Z}) \leftarrow \mathbb{Z}^{|A|} \leftarrow \operatorname{Ext}(\operatorname{H}_{k-1}(K_{A};\mathbb{Z}),\mathbb{Z}) \leftarrow 0$$

Therefore $H_k(K_A; \mathbb{Z}) \cong \mathbb{Z}^{|A|}$ and $H_{k-1}(K_A; \mathbb{Z})$ is torsion free. The Euler-Poincaré relation

$$rank \operatorname{H}_{k}(K_{A}; \mathbb{Z}) = rank \operatorname{H}_{k-1}(K_{A}; \mathbb{Z}) + |A| - 1$$
(6)

then implies that $\tilde{\mathrm{H}}_{k-1}(K_A;\mathbb{Z})\cong\mathbb{Z}$ and

$$\widetilde{\mathrm{H}}^{k-1}(K_A;\mathbb{Z})\cong\mathrm{Hom}(\widetilde{\mathrm{H}}_{k-1}(K_A;\mathbb{Z}),\mathbb{Z})\cong\mathbb{Z}.$$

Next assume that $c_A \neq 0$. By (4) and (5)

$$0 \leftarrow \operatorname{Hom}(\operatorname{H}_{k}(K_{A};\mathbb{Z}),\mathbb{Z}) \leftarrow \mathbb{Z}^{|A|-1} \oplus \mathbb{Z}/d_{A}\mathbb{Z} \leftarrow \operatorname{Ext}(\operatorname{H}_{k-1}(K_{A};\mathbb{Z}),\mathbb{Z}) \leftarrow 0.$$

Therefore $\mathcal{H}_k(K_A;\mathbb{Z}) \cong \mathbb{Z}^{|A|-1}$ and $\operatorname{Ext}(\mathcal{H}_{k-1}(K_A;\mathbb{Z}),\mathbb{Z}) = \mathbb{Z}/d_A\mathbb{Z}$. It follows by (6) that rank $\tilde{\mathcal{H}}_{k-1}(K_A;\mathbb{Z}) = 0$. Hence $\tilde{\mathcal{H}}_{k-1}(K_A;\mathbb{Z}) = \mathbb{Z}/d_A\mathbb{Z}$ and $\tilde{\mathcal{H}}^{k-1}(K_A;\mathbb{Z}) = 0$.

Remark: In the proof of (ii) it was observed that the function $f \in \mathbb{Z}[\mathbb{Z}_n]$ given by $f(\ell) = c_\ell$ if $0 \le \ell \le \varphi(n)$ and zero otherwise, is the image under θ^* of a k-coboundary of X(G). This fact also appears (with a different proof) in Proposition 24 of [4] and is attributed there to D. Fuchs.

Acknowledgement: The author would like to thank Vic Reiner for his helpful comments.

References

 A. Björner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. in Math. 52(1984) 173-212.

- [2] S. Lang, Algebra, 3rd Edition, Springer-Verlag, New York (2002).
- [3] J.R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA (1984).
- [4] G. Musiker and V. Reiner, The cyclotomic polynomial topologically, arXiv:1012.1844 .
- [5] R. Stanley, Combinatorics and Commutative Algebra, 2nd Edition, Birkhäuser, Boston (1996).