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A G e o m e t r i c a l  P r o b l e m  A r i s i n g  
in  a S i g n a l  R e s t o r a t i o n  

A l g o r i t h m  

N i r  C o h e n  a n d  R o y  M e s h u l a m  

C o m m u n i c a t e d  by Todd Quinto 

ABSTRAC's Let Z2N = {0 . . . . .  2N - I} denote the group of integers modulo 2N, and let L be the 
space of  all real functions on Z2N which are supported on {0 . . . . .  N - 1}. The spectral phase of a 

function f : Z2N ~ R is given by ~f(k)  = arg f (k) for k ~ Z2N, where f denotes the discrete Fourier 
transform of f . 

For a fired s ~ L let Ks denote the cone of all f : Z2N ~ R which satisfy q~f =-- d~s, and let 
Ms be its linear span. The angle et s between Ms and L determines the convergence rate of  the signal 
restoration from phase algorithm of Levi and Stark [3]. Here we prove the following conjectures of  Urieli 
et al. [7] who verified them for the N < 3 case: 
1. ct(Ms, L) < rr/4 for a generic s ~ L. 
2. I f  s ~ L is geometric, i.e., s ( j )  = qJ forO < j < N -- 1 where 4-1 # q ~ R, then ct(M.~, L) = rr/4. 

1. Introduction 

Let Z2N denote the group of  integers modulo 2N (N > 2), and let LC(Z2N) ( L R ( g g N ) )  
denote the space of  complex (real) valued functions on Z2N with the usual inner product (f,  g) = 
~-~'x~Z2N f ( x ) g ( x ) .  T h e  Fourier transform F : LC(Z2N) --~ LC(Z2N) is given by F ( f ) ( y )  = 

fA(y) = ~-~x~X2~ f ( x ) t ~  where co = e x p ( T r i / N ) .  T h e  spectral phase of  f ~ LR(Z2N ) is given 

by (by(k) = arg f ( k )  for k ~ Z2N. 
A natural and important problem which arises in diverse applications is the reconstruction of 

a Fourier transform pair f ,  F ( f )  from partial data on either or both functions. See Barakat and 
Newsam's papers [1, 2] for a study of  various reconstruction algorithms and their analysis. One 
particular instance of  the general reconstruction problem which is commonly encountered in image 
processing is the retrieval of  a signal f ~ LR(Z2N) from its spectral phase (by. 
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Denote Supp f = {x ~ Z2N : f ( x )  ~ 0}, and let L = {s ~ LR(Z2N) : Supp s C 
{0 . . . . .  N - 1}}. For a function s ~ L, let Ks denote the cone of  all f ~ LR(Z2N) such that 
@ --= ~bs, and let Ms be its linear span. Clearly s ~ Ks t3 L. 

Levi and Stark [3] (see also [6]) noted that for a dense Zariski open subset of  functions s in 
L, the intersection Ks M L is exactly Span{s} and may be efficiently reconstructed from the spectral 
phase q~s- The projection on convex sets (POCS) algorithm developed in [3] applies successive 
alternate projections on Ks and L which eventually converge to Span{s} from any given initial state 
fo. Let c~s denote the angle between Ms and L. The convergence rate of the POCS algorithm is 
determined by Us as follows: Let fk denote the signal obtained after the kth two-step iteration of the 
POCS algorithm. It is easy to show that 

I IA+I  - A l l  ~ cos  2 (o~s)IIA - f k - I  II (1.1) 

and that cos2(Cts) is the best constant for which (1.1) holds, assuming an arbitrary initial state f0. 

In a recent paper, Urieli et al. [7] studied the relation between the spatial profile of  s and the 
angle Ors. Based on extensive empirical evidence, they conjectured that cq < rr/4 and that the upper 
bound is attained when s has an exponential profile. At the other extreme, they showed that when s 
is close to symmetric, the angle us approaches zero (for a symmetric signal the problem is ill-posed). 

While our main concern in this article is the behavior of  the angle us, it should be noted that 
in practice the performance of the POCS algorithm is more complex, and is not determined by (1.1) 
alone. Indeed, a physically realistic model for the amplitude retrieval problem must incorporate 
model uncertainty and measurement noise. As noted in [1], an exact analysis of  noise effects 
in iterative reconstruction algorithms is difficult. We can however offer the following qualitative 
remarks concerning the stability of  the POCS algorithm with respect to errors: The generic positivity 
of ors combined with the estimate (1.1) guarantees strict contractivity of  the POCS, hence convergence 
to the (essentially unique) solution, for the nominal problem. The continuity of  Ors w.r.t, s ([7, 
Theorem 3]) guarantees the same for the perturbed model. To handle measurement noise, one can 
define at each iteration a "local angle" which dictates the contractivity at that step. The local angle, 
which is bounded below by Ors, is continuous w.r.t, the location of the given iterate ([7, Lemma 
C1]). This guarantees the stability of the convergence process at the presence of relatively small 
measurement errors. Simulations carried out in [7] appear to support this conclusion. 

Returning to the nominal reconstruction problem, our main results (Theorems 1 and 2) are 
proofs of  the above-mentioned conjectures of  Urieli et al. [7]. We start with some preliminaries. 

The Fourier transform satisfies the Parseval identity ( f ,  g~ = 2 N ( f ,  g), and the inversion 

formula F -1 (g)(m) = ( 2 N ) - l ~ ' ( - m ) .  Note that f E LR(ZZN) i f f~ ( - -m)  = f ' ( m ) f o r a l l m  E Z2N. 
The convolution of  f ,  g ~ Lc(Z2N) is given by f * g(x) = )--~.y~Z.2tr f ( y )g (x  - y) and satisfies 

f ,-%(x)= f(x)'e(x) 
Let AC = {3. E LC(Z2N) : 3.(j) = L ( - - j )  for all j E Z2N} and let AR = AC M LR(Z2N). 

Clearly, F ( A c )  = AC. For a fixed s ~ L let Ws = ~". AR = {~.T : L ~ AR}, and W + = {L~" : 
0 < ~. E A R } .  Clearly, F - I ( W  +) = Ks and F-I(Ws)  = Ms. Since XsA(--m) = ~.T(rn) for all 
L ~ AR and m E ZZN, it follows that Ms = F- l (Ws)  C LR(Z2N)and  d imMs = dimWs = 
ISupp ~":3 {0 . . . . .  N}I. 

A function s E L will be called generic if Ms N L = Span{s]. For N < m < 2N - 1 and 
1 < j  < N l e t  

s ( m - j ) + s ( m + j )  i f l  < j < N - 1  
Ds(m, j )  = s(m N) if j = N 

Claim 1. 

I f  s ~ L satisfies det Ds # O, then s is generic. 
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P r o o f .  Let N < m < 2N - 1. Then for X ~ AR 

2N-1 1 A  1 ^ 1 N 
F-l (Ls") (m)= - - ) v * s ( m )  - ~  ~ s ( m -  j )X( j )  = ~ ~ D s ( m , j ) ~ ( j )  . 

j=O j = l  

Suppose Ds is non-singular. If L ~ AR satisfies F - 1 ( 3 . ~  6 L, then F-l(Ls'~)(m) = 0 for all 
N < m < 2 N -  1, and hence, ~ ' ( j )  = 0 f o r a l l l  < j < N. It follows that L is constant, and 
therefore F-t0&T) ~ Span{s}. [ ]  

Claim 1 implies that the set of generic functions contains S = {s ~ L : det Ds # 0} which 
is a Zariski open dense subset of  L. Similar genericity criteria appear in [4] and [5]. For s ~ S the 
angle between Ms and L is given by 

e t s=min{o t ( f , g )  : O #  f E Ms , OvA g E L ,  ( f , s )  = {g,s} =O} 

where ot(f, g) denotes the angle between f and g. 
Theorems 1 and 2 were conjectured by Urieli et al. [7] and proved by them for N < 3. 

Theorem 1. 
Oes < rr /4 for all s E S. 

Our main result deals with a case of equality in Theorem 1. A function s ~ L is geometric 
with parameter q i f s ( j )  = qJ for all 0 < j < N - 1. 

Theorem 2. 
I f  s ~ L is geometric with parameter + I # q ~ N, then s ~ S and Us = 7r /4. 

Theorems 1 and 2 are proved in Sections 2 and 3. 

2. The Upper Bound 

F o r t  ~ {0 ,1} le t  Et = {0 < j < N : j --  t (mod2)}.  We shall need the following 
technical observation: 

Claim 2. 
Suppose 0 # s ~ L satisfies I Supp ~" tq E11 < 1 for t = 0, 1. Then N < 3 and s is a multiple 

of one of the following functions (written as vectors in N2N ): 
1. N = 2 :  ( 1 , 1 , 0 , 0 )  or ( 1 , - I , 0 , 0 ) .  
2. N = 3: ( 1 , 0 , - 1 , 0 , 0 , 0 ) .  

P r o o f .  By assumption there exist 0 < 2k, 21 + 1 < N and or, fl E C such that for all x 6 Z2N 

S(X)  = OtO) - 2 k x  "l- -fftO 2kx + flO9 - (2 l+l )x  + ~ ( 2 l + l ) x  . (2.1) 

L e t 0 < j  < N - l ,  then 

0 = s ( j  + N)  = olo.) - 2 k j  Jr- ~(.o 2kj - fl(.o - ( 2 l + l ) j  - ~o9 (2/+l)j  

hence, by (2.1) 

s ( j )  = 2 (ergo - a j  + "fro) 2kj ) . (2.2) 
% 

We consider two cases: 

1. I f2k --- 0 (mod N) , thens ( j )  = 2(ot+N)EJ foraf ixed~ ~ {+ l } and for all 0 < j < N - 1 .  
It follows that all odd m 

T(m) = 4 (or + ~)  
i :-;g--z # o. 
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hence, 

The assumption ISupp ~'N Ell < 1 then implies that N = 2 and s is a multiple of  (1, E, 0, 0). 

2. Suppose 2k ~# 0 (mod N). Let 2l + 1 #7/: m E El ,  then by (2.2) 

4u 4U 
0 = ~'(rn) = h- 

I - r - (~+m) 1 - r 2k-m 

l1 - w-(2k+m)l = 11 - oj2k-m I . (2.3) 

(2.3) together with 2k ~ 0 (mod N) imply m = N. Since this holds for all odd m -# 2l + 1 in 
{0 . . . . .  N}, it follows that N < 3. The cases N = 2 and N = 3 ,  k = 0 are covered by 1. The 
remaining possibility is N = 3 ,  k = 1 which implies s ( j )  = 2(uo9 -2j  + ~'o92j) for 0 < j < 2. It 
can be checked that'k'(1) # 0; hence, 

4ot 4U 
~'(3) = - -  + - - - - - - i  = 0 .  

1 - w  1 - c o -  

Therefore,  o~/N = o~ and s ( j )  = 2N(o9 -2 j+l  + off j)  for 0 < j < 2. It follows that s is a multiple of  
(1, 0, - 1 ,  0, 0, 0). [ ]  

By checking that det Ds = 0 for each of  the three exceptional cases in Claim 2 we obtain the 
following 

Corollary 1. 
Foranys  E S thereex i s t sa t  E {0, 1}suchthat[Supp~'nEt]  >_ 2. [] 

P r o o f  o f  T h e o r e m  1. Choose t E {0, 1} such that At = Supp'k'f3 Et satisfies IAtl >_ 2. Since 

N-I  
(~.'k", s~ = ~.(0) slT(0)l 2 + 2 ~ L(m) ff(m)l 2 + ~.(N) ff(N)l 2 

m=l 

it follows that there exists a 0 # ~. ~ AR such that Supp ~. n {0 . . . . .  N} c At and (Zk', s~ = 0. Let 
g = L'Te Ws - {0}. Since g(2j  + t + 1) = 0 for all j 6 ZZN, it follows that 

N-I  
~'(m + N)  = ~ g(2j  + t)~o -(2j+t)(m+N) 

j=o 

N-I  
= (--1) t ~ g(2 j  + t)o) -(2j+t)m = (--1)tg'(m) . (2.4) 

j=O 

Let f = F - l ( g )  ~ Ms - {0}, and let h ~ L be given by h(m) = f ( m )  for 0 < m < N - 1 
and h(m) = 0 otherwise .  (2.4) implies that I f ( m ) l  = If(m + N)I for all m 6 Z2o, hence, 
(h, f )  = (h, h) = l ( f ,  f ) .  Let  fl denote the angle between f and h, then 

(h, f )  1 
COS ~ -- - -  

liflI Ilhll = ~v:2" 

Now / ) '  (h,s) = ( f , s )  = F - l ( g ) ,  F - l ( ' s  ") = ~-~ (g,s~ = 0  

hence, both f E Ms - {0} and h E L - {0} are orthogonal to Ms n L. It follows that Us < fl = :r/4. 

R e m a r k .  For functions s 6 S which satisfy the additional condition Supp ~" = Z2N (or equiva- 
lently dim Ms = N + 1), Claim 2 and Corollary 1 are of  course superfluous. [ ]  
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3. The Geometric Case 

647 

Let s ~ L be geometric with parameter q ~ ]R. 

Claim 3. 

(qN _ 1) (q2N -- 1)N--1 N even 
detDs (3.1) 

( q 2 N  1 ) ' ~  N odd 

P r o o f .  It is convenient to re-index the rows of Ds by defining Cq(i, j)  = Ds(i + N - 1, j )  for 
I _< i, j _< N. More explicitly, let Aq,  Bq be the N x N matrices given by 

qN-l+i-j 1 < i < j < N 
Aq (i, j )  = 0 otherwise 

qi+j-N-1 N + 1 < i + j and j < N 
Bq (i, j )  = 0 otherwise 

then Cq = Aq q- Bq. 
For 1 < i < N let Cq(i) denote the ith row of Cq. We prove (3.1) for N odd: Let ( = cot be 

any 2Nth root of 1. The rows {Cr : 1 < i < -~-~} are clearly linearly independent. A routine 

computation (we omit the details) shows that for - ~  < k < N 

cr (k) ) ( - ( N - l )  C r  Z ( J - 2 C r  
j = 2  

1 < i < N~...~I }. It follows that rank Cr = N+.___A, hence, the therefore, C~(k) E Span {C((i) 
1 N- I  polynomial P(q) = detCq is divisible by (q - ( ) N - r a n k  Cr ~ .  (q _ co )--7-. Since deg P(q) = 

N(N - 1) it follows that 

det Ds = P(q) = 
2 N - I  N- I  

n 0 T 
l=O 

The proof of (3.1) for N even is similar. [ ]  

Assume now that q # 4-1, then s E S by Claim 3. Define an hermitian form B on Ac  x Ac  
by 

2 N - I  N - 1  

B(u ,v )=  E u , s ( m )  v * s ( m ) -  E u * s ( m ) v * s ( m ) .  
m~-N m.~O 

For i ~ Z2N let ei ~ Lc(ZzN) be given by ei(k) = 1 i f i  = k and 0 otherwise. The main 
ingredient of the proof of Theorem 2 is the following identity. 

Claim 4. 

1 - q2N 
1 --  q2  B ( u ,  v )  = B (u,  eN)  B (v, eN)  --  B (u, e0) B (v, e0). (3.2) 
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Proof .  Let 0 6 LC(Z2N) be given by 

- 1  if  0 < j < N -  1 
O(j) 

I 1 i f  N < j < 2 N -  1 .  

Note that 

and 

Denoting AN = {(k, l) : 

- 4  
~ (  l_a~_ m m odd 

m) = 0 m even 

1 -- (--1)mq N 
"J'( m ) = 

1 - -  q o )  - m  

0 < k , l < 2 N - l a n d k ~ l l  (mod 2) } we obtain 

B(u,  v) 
1 

= (O(u * s) ,  v * s)  = ~ <(O(u * s)y", (v * sY')  

4 @  1 = ('0, (U~'), O~ = ~ 2 0(l -- k)"s'(k) T(l) ~(k) ~(l) 
(k.l)~AN 

- 1  4 (1 - q2~V) ~(k)~(l) 

= 4N---~ E ( l _ o ) k - l ) ( l _ q o ) - t O ( l _ q o ) l )  " 
(k,l)~AN 

(3.3) 

To evaluate the right-hand side of (3.2) we note that ~N(m) = (--1) m, B(u, eo) = --(u * s, s) 
and B(u, eN) = (u �9 s, eN * S). Using the Parseval identity it follows that 

B (u, eN) B (v, eN) -- B (u, eo) B (v, eo) 

= ( u , s ,  e l v . S )  ( v . s ,  eN *s) -- ( u * s , s ) ( v * s , s )  

= - ~  

I 2~v-i 
= 4 N  2 Z ( ( - - 1 ) k+ l - - l )  ~'(k)12[j'(l)12~(k)~(l) 

k,l=O 

- 1  2 (1 -- q2N)2 ~'(k)~--~ 
. . . . . . . . . .  . 

(k,I)EAN I 1 -- qo)-k[ 211 - qo)-ll 2 
(3.4) 

Now (3.3) and (3.4) imply that (3.2) is equivalent to 

2 ~'(k)~(l) 
l_q'-'----" ~ Y~. ( l _ w k - t ) ( l _ q o ) - k ) ( l _ q w l )  

(k,I)EAN 

~(k)~(l) 

= Z 11 qco-k[2l 1 qo)-l[ 2" (k,I)EAN --  

(3.5) 

Since ~'(k) = ~'(-k) and ~'(1) = ~'(-l),  it suffices to show that the sum of the coefficients of 
~(k)'~(l) and ~ ( - k ) ~ ( - l )  is the same on both sides of (3.5). This follows from the identity: 

1 1 + 
(1 --Oa k-l) (1 --q0) -k) (1--qO) I) (1--Oa t-k) (1 --qoa k) (1 --qo) - l)  

1 __q2 
= [ ]  

I 1 - q o ~ - ~ [ 2 l l - q o r l l 2 "  
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Claim 4 now implies the following: 

Claim 5. 

l f u  E A c  satisfies (u * s, s) = O, then 

2N-I N-1 

l u * s ( m ) t  >_ �9 

rn=N m=O 

P r o o f .  Since B(u, eo) = - ( u  * s, s) = 0 we obtain by Claim 4: 

z 2 N - 1  [U * s(m)l 2 N-1 = m=N -- Y]m=0 lu * s(m)l 2 B(u,  u) 

1 _ q 2  
- - ~ _ q - T ~  ( IB(u'elv)12 [ B ( u ' e ~  1 - q 2  - 1--- q-T~ IB (u, eu)l z >_ O. [ ]  

P r o o f  o f  T h e o r e m  2. By Theorem 1 it suffices to show as >_- Jr/4. Let  0 ~ f E Ms be 
orthogonal to s and let 0 # h ~ L. Write f = ~ *  s where ~. 6 AR. S i n c e ~  6 A c ,  Claim 5 implies 
Zm=N2N-I I f (m)]2 _> ~-'~m=0 [ N - I  f(m)12 . Let fl denote the angle between f and h, then 

COS fl = - -  

1 

I<h,S>l _ rL:0' S(m)h(m) IS(m)12) ,h, 1 
< < - -  

I lf l l  Ilhll I lf t l  Ilhll - I lf l l  Ilhll - , / ~  

It follows that fl > zr/4. [ ]  
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