QUANTITATIVE ASPECTS OF ACYCLICITY

DMITRY N. KOZLOV AND ROY MESHULAM

AsstracT. The Cheeger constant is a measure of the edge expansiomayita g
and as such plays a key role in combinatorics and theoretizaputer science.
In recent years there is an interestkimdimensional versions of the Cheeger
constant that likewise provide gquantitative measure oboudiogical acyclic-
ity of a complex in dimensiofk. In this paper we study several aspects of the
higher Cheeger constants. Our results include methodfording the cosys-
tolic norm ofk-cochains and thk-th Cheeger constants, with applications to the
expansion of pseudomanifolds, Coxeter complexes and henoas geometric
lattices. We revisit a theorem of Gromov on the expansion pfauct of a
complex with a simplex, and provide an elementary derivatibthe expansion

in a hypercube. We prove a lower bound on the maximal cosy$toh com-
plex and an upper bound on the expansion of bounded degreglex@s, and
give an essentially sharp estimate for the cosystolic ndrtheoPaley cochains.
Finally, we discuss a non-abelian version of the 1-dimeradi@xpansion of a
simplex, with an application to a question of Babson on bednduotients of
the fundamental group of a random 2-complex.

1. INTRODUCTION

The Cheeger constant is a parameter that quantifies the rpgeston of a graph,
and as such plays a key role in combinatorics and theoretitaputer science (see,
e.g., [10, 15]). Th&-dimensional version of the graphical Cheeger constafiédca
"coboundary expansion”, came up independently in the wéikroal, Meshulam
and Wallach [14, 20] on homological connectivity of randoomplexes and in
Gromov's remarkable work [6] on the topological overlapgedy; see also the
paper by Dotterer and Kahle [4]. Roughly speaking,kttle coboundary expansion
h(X) of a polyhedral compleX is a measure of the minimal distanceXfrom

a complexY that satisfiesHX(Y;Z,) # 0. Likewise, h(X) is a measure of the
minimal distance oK from a complexY that satisfiedH(Y;Z,) # 0. We proceed
with the formal definitions.

1.1. Chains and cochains.

Let X be a finite polyhedral complex. In this paper we shall mostykwwith Z,
codficients. Accordingly, le€Cy(X) = Ck(X; Z,) denote the space &fchains ofX
overZ, and letC*(X) = C¥(X; Z,) denote the space @h-valuedk-cochains oiX.
Let dy : Ck(X) = Ci_1(X) anddy : CK(X) — CK*1(X) denote the usud-boundary
andk-coboundary operators.
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Let (,) : CKX) x C(X) — Zy denote the usual evaluation kfcochains ork-
chains. Note that

(1.1) (¢, 0kC) = (dk-1¢, C)
wheneverc e Cy(X) andyp € C<1(X).

For each non-negative let XX denote thé-th skeleton o, which is itself a finite
polyhedral complex. Furthermore, [¥{k) denote the set of ak-cells of X. The
degreeof a faces € X(K) is deg(c) = [{r € X(k+ 1) : o c 7}|. In particular, if
G = (V,E) is a graph, then dedv) is the usual degree of a vertex

WhenX is a simplicial complex anéby, .. ., ax} € X, we write fag, ..., a] for the
corresponding element @ (X). As we are working oveE,, the order of they’s
does not matter. We will use the convention thay, [..,a] = O if & = a; for
some O<i# j<k

For any set of cell$\ and any cochaip, we letpa denote the restriction cochain,
i.e., the cochain that is equal #oon the setA and is equal to O otherwise. Fur-
thermore, we leA* denote the cochain which is equal to 1 on the/Aeind is 0
otherwise.

In our convention the seX(-1) is empty, and accordingl€_,(X) = 0, forcing

0o = 0 andd_; = 0. This is the so-called non-reduced setting. In the reduced
setting we lefX(—1) be the set containing a single element, den@edrhis is the
so-called empty simplex. For convenience we alsoX§k} := X(K), for k # —1.
Accordingly, the reduced boundary and coboundary opeyatoincide with the
non-reduced ones except for the following cases:

o Jo(V) = 0, for all v e X(0);
e d_1(0%) = Zvex) V-

For a subcomplexy c X let Ck(X,Y) = Ck(X)/Ck(Y) denote the space of
relative k-chains, with its induced-boundary map. ldentifying CK(Y) with
the subspace ofX(X) consisting of allk-cochains whose support is contained
in Y, let CK(X,Y) = CXX)/CK(Y) denote the space of relatiiecochains,
with its inducedk-coboundary map. Let Bx(X,Y) = 0k+1(Ci+1(X,Y)) and
BX(X,Y) = di_1(C*¥ (X, Y)) denote the spaces of relatiteboundaries and rela-
tive k-coboundaries.

1.2. Homology expansion.

Let X be a finite polyhedral complexX and letc € Cy(X). Write ¢ = ¥ ,cxx) a0
where thea,'s are inZ,.

Definition 1.1. Thenorm of cis
licll := Isuppc] = [{o € X(K) : a, # O}].
Thesystolic normof c is
licllsys := min{lic + di1Cll : € € Cira(X)}-

The chain c is called a-kystoleif |cllsys = [Icll. A systolic form of ¢ is any
€ = C+ Ok+1C', such thal|cl| = lIcllsys
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Definition 1.2. Theboundary expansionof a k-chain ce Cy(X) \ Bk(X) is
lICllexp := llokcll/lICllsys
The kth homological Cheeger constanof X is
hg(X) := [ .
k(X) eI, o 1Cllexp

The definition of expansion can be extended to the relatige ea follows. LeY

be a subcomplex of. A relative chain inCx(X, Y) has a unique representative-

Y oex\Y(K) 8- Thenorm of ¢+ Cy(Y) is then defined byc+ Cy(Y)|| := ||cll. The

notions of the relative systolic norm, relative expansiod eelative homological
Cheeger constants are then defined as in the absolute case.

1.3. Cohomology expansion.
Let ¢ € C¥(X) be ak-cochain ofX.

Definition 1.3. Thenorm of ¢ is

llell := Isupp @) = o € X(K) : (¢, ) # O}
Thecosystolic normof ¢ is

llpllesy == min  lg + d_1¢l.
yeC1(X)

A cochaing is a cosystoleif [l = [l¢llcsy- A cosystolic formof ¢ is any ¢ =
¢ + d1¢, such that|@|| = [lellcsy:

Definition 1.4. Thecoboundary expansionof a k-cochainp € CK(X) \ BX(X) is

llollexp = lldkell/ll@llcsy:
The kth Cheeger constantof X is

hX) ;= min_ [l@llexp
eCK(X)\BX(X)

Let us now turn to the relative case. Tkwth coboundary expansion &fcochain
¢ € CKXY) \ BYX,Y) is againligllexp := lickell/ll¢llcsy, and thek-th Cheeger
constantof the pair ¥, Y) is:

h(X Y) == min{ligllexp : ¢ € CX(X, Y) \ BX(X, V),

Clearly, the non-relative norm, (co)systolic norm and oeindary expansion are
obtained by takingy to be thevoid compleX) = {} (see [12]), e.ghk(X) = hk(X, 0),
h(X) = h¥(X, 0).

Remark 1.5.

(1) Let ce C(X, Y) andp € CK(X,Y). Then|lcllsys # O if and only if c¢ B(X, Y),
and |lgllcsy # 0 if and only if ¢ BX(X,Y).

(2) Note that R(X,Y) > 0 if and only if H(X,Y) = 0 and K(X,Y) > 0if and

only if HX(X,Y) = 0. One can therefore view the expansion constagt¥,f¥) and

hk(X, Y) as refining the notion of acyclicity, trying to catch phenamevhich the
regular (co)homology does not. A possible analogy could iahkead torsion
refining the notion of homotopy equivalence.
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Here we study several aspects of the higher dimensionalgéheenstants. The
plan of the paper is as follows. In Section 2 we discuss somergktools that
include:

e A combinatorial lower bound on the cosystolic norm (Theo8g).

e Alower bound on Cheeger constant using chain homotopy (Ene@.5).

e An Alexander type duality between the homological and coblogical
Cheeger constants (Theorem 2.8).

Section 3 is concerned with cosystoles and expansion of son@ete complexes
and includes:

e A determination of the codimension one cosystoles and Grergstants
of certainn-pseudomanifolds (Theorem 3.3), and of Coxeter complexes
(Theorem 3.5).

e A lower bound on the Cheeger constants of a homogenous geoaét
tices (Theorem 3.8).

In Section 4 we revisit results of Gromov on expansion of patsl, including

e An elementary derivation of Gromov’s computation of the amgion of
the hypercube (Theorem 4.1).

¢ A detailed proof of a theorem of Gromov on the expansion ofoalpet of
a complex with a simplex (Theorem 4.4).

In Section 5 we consider some extremal problems on cosgstold expansion.
These include

¢ Alower bound on the maximal cosystole in a complex (Theorehh. 5

e Anupper bound on the expansion of bounded degree complékestiem
5.3).

e Anearly sharp estimate on the cosystolic norm of the Paleliaios (The-
orem 5.5).

In Section 6 we discuss

e The non-abelian 1-dimensional expansion of a simplex @sitipn 6.7).
e An application to a problem of Babson on bounded quotienteefunda-
mental group of a random 2-complex (Theorem 6.3).

We conclude in Section 7 with some comments and open problems

2. GeNerAL TooLs

2.1. Detecting large cosystolic norm using cycles.

A question that frequently arises in specific examples, dt agein theoretical
context, is that of determining whether given a cochain issystole. Using the
definition directly is impractical at best, since it wouldvatve going through all
possible coboundaries and trying to see whether adding onklweduce the norm
of the cochain at hand.
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The new idea which we introduce here is to use cycles to deteat indirect way
that our cocycle has a large cosystolic norm. For this, wallrdtat coboundaries
evaluate trivially on cycles, see (1.1); therefore, thdwat#on of a cochain on a
cycle does not change if we add a coboundary to that cochaiparticular, if a
cochain evaluates nontrivially on a cycle, its support ninistrsect the support of
that cycle, and that will not change if we add a coboundare ifikersection cells
may vary, but the fact that the intersection is non-trividl vemain.

In its most basic form, our method is based on the fact thaeihave a family of
cycles with pairwise disjoint supports, and a cochaimhich evaluates nontrivially
on each of these cycles, then the cosystolic normp of at leastt. Let us now
formalize these observations.

Definition 2.1. LetF c 2V be a family of finite sets. A subsetSV is apiercing
setof # if SN F # 0 for all F € #. The minimal cardinality of a piercing set of
¥, denoted byt(¥7), is called thepiercing number of .

Theorem 2.2(The cycle detection theorem).et X be a polyhedral complex, and
let ¢ be a k-cochain of X. Let A {a,..., @) be a family of k-cycles of X, such
that (e, a;) # Oforall 1 <i <t. LetF = {supp @1),...,supp ()} c 2X®.

(2.1) ||90||csy > 7(F).

Proof. Lety € C<1(X). Then forany 1< i <t
(¢ + -1t i) = (@, @i) + (d-1¢, @)
= {p, @i} + (Y, ai)
=g, ai) + ¥, 0)
=<{p,aj) # 0.

In particular, suppg + dk—1¢) N suppa; # 0. It follows that suppg + dk_1¥) is a
piercing set ofF and therefordly + dx_1¢/| = |supp ( + dk_1¢)| > 7(F). Since this
is true for ally, we get (2.1). m|

Corollary 2.3. Let X be a polyhedral complex, and lebe a k-cochain of X. Let
A ={ay,...,a} be afamily of k-cycles of X with pairwise disjoint supposisch
that(p, ;) # Oforall 1 <i <t. Then|lg|lcsy > t.

Example: Letn = (k + 2)m and letA"! denote therf{ — 1)-simplex on the vertex
setV = Vo U --- U Vi, 1 Where theVi's are disjoint of cardinalityn. Consider the
collection ofk-simplicesS = {[vo,...,Vk] : (Vo,...,W) € Vo X --- x V} and let
¢ = S* € CK(AM™Y). The following fact was mentioned in [20].
Claim 2.4.

lllesy = llgll = M.

Proof: For a k + 2)-tuplev = (Vo,...,VWks+1) € Vo X --- X Viy1 let oy =
Ms1[Vo, - . ., Viks1] € Zk(A™1). Identify eachV; with a copy of the cyclic group
Zm and let

T={(Vo,...,Viks1) € Vo X ==+ X Vy1 1 Vo + * - + Viy1 = O}.
LetA = {ay : v e T}. Clearly suppdy) Nsupp @y) = 0 foru # v e T. Furthermore
<¢a a/!> = <907 a|(+:|.[V0’ L] Vk+l]> = <dk¢a [VOa L] Vk+1]> = 1
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Corollary 2.3 therefore implies thpl|csy > |A] = mk+1, O

2.2. Lower bounds for expansion via cochain homotopy.

Let X be ann-dimensional simplicial complex and let< n— 1. Let (S,u) be a
finite probability space. Lets, : (S, o) € S x X(K)} be a family of k + 1)-chains
of X and let{cs; : (S, 7) € S x X(k — 1)} be a family ofk-chains ofX, such that for
all (s,0) € S x X(k) we have

k
j=0

wherecj denotes thg-th face ofo. Fori = k,k+1andse S, defineTs : Ci(X) —
C'1(X) as follows. Fow € C'(X) ando € X(i — 1) let

(23) <T590’ 0-> = <90’ CS,O‘>-

A natural way to think about (2.3) and (2.2) is to say that thepmn — Cs, IS
a chain homotopy between the trivial map and the identity ofapy(X), and that
Tsis its dual. It follows thafT ¢ satisfies

(2.4) dk—lTs + Tsdk = Ide(X)-
For (s o) € S x X(k) we set
(2.5) Fso = supp €s») € X(k + 1).

Forr e X(k+ 1) ands e Sletds(7) := [{o € X(K) : 7 € Fs,}|. Let E[ f] denote the
expectation of a random variabfeon S. The following result is an elaboration of
an idea from [17].

Theorem 2.5.

-1
h¥(X) > (TET(‘E‘Z&) E [55(7)]) .

Proof. Let ¢ € CK(X) \ BX(X) ands e S. By (2.4)

Tstkp = ¢ — d1 T,
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and hencédlyllcsy < [ITsdkell. Taking expectation oved we obtain

lpllesy < E [IITsOkeell] = Z;u(s) T Cheel
= Z;"(S) l{o € X(K) : (dheg, Csr) # O}
= Zsu(s) lor € X(K) : Isupp Eheg) N SUPP €5l is 0ddl]
< Zéu(s) l{o~ € X(K) : supp €ie) N Supp €so) # 0}
< ; u(s) Y Isupp bke) N SUpp Eso)l

oexX(k)

=Y e > loeXK:Tesupp sl
€S

Tesupp Cke)
= Z ZM(S)(SS(T) = Z E [0s(7)]
Tesupp tke) €S Tesupp tky)

< |ldkgl| - Te”x"(ﬁ‘i‘l) E[6s(7)] .

Forr e X(k+ 1) let
5(r) i= ) 85(7) = (S o) € S X(K) : T € SUpp Eso )}
seS

Specializing Theorem 2.5 to the case of uniform distribufi@s) = é we obtain

the following

Corollary 2.6.
IS|

X)) > ———
) MaXeex(k+1) 0(T)

2.3. Alexander duality and expansion.

Let A" denote ther{ — 1)-simplex on am-element vertex se¥ and letX be
a simplicial subcomplex of™1. For a subset c V leta = V —o. The Alexander
dual X" of X is the simplicial complex given by

XV ={oceA": T ¢ X).
Note, that KV)" = X. We also havéd}" = 0A" ! ~ S™2 {}V = A™1 (A1) =
{}

Let Y be a subcomplex oX. The combinatorial version of the relative Alexander
duality is the following

Theorem 2.7(Alexander Duality) ForO<k<n-1
Hk(X, Y;Z) = H"K2(YY, XV; 2).
In fact, there is a chain complex isomorphi€n(X, Y; G) = C*(YY, X¥; G), for an

arbitrary abelian grouf. The counterpart of Alexander duality for expansion is
the following
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Theorem2.8.ForO<k<n-1
he(X, Y) = hK=2(yY, XY).

Letting Y be the void simplicial complex in Proposition 2.8, we obtthka follow-
ing corollary.

Corollary 2.9. Let Xc A", Then:
hk(X) — h”_k_z(A”_l, XV),
h*(X) = hnk2(A™ 2, XY).

Proof of Theorem 2.8. Define a linear map\, : Ci(X,Y) — CK2(YY, XY) as
follows. For a generatar € X(k) of Cx(X,Y) andr € YV(n-k - 2) let

1 r=0,

(Ao, 7y = 6(0,7) = { 0 otherwise

Note thatAy is well-defined: Ifo € X(k) andr € X(n - k — 2) then{Ako, 1) = 0,
thus Aco € C"*2(YY,XY). Moreover, ifo € Y(K) then (Ao, 7) = 0 for all
7€ Y(n-k-2),ie.,Aw = 0. Itis straightforward to check tha is an
isomorphism and that it commutes with thédrentials, i.e.,
(2.6) On-k-2Ax = A-10k.
Observe thatit = Y ;exx) 8-0 € Ck(X, Y) andr € YV (n-k-2), ther{AcC, 7) = a.
Therefore
(2.7) lIACl = licll.
Combining (2.6) and (2.7) it follows that

llACllcsy = MIN{[|AC + dn_k-3¢ll : ¥ € CM YV, XY)}

= MIN{JIAC + dhk3Ak:1C|| : € € Cir1 (X Y)}

MIN{lIAKC + Akdis1C'll = € € Cira (X, Y)}
= Min{||A(C + dk+1C)ll : ¢ € Cisa (X, Y)}
= min{||c + dk+1C'|| : € € Cyr1 (X, Y)}

(2.8)

= ||cllsys
Next note that (2.6) implies thaty mapsCy(X,Y) \ Bk(X,Y) injectively onto
CMk=2(yv, XV) \ BK-2(YY, XV). Therefore, ifc € Ci(X,Y) \ Bk(X,Y) then by
(2.7) and (2.8):
_ llokcl|
lIcllsys

_ IA10kell
(2.9) - llACllcsy
_ ldh—k—2Axcll
- lAKCllcsy
= " 2(A0).

Theorem 2.8 now follows by minimizing (2.9) over ale C, (X, Y)\ Bk(X,Y). O

hk(c)
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3. CosYSTOLES AND EXPANSION OF PSEUDOMANIFOLDS AND GEOMETRIC L ATTICES

3.1. The (n - 1)-th Cheeger constant of am-pseudomanifold.

Let X be ann-dimensional simplicial complex. Thiip graph of X, is the graph
Gyx = (Vx, Ex) whose vertex set igx = X(n) - the set of alln-simplices ofX, and
whose edge sdiy consists of all pairgo, o’} such that dimf N ¢’) = n- 1.

Suppose now thaX is a triangulation of am-pseudomanifold, i.eX is a finite
puren-dimensional simplicial complex such that ang X(n — 1) is contained in
exactly twon-simplices ofX and such thaBGy is connected. Fop € C"1(X) let
G, = (Vx, E,) be the subgraph @bx with edge set

E, = {{o1, 02} € Ex : 01 N0 € suppyp).
A graph isEulerianif all its vertex degrees are even. L&k denote the family of
all subgraphg- = (Vx, E(F)) of Gx such that

[E(C) N E(F)| <

[ECC)l
2

for any Eulerian subgrap@ = (V(C), E(C)) of Gx. We note the following proper-
ties of the familyFx.

Claim 3.1. Let F = (Vx, E(F)) € Fx. Then the following hold.

(i) The graph F is a forest.

(ii) If vertices yv € Vx are in the same tree component of F then we have
dist=(u, v) = disig, (u, V). In particular, if P = (V(P), E(P)) is a path in F,
then|E(P)| < diam Gx).

Proof. To prove (i) note that i€ = (V(C), E(C)) is a cycle inGy then
e nEE) < B < ey,
so in particularE(C) ¢ E(F). To show (ii), letP = (V(P), E(P)) be the path i+
betweeru andv and letQ = (V(Q), E(Q)) be a minimalu— v path inGyx. Consider
the Eulerian grapiR = (Vx, E(R)) whereE(R) = (E(P) \ E(Q)) U (E(Q) \ E(P)).
Then
IE(P)I = [E(P) N E(Q)I + [E(P) \ E(Q)]

<|E(P) N E(Q)I + |E(F) N E(R)|
o < [E(P) NE(Q) + 550

- 1EP) n Q)+ EQLEQL, O\ EE)

= 2(EP) + EQ).
Hence dist(u,v) = |E(P)| < |[E(Q)| = distg, (U, V). O

Using Claim 3.1 we next give a combinatorial descriptionhaf 0 — 1)-cosystoles
in X.

Claim 3.2. Let X be an arbitrary n-pseudomanifold and ¢e€ C""1(X). Then the
following hold.
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(i) The mappings — G, maps C-1(X) - {0} injectively onto all subgraphs
of the graph G.
(i) We have
(3.2) supplh-1¢) ={oc eV, : degsw(cr) odd}.

(i) Suppose Pri(X;Z,) = 0. Theng is a cosystole if and only if Ge Fx.

Proof. Parts (i) and (ii) follow directly from the definitions. Weqareed to prove
part (iii).

First suppose thake|| = [l¢llcsy. AssumeC = (Vx, E(C)) is an Eulerian subgraph
of G, with edge set

E(C) = {{O-Oa 0-1}9 {O-la 0-2}9 ] {U'm—l, O'm}}

Sety := Y, (0i-1 N o)*. The assumption that is ann-pseudomanifold implies
thaty is a cocycle and thaE(C) = E,. On the other hand, we assumed that
H"Y(X; Z,) = 0, soy must also be a coboundary. We therefore have

2E, N E(C)| = 2[E, N Ey| = [Ey| + [E, | — [Epsyl
= Il + (llell = lle + @) < llgll = [E(C)I.

Conversely, suppose that, € Fx and lety € B™(X). ThenG, is Eulerian and
henceE, N Ey| < |Ey|/2. Therefore

llp + ¥l = [Epsyl = [Egl + |Eyl — 2/E, N Eyl
2 [Egl = lleoll-
We conclude thaltellcsy = ll¢ll- O

(3.3)

Claim 3.2 implies the following combinatorial charactation of the i — 1)-
coboundary expansion ofpseudomanifolds. See Lemmas 2.4 and 2.5 in [23]
for a related result.

Theorem 3.3. Let X be an n-pseudomanifold such that {X; Z,) = 0. Then

2
3.4 (X)) = — =,
(3.4) (X) diam Gx)
Proof. In view of Claim 3.2, it siffices to show that
v : deg:(Vv) is odd
(3.5) min |{ &) }| = — 2 .
F=(V,E)eFx |E]| diam Gyx)

To prove the lower bound Iét = (Vx, E(F)) € Fx and set
k:= [{ve Vx : deg-(v) is odd}|/2.

Claim 3.1(i) implies thaF is a forest. It follows (see, e.g., Theorem 2.1.10 in [24])
that there exisk edge disjoint pathB; = (V1, Ej), ..., Px = (Vk, Ex) in F such that
Ei1U---UEx = E(F). Claim 3.1(ii) implies thatE;| < diam Gx), hence

|tv : deg:(v) odd}| %%

(3.6) IE(F)| K IE]
N 2k 2
~ k-diamGx) diam Gx)’
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Finally, we show that equality in (3.5) is attained for some Fx. Letu,v € Vx
such that dig, (u, v) = diam Gx) and letP = (Vx, E(P)) be a minimalu — v path
in Gx. ClearlyP € Fx and
(v:deg(v) odd| 2
IE(P)I diam Gx)
This shows (3.4). O

3.2. The Expansion of Coxeter Complexes.

Let W be an arbitrary finite Coxeter group with the set of genesdfoand a root
system®. We refer to the books by Humphrey [11] and by Ronan [22] far th
theory of Coxeter groups and Coxeter complexes. FarS letW; = (s: se J)
be the subgroup diV generated byl. Forse Slet(s) = S — {s}.

Definition 3.4. TheCoxeter complexA(W, S) is the simplicial complex on the ver-
tex set V= (Js.s W/Ws) whose maximal simplices are,G {wW : s € S}, for
weW.

The simplicial complexA(W, S) is a triangulation of|§| — 1)-dimensional sphere.
It is well-known, see, e.qg., [22, Theorem 2.15], that di@Rys)) = |P|/2. There-
fore by Theorem 3.3 we have

Corollary 3.5. hS=2 (AW, S)) = 4/|®|.

Examples:
() Let W = S, be the symmetric group om] with the set of generatorS =
{s1,..., -1} Wheres = (i,i+1)forl <i < n-1. Then|® = n(n-1) and

A(W, S) is isomorphic to sédA"1, the barycentric subdivision of the boundary of
the (h — 1)-simplex. Hence

4
7 "3 (sddA™?) = :
(3.7) (sdoa™™) =T
We next describe an explicin(- 3)-cochaing, of X, := sddA"™! such that
llenllexp = ﬁ. With a permutationr = (7(1),...,7(n)) € S, we associate the

(n — 2)-faceF(r) of X, given by
F(r) = [{n(1)} € {n(1), 7n(2)} € --- C {n(2),...,n(n - 1)}].
For1<i < n-1, thei-th face ofF(r) is:
F(m)i = F(m) \ {{m(1),....#()}}.
Define a sequence of permutations . (@) € Sn as follows. First letrg =

(1.--- .n) be the identity permutation. Next letdm < (3). Thenmcan be written
uniquely as

m=m(j,¢) := (] —1)n—(i)+£

where 1< j <n-1and 1< ¢ < n— j. Define
o =Mn=1...,n=j+2,L2,....,n-j-Ln—j+Ln-j-{+1---,n—]).
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Let
n-1

n-j
$n = Z
j=1 ¢=1
It is straightforward to check th&t(rm)n-r = F(mm-1)n_¢. HENCE

supp(dn-3F (mm);_p) = {F(mm), F(7m-1)}

F(ﬂ'm(j,t’)):;_g € Cn_g(Xn).

and therefore
Supp (dn-3(en)) = (F(x0), F(m(y)).
It can also be shown thai, is an @ — 3)-cosystole, i.e.|¢nllcsy = llenll = (g) It
thus follows that
_ lldn—genll 4

B ||90n||csy B n(n_ 1).

(i) Let W = S, ¢ Sy, be the hyperoctahedral group with the set of generadots
{6,91,..., -1} Wheree = (1,2) € S, ands = (i,i+1)e S,for1 <i <n-1. Then
|D| = 2n? and A(W, S) is isomorphic to sddA)™", the barycentric subdivision of
the octahedraln(— 1)-sphere. Hence

(3.8) h*2(sd @A1)™) = %

llenllexp

3.3. Expansion of Homogenous Geometric Lattices.

Let (P, <) be a finite poset. Therder complexof P is the simplicial complex on
the vertex seP whose simplices are the chaiag < --- < ax of P, see [12]. In
the sequel we identify a poset with its order complex. A pdket) is alattice if
any two elements, y € L have a uniqgue minimal upper boumd/ y and a unique
maximal lower boundk A y. A lattice L with minimal elementd and maximal
elementl is ranked with rank function rk(), if rk(0) = 0 and rkg) = rk(x) + 1
whenevely is a minimal element ofz : z > x}. L is ageometric latticaf rk(x) +
rk(y) > rk(xVvy)+rk(xAy) for anyx,y € L, and any element ih is a join of atoms
(i.e., rank 1 elements).

Let L be a geometric lattice of rank r¥(= n, and letL = L — {0, 1}. A classical
result of Folkman [8] asserts thik(L) = 0 fori < n— 2. Itis thus natural to ask
for lower bounds on the Cheeger constan{) for i < n— 2. In this section we
approach this question using the cochain homotopy meth&#cfion 2.2. Let
be a set of linear orderings on the set of atohf L. Let <5 denote the ordering
associated witls € S. For a subsefb,, ...,bm} € Asuchtham<n-1let

K(by,...,bm) = Z [B2(1), Pa(1) V B2y - - -5 Ba(ay V Br) V- -+ V bym)] € Cmea(L).

TESM

Note that

m
(3.9) OmaK(by, .., bw) = )" K(by,.... by, bn).
i=1

Let—-1<k<n-3andletr =[vg < --- < V] be ak-simplex ofL. Fix se S. Let
ask+1(0) = minA, and for 0< i < kletagi(o) = minfa € A : a < vj}, where both
minima are taken with respect tq. Note that

ask+1(0) <s -+ <s ago(0).
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Define
k+1
Csor = ) K (as0(0),.,as(@)) # [V}, ., Wid,
=0
where Jj, ..., v is interpreted as the empty simplexjit= k + 1. Note that
k+2
(3.10) Isupp €so)l < Yt
=1

Claim 3.6. Forallse S,0< k< n-3ando € L(K)
k

i=0

Proof: As sis fixed, we abbreviate, = ¢ anda; = agj. Let0<i < kthen

(3.12) -
+ Z K(ag,....a,...,a)) *[Vj,..., W].
j=i+1
Hence
k k i-1
Zco_i :ZZK(aO’ ’aj)*[vj’ > Vis avk]
i=0 i=0 j=0
(3.13) K kel
+Z K(aOa aal’ 7aj)*[vja avk]

13
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Using (3.9) and (3.13) we compute

k+1
ak+1Co-:Z:ajK(ao,...,a.j)>l<[Vj,...,Vk]
j=0
k
+ZK(ao,---,aj)*ﬁk_j[Vj,...,Vk]
j=0
k+1 j
j=0 i=0
k Kk
+ZZK(aO’ ’al)*[Vh?vTast]
j=0 i=j
k+1 k+1
= K(ao, ,é.\,,aj)*[vj,,vk]

(3.14) K(ao,...,aj)*[V,-,...,T/T,...,vk]

¥ o
s

—

K(ao,...,a,...,aj)*[vj,...,vk]

(NGNS
M_

)
o
.I__l.
+
=

[

v @) = [Vist, .. W]+ Vo, W]

+

i
=
&

T
~ o

=
&

..,aj)*[Vj,...,VT,...,Vk]

M- 2

I}
o

+

o d) x [Vieg, .. id

A
&

Il
S|
+
D~
£

I
o

O

One natural choice of a s& of linear orderings is the following. Let be an
arbitrary fixed linear order on the set of atoisLet S = Aut(L) be the automor-
phism group ofL. Fors € S let <5 be the linear order oA defined bya <g &

if s1(a) < s(a). Let Id denote the identity element 8f It is straightforward
to check that ifr € L(k) and 0< i < k + 1, thenaygj(s (")) = s (asi(c)) and
hencecs, = s(qul(g)). Using the definition oF s, (see Subsection 2.2 and in

particular Eq. (2.5) ), it follows that for angt € S, o € L(k) andz € L(k + 1), it
holds thatr € Fs if and only ift(r) € Fisy). In particular,

(3.15) 8(7) = 6(t(7))-

Definition 3.7. A geometric lattice L ihomogenousf its automorphism group
G = Aut(L) is transitive on the sdt(n — 2) of top dimensional simplices &f
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a

Ficure 3.1. Cs, fOr o = [Vo, v4].

Theorem 3.8. If L is a homogenous geometric lattice of rank n then

— fn—2 (E)
3.16 3 (L) > ————2—.

Proof: The homogeneity of together with (3.15) imply thai(r) = D is constant
for all T € L(n - 2). Therefore

D-fa2@=), >, IFsdl

€S rel(n-3)
(3.17)

_ n-1
<1 faa(@- . -
=1
Hence, by Corollary 2.6
ro)s Syl
B b=
O

The spherical buildingA,_1(Fq) is the order complest, wherelL is the lattice
of linear subspaces df}. In [6, 17] it is shown thah"3 (A, 1(Fg)) = g+l

= (-Dni
Applying Theorem 3.8 toA, 1(Fq) and noting thatf, 2 (A 1(Fg)) - (n - 1) =
fr-3 (An_l(IFq)) - (g + 1), we obtain the following slight improvement.

Corollary 3.9.
fo-2 (An-1(Fq)) g+l
fa(AaFQ) 2t it (- DTt

h*2 (An-1(Fg)) >



16 DMITRY N. KOZLOV AND ROY MESHULAM

4. COBOUNDARY EXPANSION AND PRODUCTS

4.1. Hypercube.

Let Q, denote the hypercube in dimensiore 2. In this section we give a simple
new proof of the following result of Gromov [6].

Theorem 4.1. The Cheeger constants of the cube satitQh) = 1, foralln > 2,
O<k<n-1

Theorem 4.1 is a direct consequence of Theorem 4.4 of sutisec?, that relates
the expansions oK and of the producK x A", However, forQ, there is an
elementary inductive argument that seems worthwhile taputcord. For future
reference note that number of vertices@fis 2", number of edges is- 2"1, etc;

in general number df-dimensional cells |§E) . 2"k Thek-dimensional cells are
indexed byn-tuples of symbolg+, —, «}, where the total number of occurences of
* is k.

It is certainly well-known that®(Q,) = 1. Still, here is a short argument. Note
thath®(Q,) = 1 simply says that i is any set of vertices such thi@ < 2",
then at leastS| edges connec$ to its complement. The equality is achieved if
for exampleS consists of all vertices with the first coordinate We can now
easily prove this statement by induction on The basen = 2 is clear. For the
induction step, le¥, denote the set of vertices &, with the first coordinater
and letV_ denote the set of vertices @, with the first coordinate-. Accordingly
setS, .=SnNnV,,S_:=SnV_, andT, :=V,.\S,, T_ := V_\ S_. Without loss

of generality assume thi, | < |S_|. Letgj denote the number of edges between
Sj andT, fori, j € {+, -}, and lete denote the number of edges betw&eand its
complement. By induction assumption, we have > |S,|. Ifalso|S_| < |T_|, we
can apply induction assumption & as well; so we ge¢__ > |S_| and are done.
Assume then we hav&_| > |T_|, in which case we have__ > |[T_|. We have

e . >|S_|-|S.|, because each vertex$ is connected by an edge to exactly one
vertex inV,. Intotal, we havee > e,, +e__ +e,_ > [S,|+|T_|+|S_|-|S,| = 2" 1,
and we are done.

Lemma4.2. i¥(Q,) <1, forall0<k<n-1.

Proof. Fix k > 1, and letEx be the set of alk-cubes indexed by-tuples
(% *,...,%*,0), wherex'is an arbitrary i — k — 1)-tuple of{+, —}; so the number
of «'sisk. Clearly,|Ey| = 2"%1. Let Ex be thek-cochain obtained by summing
up the characteristic cochains of the elementg,of

We can calculate the cosystolic normigf by using ourdetecting cycleargument,
see Section 2.1. As detecting cycles we take the bounddries. .., *), where
x is an arbitrary § — k — 1)-tuple of {+,—}. It will show that [|E;]lcsy = 2n-k-1,
On the other hand, an easy calculation shows [fHigE;)l| = 2", so we get
h(Qn) < 1. O

The lower bound can be shown by elementary methods as wdtirddee proceed
with the proof, let us show the following inequality.
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Lemma 4.3. Let A, B, and X be subsets of some universal set, then we have
4.2) Ao X|+ B X| <|A +|Bl+2/AeBa X|.

Proof. Indeed, the inequality (4.1) follows from the the followinglculation
[Ae X|+|Ba X| = |Al + |[X|—2|ANn X| +|B| + |X]| = 2|BN X]
=|Al+ B+ 2(IX| - |AN X| - BN X]|)
<|Al+|B|+2|X\ (AU B)|
<|Al+|Bl+2/A® Ba X|,
see Figure 4.1. O

a a
AUAVERNAVN

Ficure 4.1. Venn diagram illustrating the proof of Lemma 4.3.

Proof of Theorem 4.1: We just need to show th&t(Qp) > 1. In other words, for
any cochainp, which is not a cocycle, we need to show that

(4.2) llellcsy < llckell -

Our proof goes by induction on andk. We already know that (4.2) holds for
k = 0 and arbitraryn. Furthermore, whek = n — 1, all the cochains which are
not cocycles have both the cosystolic norm as well as the wdtie coboundary
equal to 1, so (4.2) becomes an equality. This gives the myrobnditions for the
induction. To prove that (4.2) holds fom,K) we will use the induction assumption
that it holds for 6 — 1, k).

Let us setPg := {(a1,...,ay)|a1 = 0}, andP;y := {(az,...,an) @&y = 1}. Set fur-
thermoreP, := {(as,...,a,) | a1 = *}. This means that we fix one of the directions
of the hypercube and break the cube into two identical lodiigrensional copies,
calledPy andP;. The setP, contains all the cubes which span across between the
two halves. This in itself is of course not a subcomplex.

Let ¢ be an arbitraryk-cochain. SetSy := suppy N Py, S1 = suppy N Py,
S, = suppp N P,, andgg = ¢s,, ¢1 = ¢s;, ¢« = ¢s.. Theny decomposes as
a sumey = ¢g + ¢1 + ¢., and furthermore, we have

(4.3) llell = lloll + llpall + llepsll -

Assumexg is ak-cochain, such that

(1) suppxo c Po;
(2) llevoll = llaollcsy = llpollcsys where the cosystolic norm is takenhyg;
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(3) ag—¢o = _dE_l,Bo, for somesg € C*1(Po), whered? , denotes coboundary
operator inPo.

Let us consider what happens if we replacevith ¢ = ¢ + dk_180, Where the
coboundary operator is just the usual oneXinSince the cochain is changed by
a coboundary, we havg|lcsy = 1@llcsy and alsadk@ = dkp. So if we show|@l|csy <
|dkell, then we also show thfﬂtallcsy < ||dkell. SetT := suppg N Py = supp @ +
dk-180) N Po. Clearly, we then have

T = supp (o + dY_,80) = suppao.

Soy¢t = ag. Thus, replacing with ¢ simply makes sure thiitg|| = llpollcsys with-
out changing either the cosystolic norm or its coboundargmgletely identical
argument holds foP;.

Summarizing our argument we conclude that we can add boiesdary to make
sure that|goll = ligollcsy @andlleall = lleallcsys Where the cosystolic norm is taken in
the lower-dimensional cubé% andP;. By induction assumption fon(- 1, k), we
can therefore assume that

(4.4) llpoll < ||dReo]| and lleall < ||citeea]|,
Wheredf(’ andd; are the coboundary operatorsfg andP; respectively.

Let now poe. be the cochain iy obtained fromyp,. by replacing the: by 0 in the
first coordinate. Clearly, we have
Ok-1(Poes) = @« + dE_l(pOSD*)-

Same way, lepy¢. be the cochain ifP1 obtained fromyp,. by replacing the: by 1
in the first coordinate. Again, we hadR_1(p1¢.) = ¢« + d&_l(plgo*). Finally, let
Po(dke.), resp.p1(dke.), denote the cochain iRy, resp.P1, obtained fromdye.
by replacing thex by 0, resp. 1, in the first coordinate. We have the following
inequalities:
(4 5) 2. ”QDH(;sy < ”90 + dk—l(pOSO*)H + ”90 + dk—l(plﬁo*)n

' = llpo + Po(Ckp:)ll + llgall + ligoll + llpr + Pr(dkp:)ll -

Let A denote the set of cells d,_1 obtained from suppg by deleting the first
coordinate (which is 0), and l& denote the set of cells @, ; obtained from
suppe; by deleting the first coordinate (which is 1). Détdenote the set of cells
of Qn_1 obtained from suppip(dke.)) by deleting the first coordinate; note that it
is the same set as the one obtained by deleting the first c@oedin the elements

of supp Q1(dke-))-
The inequality (4.5) says in this notation that

2 lgllesy < IAL +[B] + |A® X| + [Bo X].
Applying the inequality (4.1), and cancelling out the fac2owe obtain
(4.6) lellesy < A+ Bl + |A@ B X|.
On the other hand, we have
(4.7) lidkell = [|dReol| + [|dieal| + [[¢f + ¢ + dien

wheregy is obtained from suppo by changing the first coordinate t9 and ¢}
is obtained the same way. By induction assumption ffor (@, k), we havelA| =

>
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llgoll < ||d2¢ol| and|B = llpall < ||dies|. Furthermore, deleting the first coordinate,
we obtain

et + @5 + dee|| = IA@ B XI.
Combining these with (4.6) and (4.7), we obtain

llellcsy < lldkell,
which finishes the proof. O

4.2. Expansion after taking product with a simplex. Let X be a cell complex
and letA"™! denote therf — 1)-simplex on the vertex saf = [n] = {1,...,n},
n > 2. The product compleX = X x A" is again a cell complex, whose cells are
products of the cells oK with the simplices oA"™t. Gromov proved that for all
k > 0 we have

RE(X x A™1) > min {hk(X) ”_—k_l}

- T k+2 P

see section 2.11 in [6]. Here we provide an elementary préahe following
slightly stronger bound.

Theorem 4.4. Let X be a cell complex, and letxn2. Then for all k> 0 we have
the inequality

HEOX x AT 1) > min{hk(X), max{1, %2}}

Proof. We start with some preliminary observations. kdte a vertex irV. For a
simplexg € A"1(j), let [v,8] € A"(j + 1) denote the uniofv} U B if v ¢ B. If
v € B, let [v, 8] be understood as the zero elemen€of; (A" ). For1<k<n-1
let Ty : CX(Y) — CK-1(Y) be the linear map defined as follows: ko CX(Y) and
a (k — 1)-dimensional cellr x 8 € X(i) x A"(j) wherei + j = k— 1 let

Tvp(a x B) = g(a x [v, 5]).
Claim 4.5. Lety € CX(Y). Leti+ j = k and leto- = @ x 8 € X(i) x A™1(j) c Y(K).
Then:

| ¢(o) (i, ) # (k. 0),
(4.8)  daTvp(o) + Tudkp(o) = { @) +plaxv) (i,]) = (k0).

Proof.
dk—lTv‘P(a’ Xﬂ) = Tvéo(ak(a’ XIB))
4.9) = Tvp(Oia X B+ a X 0jB3)
_ { @i x [v,B]) + gl x[v,0;8]) (i, ]) # (k,0),
@(Oka x [V, B]) (i, J) = (k. 0).
(4.10)
Tudkp(a X B) = dkp(a x [V, B])
= o(Oks1(a x [V, B]))

= @(0ia X [V, B]) + p(a X 0j41[V. B])

_ { @(0ia x [V, B]) + p(a X B) + p(a x [v,d;B]) (i, ]) # (k0),
@(Oka X [V, B]) + p(a X B) + ¢(a X V) (i,) = (k0).
Now (4.8) follows from (4.9) and (4.10). O
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Claim 4.5 implies the following. 1&- = @ x 8 € X(i) x A"(j) wherei + j = kand
0 < j < min{k,n — 2} then:

(¢ + d-1Tvp)(0) = (¢ + -1 Tve) (@ X B)
(4.11) = Tvtkg(a x B)

= k(e X [V, B]).
On the other hand, i = a x u € X(k) x A"1(0) then:
(¢ + A1 Tvp)(0) = (¢ + di-1 Twgp) (@ X U)
(4.12) = Tydkp(a X U) + ¢(a X V)
= dyp(a X [V, U]) + ¢(a x V).
For0< j < min{k,n— 2} let
9ile) = Z |supp (0 + dk-1 Twp) N (X(k = J) x A™4()))] -

veV

By (4.11) it follows that for every Xk j < min{k,n -2}
(4.13) 9i(¢) = (j +2) - |supp tie) N (X(k - J) x A™(j + 1)) .

Forv € V define the restriction maR, : CX(Y) — CX(X) as follows. Fory € CK(Y)
anda € X(K) let Ryp(a) = ¢(a x V). By (4.12) it follows that

dol¢) = Y [supp (0 + dh1Tup) N (X(K) x A™(0))|

veV

= [{(v, @, u) € A™1(0) x X(K) x A™(0) : dg(a x [V, u]) # ¢(a X V)}|
(414) < [{(va,u) € A7Y0) x X(K) x A™(0) : chepl X [, ) # O]

+{(v, @, u) € A"1(0) x X(k) x A""}(0) : Ryg(a) # O}

= 2-[supp i) N (X() x A™H(D)[ +n > IRl

veV
For0< ¢ < mlet
Fne = [ XM= j) x A™()).
j=t
Combining (4.13) and (4.14) we obtain

Nligllesy < Y Il + che1 Toeel

veV
min{k,n—2}
DT> Jsupp o+ diaTug) N (X(k = ) x A™())
veV j=0
min{k,n—2}
gj(y)

(4.15)

j=0
min{k,n—2}

> (i+2)-supp bhe) 0 (X(k— ) x AT + )]+ Y (Rl

j=0 veV

< mink+ 2,0} - [supp tiee) [ ) Fiera| + n ) IRl

veV

IA
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Claim 4.6. For any¢ € CK(Y), there exists & € CK1(Y), such thath = ¢ + dy_1¢
satisfieg|R,@|| = ||R\,<,a||csyfor allveV.

Proof: Forv € V choosey, € C¥1(X) such thatlRy¢llcsy = lIRvp+dk_1¢l|. Define
y € C(Y) by

=[5 Giapnae AT
Noting thatRw = ¢, andR,dx_1 = dk_1R,, it follows that
IRl = IRy + R/Ok-1¢/l]
= IRy + dk-1Rw/||

= lIRvp + di—1 vl
= ||Rv90||csy-
i
Claim 4.6 implies that
DUIRGEN = D IIRlcsy
veV veV
1
(4.16) < == ), IRyl
h(X) é
— L n-1
Applying (4.15) forg and using (4.16) we obtain:
n”‘P”csy =N ||¢”csy
< min(k +2,n) - [supp @) [ ) Fiera| + n ) IR
veV
(4_17) < min{k + 27 n} : |Supp dkﬁo) ﬂ 7:k+l,l
n -1
YR [supp Bke) N (X(k+ 1) x A™(0))|
. n
< max{mln{k +2,n}, —hk(X)} - |ldkell.
Rearranging (4.17) it follows that
lIdkell - { K { n }}
> min{h*(X), max{l, ——=1t;.
llellcsy ) k+2
i

5. MaximMaL K-CosysToLEs AND MAXIMAL CHEEGER CONSTANTS

5.1. Systolic norm and expansion of random cochains.

Let X be a simplicial complex and letf k < dim X. Let Ax(X) denote the maximal
norm of ak-cosystole inX:

A(X) = max{llgllesy : ¢ € CX(X)} .
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Theorem 5.1.

fk(X)

< Ak(n) £ ——=

60 (120, [8200) 59

X)) 2

Proof: The upper bound is straightforward. Let C¥(X) be ak-cosystole and let
7 e X(k—1). WriteI'x(r) = {o € X(K) : o D 7} and recall that degr) = [I'x(7)I.
It follows that

(5.2) = degy(7) — 2x(7) N supp @)I.

Rearranging and summing (5.2) overal X(k — 1) we obtain

k+Dllgll = > I'x(x) N'supp @)

reX(k-1)

<23 dea(® = 3k+ D).

reX(k-1)

We next prove the lower bound. Lbt = fi(X), M = fi_1(X) and lets = 10\/%
Consider the probability space of &lcochains

p= > X0 eCKX),
oeX(K)
where{x, : o € X(K)} is a family of independent,Q variables with Ptf, = 0] =

Prix, = 1] = 3.
Claim 5.2.
[M)N
(5.3) r{llellesy < (1— 20 N]El <0.8M.

Proof: If § = 10\/¥ > % then the claim is vacuous, so we shall henceforth assume

thats < 3. LetY be the random variable given M) = Il¢ll. ThenE[Y] = § and
by Cherndi’s bound (see, e.g., [1])

N

8

(5.4) Pr[Y < %] <e 8.

Fix a (k — 1)-cochainy € C*¥1(X) and letS(y) = supp tk_1¢) c X(K). LetZ, be
the random variable given by

Zy(¢) = |SW) Nsupp )| = Il € S) : %, = 1.
ThenE|[Z,| = B¢, By Cherndi’s bound

(5.5) Pr[zw > — |S(¢)| 8 < e‘ﬁzT’ﬁﬂ < e‘f—y.
Next note that
llp + d—11l = llgll + ISl = 2/Sy N supp @)

(5.6) = Y(p) + ISW)| — 2Z, ().
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Combining (5.6), (5.4) and (5.5) we obtain
Prille + dagll < (1-6) llgll] = Pr|Y +1SW)l - 2Z, < (1 - 6)Y|

ISl Y

= > —_— —

- Pr[Zw_ > + >
’ N ISW) 6N
sPr[Ys4]+PrZ¢z 242

NN _&N

<egs8+g 32 <2 =

Therefore

N
Pr| sy < (1~ 26) |
N
<Prlidll < @-0)5|+ Y. Prlllo+deal < @ - Olell
(5.8) yeCL(x)
<eP oM og P

100M
=@M 4 oM+1laT5" < 0.8M,

O
Claim 5.2 implies that there existszae CX(X) such that
N fica(X))  f(X)
O

Claim 5.2 can also be used to provide an upper bound ok-th&€heeger constant
of certain sparse complexes.

Theorem 5.3. Let X be a purdk + 1)-dimensional complex such théeg, (o) = D
for everyo € X(K). If D > 40%(k + 1) then

50vk+1 D
(5.9) h"(X)s(1+ 75 )-k+2.

For the proof we will need the following consequence of Azisnr@equality due
to McDiarmid [19].

Theorem 5.4. Suppose g {0,1}N — R satisfies|g(e) — g(¢’)] < D if e and ¢
differ in at most one coordinate. Let,x. ., xy be independer, 1 valued random
variables and let G= g(xq, ..., Xn). Then for alla > 0

222
(5.10) Pr[G < E[G] - 1] < exp(—ﬁ) .

Proof of Theorem 5.3: Let L = fi 1(X),N = fu(X),M = fi_1(X). Let X(K) =
{o1,...,0on} and letxy, ..., Xy be independent,Q variables with Prf; = 0] =
Prix = 1] = 3. Defineg : {0, }N — R by

N
g(e, ..., en) = L —ldk [Z ei(fi*] .

i=1
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The assumption dego) = D for all o € X(k) implies thaig(e)—g(¢')| < Dif eand
¢ differ in at most one coordinate. Letbe the randonk-cochaing = YN, 0.
ThenG = g(Xa, ..., Xn) satisfiesE[G] = L — E[||dk¢ll] = % Thus, by Theorem 5.4

PW@MZ%+DVW=P%G§%—DVW
(5.11)

< exp(—z(%T\/NN)Z) =exp-2) < 0.2
Combining (5.11) and (5.3) it follows that there existg a C¥(X) such that
(5.12) nmms%+DVN
and
(5.13) elcsy > (1 - zo\/g] . g
Next note that
(5.14) k + 2)L = DN
and
(5.15) N>1+D(k+1).
Furthermore, deg(r) > D + 1 for all r € X(k — 1) and therefore
(5.16) k+1)N > (D + 1)M.

Combining (5.12) and (5.13), and using (5.14), (5.15),&pdnd the assumption

k+1 1 :
,/T < 25> We obtain

o < ldkell 5+ DN

llellesy (1 _ 20\/%) . %

2k+2)) L
(1+ N ) 5

(1-2ovﬁ§)-§

2(k+2)
1+ W

< .
- Kk k+2
(5.17) 1-20,/kd

4(k+1)
1+ VD) D

1-20,/&L
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5.2. The cosystolic norm of the Paley cochain.

Let p > 2 be a prime and ley be the quadratic character Bf, i.e., x(X) =
(%), the Legendre symbol ot modulo p. The Paley graph G is the graph on
the vertex seF, whose edges are paifs,y} such thaty(x — y) = 1. The Paley
graph is an important example of an explicitly given grapht texhibits strong
pseudorandom properties (see, e.g., [1]). Motivated byabwye, we now define
a high dimensional version of the Paley graph. Let k < p be fixed and let
AP~ be the p — 1)-simplex on the vertex sét,. The Paley k-Cochain ¢y €
CK(AP1) is defined as follows. For Bsimplexo = {xo,..., %} let gx(o) = 1

if x(Xo+---+x) = 1, andgk(c) = 0 otherwise. Here we prove that the Paley
k-cochaingy is close to being &-cosystole inCk(AP1).

Theorem 5.5. For a fixed k> 1

o> 3, 2 1) (1-0(p2")).

The proof of Theorem 5.5 depends on the following result oti@h[3]. For
0 < i < k define the projectionr; : F§™* — F§ by mi(xo,....%) =
(X0, - -+ Xie1, Xis1, - - - Xi)- FOr subsets, . .., Re ¢ FY let

W(Ro......R) = {xe i i m(x) e Riforall 0 <i < k}.
Theorem 5.6(Chung [3])

o)
=(X0,--X)EW(Ro,....R«)

(5.18) S
S 2(k—1)2(k’1) pl—zik {l_[ |R| |} S 2pk+l—27k.
i=0

Proof of Theorem 5.5. First note that sums & + 1 distinct elements of, are
equidistributed irFp, hence

lewdl = (1%, .. X € APHK) Ty (Xo + -+ + X) = 1|
(5.19) ~ |{ye19‘p:)((y)=1}|( D )_p—_l( p )
- p k+1) 2p \k+1)

Lety € C<L(AP1) such thatlgllcsy = llg + d-1tll. Let S(y) = supp tk-1¢) €
A" Y(K). Then

ISW)] - 2|supp ¢) N S|

= [S() \ supp ©)| - |S(¥) N supp @)

= [{{X0. ... X € S(W)  x (Yo + -+ + %) # 1]
—{1%0 -, X € SW) 1 x (Xo+ -+ + %) = 1]

(5.20) = [{{X0.. ... X} € S() : Xo + -+ + X = O
- D x(ot %)
(X0, %}€S(¥)

2= > x(o+ %),
{X0:---X}ES ()
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We proceed to bound the sum

| D x o+ %))

{X0,.--.Xc}€S(¥)
Let
A={(ya.....Y) €S {ya,.... ¥k} € supp ()}
and let
S@) = {(xo..... %) € Fy't : (x0..... xd € SW)}.
Denote
D={(y1 ..... yk)eIF';:yi;tyj foralli;tj}

and let

Ap=D\A , Ai=A
Fore = (e, ..., &) € {0, 11 let

W(e) = W(Aq: - - -, Aq)-

Write
E= {gz (e0,..., &) € 0,1 g+ + & = 1(mod 2}.
Then
(5.21) Sw) = _we.
ecE
By (5.21) and (5.18) we have
X (Xo+ -+ %) |
{X0,-- X} ES(Y)
1
- (k+1)!| >, xbot+x)|
(X0, X)ES(Y)

(5.22)

1
“ kel ; | (xo,...ZXk):eW(g)X(XO e |

< 21 pk+1—2*k
“(k+ 1)
Combining (5.20), (5.19) and (5.22), we obtain
llellesy = llek + Akl

= llgkll + 1S - 21S() N supp ()l

Slod=| D o+ w0
{X0,.---X}€S(¥)

—1f p ) 29T aipw
k+1/ (k+121)!

> 32 a0 o

Remark: In the graphical cas&kk = 1, the Paley 1-cochairp; satisfies
lpallesy = %(g) (1 - O(p‘%)). It would be interesting to decide whethfillcsy =

30 (1- O(p‘%)) remains true fok > 2 as well.
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6. Bounpep QUOTIENTS OF THE FUNDAMENTAL GroOUP OF A RaNDOM 2-CoMPLEX

6.1. Probability space of simplicial complexes.

Let Y(n, p) denote the probability space of random 2-dimensional cuiptexes
of A" obtained by starting with the full 1-skeleton 4%~ and then adding each
2-simplex independently with probabilify. Formally,Y(n, p) consists of all com-
plexes A"H)D c Y ¢ (A™H)@ with probability measure

Pr(Y) = p((1 - p&-=.

Note thatp is a function ofn, which is typically not a constant. Still, to simplify
notations we omit the argument, and just wiitanstead ofp(n).

The threshold probability for the vanishing of the first hdogy with fixed finite
abelian cofficient groupR was determined in [14, 20].

Theorem 6.1([14, 20]). Let R be an arbitrary finite abelian group, and letn) :
N — R be an arbitrary function that goes to infinity when n goes finity. Then
the following asymptotic result holds

. 0 if p= 2logn-w(n).
r!'_rl]o PriXeY(np):Hi(X;R)=0]= 1 ifp= 2Iogr2+w(n)_

The case of integral homology was addressed bffrHlan, Kahle and Paquette [9]
who proved that there exists a constarguch that ifp > &ng” thenX € Y(n, p)
satisfiesH1(X;Z) = 0 asymptotically almost surely. Recently, tuczak and Peled
[18] proved thatp = @ is a sharp threshold for the vanishingtdf(X; Z).

Similarly, one can ask what is the threshold probability thee vanishing of the
fundamental group in the probability spad@, p). This is a quite diicult question
which was answered by Babson, fffnan and Kahle, see [2].

Theorem 6.2([2]). Lete > 0 be fixed, then
. _e\1/2
- . 0. ifp=(%)"";
r!mo PriXeY(np) :mX)=0]= {1’ if p = (3Iogr:]+w(n))l/2.

In view of the gap between the thresholds for the vanishing¢X; Z) and for the
triviality of 71(Y), Eric Babson (see problem (8) on page 58 in [7]) asked whiaeis
threshold probability such that a.azg(X) does not have a quotient equal to some
non-trivial finite group. This a property between the vamigthof the fundamental
group and the vanishing of the first homology group. If thedfamental group is
trivial, then certainly it cannot contain a quotient equeatnhon-trivial finite group.
On the other hand, if the first homology group is non-triviekn it must be finite,
and it is the quotient of the fundamental group by its commautzo this property

is satisfied.

Addressing Babson’s question we prove the following theore

Theorem 6.3. Assume ¢ 0is a constant, and set w Then, when X
is sampled from the probability spac€p(n), a.a.s. the fundamental groug(X)
does not contain a proper normal subgroup of index at mést n
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Remark. The constant & 7c may be improved using a more careful analysis as
in [14, 20]. For example, for anfjxednon-trivial finite groupG, if p = M
then a.a.sG is not a homomorphic image af (X).

The proof of Theorem 6.3 is an adaptation of the argument4n20] to the non-

abelian setting. In Section 6.2 we recall the notion of nbalian first conomology

and its relation with the fundamental group. In Section 6e3campute the expan-
sion of the (1 — 1)-simplex. The results of Sections 6.2 and 6.3 are usecciiose

6.4 to prove Theorem 6.3.

6.2. Non-abelian first cohomology.

Let X be a simplicial complex and lgb be a multiplicative group. We do not
assume thaG is abelian. The definition of the first conomologit(X; G) of X
with codficients inG was given in [21]. Since the setting in [21] was that of
singular cohomology, whereas we would like to work simpligi we choose to
include a certain amount of details in our recollection helo

For 0< k < 2, letX(K) denote the set of all orderéesimplices ofX. LetCo(X;G)
denote the group db-valued functions oX(0) = X(0) with pointwise multiplica-
tion. Furthermore, set

CHX;G) = {p 1 X(1) = G : p(u,V) = p(v,u)}.
We define the 0-th coboundary operatigr: C°(X; G) — C(X; G) by setting
(doy)(u, V) = YY),
for all y € CO(X, G), and (1, V) € X(1).

Proceeding to dimension 2, IB&(X; G) denote the set of all functiori® : X(2) —
G. Define the first coboundary operathr: C*(X; G) — C?(X; G) by setting

(dip)(u, v, W) 1= ¢(u, V) (V. W) p(w, U),
for all € CL(X;G) and (I, v, w) € X(2).
Define the set o6-valued 1-cocycles ok by
ZY(X; G) = {p € CY(X;G) : (chep)(u, v, W) = 1, for all (u, v, w) € X(2)}.
Furthermore, define an action 6P(X; G) on C%(X; G) by setting
(6.1) @ @)U V) = w(u) (U, V) (W),
for all y € CO(X;G) and allg¢ € CY(X;G). In particular, we recover the 0-th

coboundary operator algy = ¢ . 1. Forg € C1(X; G) let [¢] denote the orbit of
under that action.

We claim thatz(X; G) is invariant under the action @°(X;G). Indeed, lety €
Z1(X:; G), then for ally € CO(X; G)

(. @)UV, W) = (. @) (U V) (. 9)(V. W) (¥ . @)(W, L)
= Y(U)(u, V)Y (v) ™ p(V)e(v, Wp(w) ™ g w)ew, u)y(u)
= y(u) (U, V) @ (v, W) (W, U) y(u)
=y 1yt =1

We can now define non-abelian cohomology in dimension 1.
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Definition 6.4. Thefirst non-abelian cohomologyof X with cogficients in G is
the set of orbits of X X; G) under the action of &X: G):

HY(X; G) := {[¢] : ¢ € Z}(X; G)}.

Note that in generaH(X;G) is just a set. Furthermore, whéhis an abelian
group, Definition 6.4 yields the usual first conomology grofiiX with codficients
in G.

Assume now that the simplicial complekis connected, and let Hom{(X), G)
denote the set of group homomorphisms fren(X) to G. The groupG acts by
conjugation on Honmv;(X),G): for ¢ € Hom (r1(X),G) andg € G, let g(y) €
Hom (r1(X), G) be given

9P =9 ¢ -9,
for all y € m1(X). Forg € Hom (r1(X), G) let [¢] denote the orbit of under this
action, and let

Hom (71(X), G)/G := {[¢] : ¢ € Hom (r1(X), G)}.

The following observation is well known (see (1.3) in [21For completeness we
outline a proof.

Proposition 6.5. For any (A™ 1M ¢ X c (A™1)@ there exists a bijection
u : Hom (r1(X), G)/G — H(X; G),
that mapg1] € Hom (71(X), G)/G to[1] € H(X; G).

Proof. We identify r1(X) with the groupX& | R), where the generating set is
E={gj:2<i,j<ni#]j)
and set of relation® is given by
(R1) ejej = 1, foralli, j,
(R2) e; =1,if(1,i,]) € X(2),~
(R3) ejead = 1, if (i, j,K) € X(2).

Each generatog; corresponds to the loop consisting of 3 edgesi)(1i, j), and
(j, 1), making the relations (R1)-(R3) obvious.

In these notations, each group homomorphismr(X) — G is induced by a set
mapy : & — G that maps all the relations (R1)-(R3) to the unit. Furtheemthe
conjugation action o6 on Hom (r1(X), G) is induced byg(¢)(ej) = ggo(aj)g‘l,
forallge G, ¢: m(X) —» G.

For an arbitrary group homomorphise € Hom (r1(X), G), define the cochain
F(¢) € CY(X; G) by setting

p(e)), if2<ij<niz#j

1 otherwise,

Fle)(i, )) := {

forall1<i,j<n,i# j. Thisis well-defined becaus®(y)(i, j) = F(¢)(j,i): if
i = 1 orj = 1this is trivial as both sides are equal to 1, ani jf# 1 we get

Fe)(j.1) = e(ej) = o(&;") = e(a)) ™
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where the first equality is the definition &f, the second equality follows from
(R1), and the last equality follows from the fact tlais a group homomaorphism.

Let us see thaE(p) € Z1(X; G), for all ¢ € Hom (r1(X), G). Take (1, v, w) € X(2).
If u=1, then
di(F(@))(1, v, W) = F(e)(1, V) F(e)(v, W) F(p)(W, 1)
= F(@)(v,w) = p(evw) = 1,
where the last equality follows from (R2). uf# 1, we can assume without loss of
generality that alse,w # 1. In that case we have
di(F(e))(u, v, W) = F(e)(u, V) F()(v, W) F () (W, u)
= p(euy) p(evw) ¢(ewu) = 1,
where the last equality follows from (R3).

Let us see that the mapping
F : Hom (r1(X), G)/G — H(X; G)

given byF([¢]) = [F(¢)] is the required bijection. First we need to see fRt])
is well-defined. Takeg e G and consider the conjugatigpgt. We have

Flgeg™) =7.F(e),
wherey € CO(X; G) is the 0-cochain which evaluatesgmn each vertex.

Now let us see tha is injective. Assumd(¢) = y. F(), for somey € CO(X; G),
@, ¥ € Hom (r1(X), G). SinceF(¢)(1,1) = F(¥)(1,i) = 1,forall2<i < n, we see
thaty must have the same value, sgyon all the vertices oK. This means that
¢ =gyg ', and so§] = [y].

Finally, let us see thaf is surjective. Take an arbitrary € Z1(X;G). Define
y € CO%X;G) by settingy(i) := o(1,i), forall 2 < i < n, andy(l) := 1. Set
7 :=y.o. Clearly,7(1,i) = 1, for all 2< i < n. Definey : 71(X) — G by setting
¢(&j) == 7(i, J). Clearly,F(¢) = 7, henceF([¢]) = [o]. O

In particular we obtain the following corollary.

Corollary 6.6. Fix an integer N> 2. The fundamental group1(X) contains
a proper normal subgroup H, such thiat(X) : H| < N, if and only if there exists
a non-trivial simple group G, such thi| < N and the first conomology ¥X; G)
is non-trivial, i.e.,|H(X; G)| > 2.

Proof. Assume first that there exists a non-trivial simple gr@jsuch thaiG| < N
and the cohomology groud!(X; G) is non-trivial. By Proposition 6.5 we know
that|Hom (r1(X), G)/G| > 2, so we can pick a non-trivial group homomorphism
¢ m1(X) — G. SetH := kerg. This is a proper normal subgroupof(X) sincey

is non-trivial, andz1(X) : H| = lim¢| < |G| < N.

In the opposite direction, assume that the fundamental pgr@X) contains
a proper normal subgroud, such thatr;(X) : Hl < N. LetH be chosen so
that the indeXr1(X) : H| is minimized, and leG = 71(X)/H. Then|G| < N andG
is simple by the choice dfl. Furthermore, by Proposition 6.5

IHY(X; G)| = [Hom (r1(X), G)/G| > 2.
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6.3. Non-abelian1-Expansion of the Simplex.

Let us now adapt our expansion terminology to the non-abed@ting. Assume
¢ € CY(A"1: G). Thesupportof ¢ is the set

suppep = {{u,v} € ([2]) Lo(u,v) # 1.

Thenormof ¢ is the cardinality of its supporfie|| := |[suppe|. Thecosystolic norm
of ¢ is defined as

lellesy := min{lly:. ¢l : y € CUA™ Y G)).
The following result is an adaptation of Proposition 3.120][to the non-abelian
setting.
Proposition 6.7. Lety € CY{(A™1; G) then
nilell
Idel] = ——.

Proof: Foru e A"™%(0) definep, € C°(A"™1; G) by setting

V) = e(u,v), ifv#u,
Pl = 1, otherwise.

Note that if (1, v, w) € A"1(2) then
(d1g)(u, v, w) = (U, V) @(V, W) p(W, u)
= ou(V) (v, W) 0u(W) ™t = (0u . @) (V. W).
Therefore
Blichell = [{(u, v, W) € A"H(2) : ([dug)(u, v, W) # 1)
= [{(u.v.w) € A"H2) 1 (pu- @)V W) # 1|

n
=" 2llgu- ¢ll = 2ligllesy. O
u=1

6.4. Proof of Theorem 6.3. Let G be an arbitrary finite group. For a subcomplex
(A™HD ¢ X ¢ (A we identify H1(X; G) with its image under the natural
injection HY(X; G) — H1((A™Y)®;G). If ¢ € CYA™;G) then [] € HY(X;G)

if and only if (dhe)(u, v, w) = 1 whenever ¢, v,w) € X(2). It follows that in the
probability spacey(n, p)

Pr{l¢] € HY(Y; G)| = (1 - p)'*®#l.
Therefore, we have

Pr[HY(Y;G) # ([1]}] < D Pr|l¢] € HY(Y; G)]
[e]

_ Z(l _ p)”dl‘/’”’

[¢]
where both sums are taken over gl E H!((A™1)®); G), [¢] # 1.

(6.2)
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Suppose now thdG| < n°. Then by (6.2) and Proposition 6.7 we have
PrHYY:G) =1l < Y. Y @-pf

k>1 ||¢||syr_k

(6.3) <y (n(n —k 1)/2)|le (1 _(6+ 7? log n)?

k>1

_ (6+70)k _4c
< Z n*n*n~"3" = O(n"3).
k>1

Let G(N) be the set of all non-trivial simple groups with at mdstelements.
The classification of finite simple groups implies that thare at most 2 non-
isomorphic simple groups of the same order, so we certaiale [(N)| < 2N.
Combining Corollary 6.6 and the inequality (6.3) we obtdiattthe probability
that the fundamental group (Y) contains a proper normal subgroup of index at
mostn® cannot exceed

> PAY eY(n.p) 0 HY(Y;G) # ([1]}] < oG~ %) = o;n-%). o
Geg(n°)

7. CoNcLUDING REMARKS

In this paper we studied several aspects ofkiie Cheeger constant of a complex
X, a parameter that quantifies the distanceXdfom a complexY with nontrivial

k-th cohomology oveE,. Our results include, among other things, general meth-
ods for bounding the cosystolic norm of a cochain and for bdingrthe Cheeger
constant of a complex, a discussion of expansion of pseudifoids and geomet-

ric lattices, probabilistic upper bounds on Cheeger constaand application of
non-Abelian expansion to random complexes. Our work suggesme natural
guestions regarding higher dimensional expansion:

e There are numerous families of combinatorially defined g com-
plexes, e.g., chessboard complexes and more general ngatahiplexes,
that admit strong vanishing theorems in (co)homology. luldde inter-
esting to understand whether these vanishing results amrg@anied by
strong lower bounds on the corresponding Cheeger constants

¢ In recent years there is a growing interest in developinghoulogy for
studying the topology of objects (manifolds or more genewahplexes)
using a limited sample of their points. One powerful apphoawia persis-
tence homology (see, e.g., Edelsbrunner book [5]). Incatpw Cheeger
constants estimates in persistence homology algorithmisl dead to im-
proved understanding of the topology of the object. A malallenge in
this direction is to devisefiicient methods that compute or estimate the
expansion of a complex.
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