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Abstract

Let V be an n-dimensional vector space over the finite field Fq. The spher-
ical building XV associated with GL(V ) is the order complex of the nontrivial
linear subspaces of V . Let g be the local coefficient system on XV , whose value
on the simplex σ = [V0 ⊂ · · · ⊂ Vp] ∈ XV is given by g(σ) = V0. The homology
module D1(V ) = H̃n−2(XV ; g) plays a key role in Lusztig’s seminal work on the
discrete series representations of GL(V ). Here, some further properties of g and
its exterior powers are established. These include a construction of an explicit
basis of D1(V ), a computation of the dimension of Dk(V ) = H̃n−k−1(XV ;∧

kg),
and the following twisted analogue of a result of Smith and Yoshiara: For any
1 ≤ k ≤ n − 1, the minimal support size of a non-zero (n − k − 1)-cycle in the

twisted homology H̃n−k−1(XV ;∧
kg) is (n−k+2)!

2 .
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1 Introduction

Let q be a prime power and let V be an n-dimensional vector space over the finite
field Fq. The spherical building associated with G = GL(V ) is the order complex XV

of the nontrivial linear subspaces of V : The vertices of XV are the linear subspaces
0 6= U ( V , and the k-simplices are families of subspaces of the form {U0, . . . , Uk},
where U0 ( · · · ( Uk. The homotopy type of XV was determined by Solomon and
Tits [9] (see also Theorem 4.73 in [1]).
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Theorem 1.1 (Solomon-Tits). XV is homotopy equivalent to a wedge of q(n2) (n−2)-
spheres. In particular, the reduced homology of XV with coefficients in a field K is

given by

dim H̃i(XV ;K) =

{
0 i 6= n− 2,

q(n

2) i = n− 2.

The natural action of G on XV induces a representation of G on H̃n−2(XV ;K). Viewed
as a G-module, H̃n−2(XV ;K) is the Steinberg module of G over K (see e.g. section 6.4
in [6]). We recall some facts concerning XV and the Steinberg module. For a subset
S ⊂ V , let 〈S〉 = span (S) denote the linear span of S. Let [n] = {1, . . . , n}. Let
B = {v1, . . . , vn} be a basis of V and let B̃ be the set of vertices of XV given by

B̃ =
{
〈vi : i ∈ I〉 : ∅ 6= I ( [n]

}
.

The induced subcomplex XV [B̃] is the apartment determined by B. Clearly, XV [B̃] is
isomorphic to the barycentric subdivision of the boundary of a (n − 1)-simplex, and
thus

H̃n−2(XV [B̃];K) ∼= K.

We next exhibit a generator zB of H̃n−2(XV [B̃];K). For a permutation π in the
symmetric group Sn and for 1 ≤ i ≤ n, let Vπ(i) = 〈vπ(1), . . . , vπ(i)〉 and let σπ be the
ordered (n− 2)-simplex

σπ = [Vπ(1) ⊂ · · · ⊂ Vπ(n− 1)].

Then zB =
∑

π∈Sn
sgn(π)σπ is a generator of H̃n−2(XV [B̃];K). The following explicit

construction of a basis of H̃n−2(XV [B̃];K) is due to Solomon [9] (see also Theorem
4.127 in [1]).

Theorem 1.2 (Solomon). Let σ be a fixed (n− 2)-simplex of XV . Then

{
zB : B is a basis of V such that σ ∈ XV [B̃]

}

is a basis of H̃n−2(XV [B̃];K).

The support of a (n− 2)-chain c =
∑

σ aσσ ∈ Cn−2(XV ;K) is

supp(c) = {σ : aσ 6= 0}.

Clearly, |supp(zB)| = n! for any basis B of V . Smith and Yoshiara [7] proved that the
zB’s are in fact the nontrivial (n− 2)-cycles of minimal support in XV .

Theorem 1.3 (Smith-Yoshiara).

min
{
|supp(z)| : 0 6= z ∈ H̃n−2(XV ;K)

}
= n!.
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In this paper we study analogues of Theorems 1.1, 1.2 and 1.3 for the homology
of XV with certain local coefficient systems introduced by Lusztig and Dupont. We
first recall some definitions. Let X be a simplicial complex on a vertex set S. Let
≺ be an arbitrary fixed linear order on S. For k ≥ −1 let X(k) denote the set of
k-dimensional simplices of X , and let X(k) denote the k-dimensional skeleton of X .
A simplex σ ∈ X(k) will be written as σ = [s1, . . . , sk+1] where s1 ≺ · · · ≺ sk+1. The
i-th face of σ as above is the (k − 1)-simplex σi = [s1, . . . , si−1, si+1, . . . , sk+1]. For a
0-dimensional simplex σ = [s1], let σ1 = ∅ be the empty simplex. A local system F on
X is an assignment of an abelian group F(σ) to each simplex σ ∈ X , together with
homomorphisms ρτσ : F(τ) → F(σ) for each σ ⊂ τ satisfying the usual compatibility
conditions: ρσσ = identity, and ρσηρ

τ
σ = ρτη if η ⊂ σ ⊂ τ . A F -twisted k-chain of X

is a formal linear combination c =
∑

σ∈X(k) c(σ)σ, where c(σ) ∈ F(σ). Let Ck(X ;F)
denote the group of F -twisted k-chains of X . For k ≥ 0 define the boundary map

∂k : Ck(X ;F) → Ck−1(X ;F)

by

∂k




∑

σ∈X(k)

c(σ)σ


 =

∑

σ∈X(k)

k+1∑

i=1

(−1)i+1ρσσi

(
c(σ)

)
σi.

For k = −1 let ∂−1 denote the zero map C−1(X ;F) = F(∅) → 0. The homology
of X with coefficients in F , denoted by H∗(X,F), is the homology of the complex
⊕i≥0Ci(X ;F). The reduced homology H̃∗(X,F) is the homology of ⊕i≥−1Ci(X ;F).
Let X, Y be two simplicial complexes and let f : X → Y be a simplicial map such
that dim f(σ) = dim σ for all σ ∈ X . Let G be a local system on Y . The inverse
image system F = f−1G given by F(σ) = G(f(σ)) is a local system on X . The
induced mapping on homology is denoted by f∗ : H̃k(X ;F) → H̃k(Y ;G). For further
discussion of local coefficient homology, see e.g. chapter 7 in [3] and chapter 10 in [6].

Lusztig, in his seminal work [5] on discrete series representations of GL(V ), defined
and studied the local system g on XV given by g(U1 ⊂ · · · ⊂ Uℓ) = U1 and g(∅) = V ,
where the connecting homomorphisms ρτσ’s are the natural inclusion maps. Dupont,
in his study of homological approaches to scissors congruences [4], extended some of
Lusztig’s results to the higher exterior powers ∧kg over flag complexes of Euclidean
spaces. For i ≥ 0 let H̃i(XV ;∧kg) denote the i-th homology Fq-module of the chain
complex of XV with ∧kg coefficients. Note that C−1(XV ;∧kg) = ∧kV . The following
result was proved by Lusztig (Theorem 1.12 in [5]) for k = 1, and extended by Dupont
(Theorem 3.12 in [4]) to all k ≥ 1.

Theorem 1.4 (Lusztig, Dupont). Let 1 ≤ k ≤ n − 1. Then H̃i(XV ;∧kg) = 0 for

i 6= n− k − 1.

Let Dk(V ) = H̃n−k−1(XV ;∧kg). Lusztig (Theorem 1.14 in [5]) proved that

dimD1(V ) =
n−1∏

i=1

(qi − 1). (1)
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The proof of (1) in [5] is based on the case k = 1 of Theorem 1.4, combined with
an Euler characteristic computation. In Section 2 we describe an explicit basis of
D1(V ). This construction may be regarded as a twisted counterpart of Theorem 1.2.
Concerning the dimension of Dk(V ) for general k, we prove the following extension of
Theorem 1.

Theorem 1.5.

dimDk(V ) =
∑

1≤α1<···<αn−k≤n−1

n−k∏

j=1

(qαj − 1). (2)

Our final result is an analogue of the Smith-Yoshiara Theorem 1.3 for the coefficient
system ∧kg.

Theorem 1.6.

min
{
|supp(w)| : 0 6= w ∈ Dk(V )

}
=

(n− k + 2)!

2
.

The paper is organized as follows. In Section 2 we construct an explicit basis for
D1(V ). In Section 3 we use an exact sequence due to Dupont to prove Theorem 1.5.
In Section 4 we recall the Nerve lemma for homology with local coefficients, and obtain
a vanishing result for a certain local system on the simplex. These results are used to
prove Theorem 1.6. We conclude in Section 5 with some remarks and open problems.

2 A Basis for D1(V )

In this section we construct an explicit basis for D1(V ) = H̃n−2(XV ; g). Let V = Fn
q

and let e1, . . . , en be the standard basis of V . For a = (a1, . . . , an), b = (b1, . . . , bn) ∈ V
let a·b denote the standard bilinear form

∑n

i=1 aibi. For a subset S ⊂ V , let S⊥ = {u ∈
V : u · s = 0, for all s ∈ S}. Let ≺ be any linear order on XV (0) such that U ≺ U ′ if
dimU < dimU ′. Then an (n− 2)-simplex in XV is of the form [U1, . . . , Un−1], where
0 6= U1 ( · · · ( Un−1 ( V .

For simplicial complexes Y , Z defined on disjoint vertex sets, let Y ∗ Z = {σ ∪ τ :
σ ∈ Y, τ ∈ Z} denote their simplicial join. Let a01, a

1
1, . . . , a

0
n−1, a

1
n−1, b be 2n − 1

distinct elements. Let M denote the octahedral (n− 2)-sphere

M = {a01, a
1
1} ∗ · · · ∗ {a

0
n−1, a

1
n−1},

and let K = M ∪
(
{b} ∗M (n−3)

)
. See Figure 1a for a depiction of the 2-dimensional

complex K when n = 4.
Choose a linear order ≺1 on the simplices of K such that σ ≺1 τ if dim σ >

dim τ . The barycentric subdivision of K, denoted by sd(K), is the complex whose
vertex set sd(K)(0) consists of all nonempty simplices of K, and whose k-simplices
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(a) (n−2)-dimensionalK for n = 4
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(b) (n− 3)-simplices in sd(K)

Figure 1: Four types of (n− 3)-simplices in sd(K) = supp(cv)

(ordered according to ≺1) are [σ1, . . . , σk+1] where σ1 ) · · · ) σk+1. For a sequence
x = (x1, . . . , xn−1) of distinct vertices of K, such that {x1, . . . , xn−1} ∈ K, let S(x)
denote the (n− 2)-simplex of sd(K) given by

S(x) = [{x1, . . . , xn−1}, {x1, . . . , xn−2}, . . . , {x1}] .

For a permutation π in the symmetric group Sn−1 let π(x) = (xπ(1), . . . , xπ(n−1)). Let
E = {0, 1}n−1 and for 1 ≤ j ≤ n− 1 let

Ej = {(ǫ1, . . . , ǫn−1) ∈ E : ǫj = 0}.

For ǫǫǫ = (ǫ1, . . . , ǫn−1) ∈ E and 1 ≤ j ≤ n− 1 let aǫǫǫ = (aǫ11 , . . . , a
ǫn−1

n−1 ) and let

aǫǫǫ,j = (aǫ11 , . . . , a
ǫj−1

j−1 , b, a
ǫj+1

j+1 , . . . , a
ǫn−1

n−1 ).

Let Tq,n denote the set of all sequences v = (v1, . . . , vn−1) ∈ V n−1 such that vi ∈
ei + 〈ei+1, . . . , en〉 and vi 6= ei for all 1 ≤ i ≤ n− 1. Clearly |Tq,n| =

∏n−1
i=1 (qi − 1).

Fix v = (v1, . . . , vn−1) ∈ Tq,n. For ǫǫǫ = (ǫ1, . . . , ǫn−1) ∈ E, let vǫ = (u1, . . . , un−1),
where

ui =

{
ei ǫi = 0,
vi ǫi = 1.

For 1 ≤ j ≤ n− 1 let vǫǫǫ,j = (u1, . . . , un−1), where

ui =






en i = j,
ei i 6= j & ǫi = 0,
vi i 6= j & ǫi = 1.
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Define θv : K(0) → V by

θv(x) =





ei x = a0i ,
vi x = a1i ,
en x = b,

and let fv : sd(K)(0) → XV (0) be the map given by

fv(σ) = 〈θv(x) : x ∈ σ〉⊥.

Clearly, fv extends to a simplicial map from sd(K) to XV . The inverse of g under fv
is the local system of sd(K) given by hv = f−1

v
g. We next define an element

cv =
∑

F∈sd(K)(n−2)

cv(F )F ∈ Cn−2(sd(K); hv).

For a sequence u = (u1, . . . , un−1) ∈ V n−1 of linearly independent vectors in V such
that en 6∈ 〈u1, . . . , un−1〉, let w(u) be the unique element w ∈ 〈u1, . . . , un−1〉

⊥ such
that w · en = 1. For ǫǫǫ = (ǫ1, . . . , ǫn−1) ∈ {0, 1}n−1 and π ∈ Sn−1 let χ(ǫ, π) =

(−1)
∑n−1

j=1
ǫjsgn(π). On an (n− 2)-simplex F ∈ sd(K)(n− 2) define

cv(F ) =





χ(ǫǫǫ, π)w(vǫǫǫ) ǫǫǫ ∈ E, F = S(π(aǫǫǫ)),
χ(ǫǫǫ, π)

(
w(vǫǫǫ+ej) − w(vǫǫǫ)

)
ǫǫǫ ∈ Ej , F = S(π(aǫǫǫ,j)),

0 otherwise.
(3)

Note that cv(F ) ∈ hv(F ) for all F ∈ sd(K)(n− 2). Indeed, if F = S(π(aǫǫǫ)) then

cv(F ) = χ(ǫǫǫ, π)w(vǫǫǫ) ∈ 〈vǫ11 , . . . , v
ǫn−1

n−1 〉
⊥

= g(fv(F )) = hv(F ).

If F = S(π(aǫǫǫ,j)) for 1 ≤ j ≤ n− 1 and ǫǫǫ ∈ Ej then

cv(F ) = χ(ǫǫǫ, π)
(
w(vǫǫǫ+ej) − w(vǫǫǫ)

)
∈ 〈vǫ11 , . . . , v

ǫj−1

j−1 , en, v
ǫj+1

j+1 , . . . , v
ǫn−1

n−1 〉
⊥

= g(fv(F )) = h(F ).

Proposition 2.1. cv ∈ H̃n−2(sd(K); hv).

Proof. Let G ∈ sd(K)(n − 3). We have to show that ∂n−2cv(G) = 0. Let Γ(G)
denote the set of (n − 2)-simplices in sd(K) that contain G. For 2 ≤ ℓ ≤ n − 1 let
ηℓ ∈ Sn−1 denote the transposition (n− ℓ, n− ℓ + 1). We consider the following four
cases according to the type of G. For n = 4 we depict the types of the 24 bold edges
in Figure 1b. The 6 edges incident with the vertex 1© are of type 1, and the 6 edges
incident with the vertex 2© are of type 2 below. Of the remaining 12 edges, the 8
edges that are incident with vertices labelled 3© are of type 3, and the remaining 4
edges incident with vertices labelled by 4© are of type 4.
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1. G = S(π(aǫǫǫ))ℓ for some 2 ≤ ℓ ≤ n− 1, π ∈ Sn−1 and ǫǫǫ ∈ E.
Then

Γ(G) = {S(π(aǫǫǫ)), S((πηℓ)(a
ǫǫǫ))}

As G is the ℓ-th face of both these simplices, it follows that

(−1)ℓ+1∂n−2cv(G) = cv(S(π(aǫǫǫ))) + cv(S((πηℓ)(a
ǫǫǫ)))

= χ(ǫǫǫ, π)w(vǫǫǫ) + χ(ǫǫǫ, πηℓ)w(vǫǫǫ)

= χ(ǫǫǫ, π)w(vǫǫǫ) − χ(ǫǫǫ, π)w(vǫǫǫ) = 0.

2. G = S(π(aǫǫǫ,j))ℓ for some 2 ≤ ℓ ≤ n− 1, π ∈ Sn−1, 1 ≤ j ≤ n− 1 and ǫǫǫ ∈ Ej .
Then

Γ(G) = {S(π(aǫǫǫ,j)), S((πηℓ)(a
ǫǫǫ,j))}.

As G is the ℓ-th face of both these simplices, it follows that

(−1)ℓ+1∂n−2cv(G) = cv(S(π(aǫǫǫ,j))) + cv(S((πηℓ)(a
ǫǫǫ,j)))

= χ(ǫǫǫ, π)
(
w(vǫǫǫ+ej) − w(vǫǫǫ)

)
+ χ(ǫǫǫ, πηℓ)

(
w(vǫǫǫ+ej) − w(vǫǫǫ)

)

= χ(ǫǫǫ, π)
(
w(vǫǫǫ+ej) − w(vǫǫǫ)

)
− χ(ǫǫǫ, π)

(
w(vǫǫǫ+ej ) − w(vǫǫǫ)

)
= 0.

3. G = S(π(aǫǫǫ))1 for some π ∈ Sn−1 and ǫǫǫ ∈ Ej , where j = π(n− 1).
Then

Γ(G) = {S(π(aǫǫǫ)), S(π(aǫǫǫ+ej)), S(π(aǫǫǫ,j))}.

As G is the 1-face of each of these simplices, it follows that

∂n−2cv(G) = cv (S(π(aǫǫǫ))) + cv
(
S(π(aǫǫǫ+ej))

)
+ cv

(
S(π(aǫǫǫ,j))

)

= χ(ǫǫǫ, π)w(vǫǫǫ) + χ(ǫǫǫ + ej , π)w(vǫǫǫ+ej) + χ(ǫǫǫ, π)
(
w(vǫǫǫ+ej ) − w(vǫǫǫ)

)

= χ(ǫǫǫ, π)
(
w(vǫǫǫ) − w(vǫǫǫ+ej)

)
+ χ(ǫǫǫ, π)

(
w(vǫǫǫ+ej) − w(vǫǫǫ)

)
= 0.

4. G = S(π(aǫǫǫ,j))1 for some π ∈ Sn−1 and ǫǫǫ ∈ Ej , where j 6= π(n− 1).
Let j′ = π(n− 1) and let τ denote the transposition (j, j′). Since S(π(aǫǫǫ,j))1 is
independent of ǫπ(n−1), we may assume that ǫj′ = ǫπ(n−1) = 0. Then:

Γ(G) = {S(π(aǫǫǫ,j)), S(π(aǫǫǫ+ej′ ,j)), S((τπ)(aǫǫǫ,j
′

)), S((τπ)(aǫǫǫ+ej ,j
′

))}.

As G is the 1-face of each of these simplices, it follows that

∂n−2cv(G) = cv(S(π(aǫǫǫ,j))) + cv(S(π(aǫǫǫ+ej′ ,j)))

+ cv(S((τπ)(aǫǫǫ,j
′

))) + cv(S((τπ)(aǫǫǫ+ej ,j
′

)))

= χ(ǫǫǫ, π)(w(vǫǫǫ+ej) − w(vǫǫǫ)) + χ(ǫǫǫ + ej′, π)(w(vǫǫǫ+ej′+ej) − w(vǫǫǫ+ej′ ))

+ χ(ǫǫǫ, τπ)(w(vǫǫǫ+ej′ ) − w(vǫǫǫ)) + χ(ǫǫǫ + ej, τπ)(w(vǫǫǫ+ej+ej′ ) − w(vǫǫǫ+ej))

= χ(ǫǫǫ, π)[(w(vǫǫǫ+ej) − w(vǫǫǫ)) − (w(vǫǫǫ+ej′+ej ) − w(vǫǫǫ+ej′ ))

− (w(vǫǫǫ+ej′ ) − w(vǫǫǫ)) + (w(vǫǫǫ+ej′+ej) − w(vǫǫǫ+ej))] = 0.
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We have thus shown that cv ∈ H̃n−2(sd(K); h).

�

Proposition 2.1 implies that c̃v = (fv)∗cv ∈ H̃n−2(XV ; g).

Theorem 2.2. The family {c̃v : v ∈ Tq,n} is a basis of D1(V ) = H̃n−2(XV ; g).

Proof. Let v ∈ Tq,n. Let R(v) ∈ XV (n− 2) be the (n− 2)-simplex

R(v) = [〈v1, . . . , vn−1〉
⊥, 〈v1, . . . , vn−2〉

⊥, . . . , 〈v1, v2〉
⊥, 〈v1〉

⊥].

Let 1 = (1, . . . , 1) ∈ E. It is straightforward to check that F = S(a1) is the unique
(n− 2)-simplex in sd(K) such that fv(F ) = R(v). It follows that

c̃v(R(v)) = cv(S(a1)) = (−1)n−1w(v).

On the other hand, if v 6= v′ ∈ Tq,n, then R(v′) 6∈ fv(sd(K)) and so c̃v(R(v′)) = 0. It
follows that the (n− 2)-cycles {c̃v : v ∈ Tq,n} are linearly independent in D1(V ). As
|Tq,n| =

∏n−1
i=1 (qi − 1) = dimD1(V ), this completes the proof of Theorem 2.2.

�

Example: Let n = 3 and let

v = (v1, v2) = ((1, r, s), (0, 1, t)) ∈ Tq,3.

Figure 2 depicts the cycle cv ∈ H1(sd(K); h). Black vertices correspond to vertices
of K and white vertices correspond to edges of K. The values of cv are indicated
on the edges of the diagram. For example, let ǫǫǫ = (1, 1) and π = (1, 2). Then
F = S(π(aǫǫǫ)) = [{a12, a

1
1}, {a

1
2}], and

cv(F ) = χ(ǫǫǫ, π)w
(
(v1, v2)

)
= −w

(
(v1, v2)

)
= (s− rt, t,−1).

Similarly, if j = 1, ǫǫǫ = (0, 1) ∈ E1 and π = (1, 2), then F = S(π(aǫǫǫ,j)) = [{a12, b}, {a
1
2}]

and

cv(F ) = χ(ǫǫǫ, π)
(
w
(
(v1, v2)

)
− w

(
(e1, v2)

))

= (rt− s,−t, 1) − (0,−t, 1) = (rt− s, 0, 0).

Figures 3 and 4 depict the 1-cycle c̃v ∈ H1(XV ; g). Here, the black vertices correspond
to 2-dimensional subspaces of V . The white vertices and their labels correspond to
1-dimensional subspaces and their generating vectors. Figure 3 depicts the generic
case when rst(rt−s) 6= 0. The labels of the left most 6 white points together with the
± signs, indicate the values of c̃v on the incident edges. The remaining three values
of c̃v are indicated on the edges incident with the vertex corresponding to the line
spanned by (1, 0, 0). Figure 4 similarly depicts the case s = 0. Note that in both
cases, the simplicial map fv : sd(K) → XV is not injective.
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(rt− s,−t, 1)

(0, t, 0) (0,−t, 0)

(0,−t, 1)

(−s, 0, 1)

(s, 0,−1)

(s− rt, t,−1)

(rt− s, 0, 0)

a0
1b

a1
2

a1
1

a0
1a

0
2a0

2ba1
1a

0
2

a0
1ba1

1b

a0
1a

1
2

a1
2ba1

1a
1
2

(0, 0,−1)

(s, 0, 0)

(rt,−t, 0)(−rt, t, 0)

(s− rt, 0, 0) (0, t,−1)

a0
2

(−s, 0, 0) (0, 0, 1)

Figure 2: The cycle cv for v = (v1, v2) = ((1, r, s), (0, 1, t)).

3 The Dimension of Dk(V )

Proof of Theorem 1.5: For an Fq-space W let St(W ) = H̃dimW−2(XW ;Fq) denote

the Steinberg module of W over Fq. Recall that dim St(W ) = q(dimW
2 ) by Theorem 1.1.

Let Gj(V ) denote the family of all j-dimensional linear subspaces of V . The following
result is due to Dupont (Proposition 5.38 in [4]).

Theorem 3.1 (Dupont). There is an exact sequence

0 → Dk(V ) →
⊕

Uk∈Gk(V )

∧ kUk ⊗ St(V/Uk) →
⊕

Uk+1∈Gk+1(V )

∧kUk+1 ⊗ St(V/Uk) →

. . . →
⊕

Un−2∈Gn−2(V )

∧kUn−2 ⊗ St(V/Un−2) →
⊕

Un−1∈Gn−1(V )

∧kUn−1 → ∧kV → 0.

Writing
[
n

j

]
q

for the q-binomial coefficient, Theorem 3.1 implies that

dimDk(V ) =
n∑

j=k

(−1)j−k

(
j

k

)
q(n−j

2 )
[
n

j

]

q

. (4)
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(1, 0, 0)

+

−+

− +

(0, 0, 1)⊥

(0, 1, 0)⊥

(0,−t, 1)

(0, 1, t)⊥

(−s, 0, 1) (0, 0, 1)

(1, r, s)⊥
(−rt, t, 0) (0,−t, 0)

(1, 0, 0)⊥

(rt− s,−t, 1)

+ − − +

(s, 0, 0)

(rt− s, 0, 0)

(−rt, 0, 0)

−+

−

Figure 3: The cycle c̃v for a generic v = ((1, r, s), (0, 1, t)).

By the q-binomial theorem (see e.g. (1.87) in [8])

n−1∏

j=0

(1 + qjλ) =
n∑

j=0

q(j

2)
[
n

j

]

q

λj. (5)

Substituting λ = −t−1 in (5) and multiplying by tn it follows that

n−1∏

j=0

(t− qj) =

n∑

j=0

(−1)jq(j

2)
[
n

j

]

q

tn−j . (6)

Differentiating (6) k times and multiplying by (−1)n−k

k!
we obtain

n−1∏

j=0

(qj − t)
∑

0≤α0<···<αk−1≤n−1

k−1∏

ℓ=0

1

qαℓ − t

=

n∑

j=0

(−1)n−k+j

(
n− j

k

)
q(j

2)
[
n

j

]

q

tn−j−k

=
n∑

j=0

(−1)j−k

(
j

k

)
q(n−j

2 )
[
n

j

]

q

tj−k.

(7)
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(−rt, t, 0)

(0, 0, 1)

+

−

+

−

(0, 0, 1)⊥

(0,−t, 1)(rt,−t, 1)

+−−

−

+

+

−

+

(0, 1, t)⊥

(−rt, 0, 0)

(0,−t, 0)

(1, r, 0, )⊥ (1, 0, 0)⊥

Figure 4: The cycle c̃v for v = (v1, v2) = ((1, r, 0), (0, 1, t)).

Substituting t = 1 in (7) and using (4) we obtain (2).

�

3.1 A Basis for Dn−1(V )

In this subsection we describe an explicit basis for Dn−1(V ) = H̃0(XV ;∧n−1g). We
first recall some facts concerning the exterior algebra ∧V . Let V = Fn

q . Using the
notation of Section 2, recall that e1, . . . , en are the unit vectors in V , and a · b denotes
the standard symmetric bilinear form on V . Let e = e1∧· · ·∧en ∈ ∧nV . The induced
bilinear form on ∧pV is given by

(u1 ∧ · · · ∧ up) · (v1 ∧ · · · ∧ vp) = det
(
ui · vj

)p
i,j=1

.

The star operator ∗ : ∧n−kV → ∧kV is the unique linear map that satisfies

(∗α) · β = e · (α ∧ β)

for any α ∈ ∧n−kV, β ∈ ∧kV .

Claim 3.2. Let v1, . . . , vn−k be linearly independent vectors in V and letM = 〈v1, . . . , vn−k〉
⊥.

Then

0 6= ∗(v1 ∧ · · · ∧ vn−k) ∈ ∧kM.
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Proof. Extend {vi}
n−k
i=1 to a basis {vi}

n
i=1 of V , and let {wj}

n
j=1 be the dual basis,

i.e. vi · wj = δi,j. Then M = 〈wn−k+1, . . . , wn〉. For a subset L = {i1, . . . , iℓ} ∈
(
[n]
ℓ

)

such that 1 ≤ i1 < · · · < iℓ ≤ n let vL = vi1 ∧ · · · ∧ viℓ and wL = wi1 ∧ · · · ∧ wiℓ . If

L, L′ ∈
(
[n]
ℓ

)
then vL · wL′ = δL,L′.

Let I0 = {1, . . . , n − k}, J0 = {n − k + 1, . . . , n}, and let ∗vI0 =
∑

|J |=k λJwJ . Then

for any J ′ ∈
(
[n]
k

)

∗ vI0 · vJ ′ =
∑

|J |=k

λJwJ · vJ ′ = λJ ′. (8)

On the other hand

∗vI0 · vJ ′ = e · (vI0 ∧ vJ ′)

=

{
det(v1, . . . , vn) J ′ = J0,
0 J ′ 6= J0.

(9)

Combining (8) and (9), it follows that 0 6= ∗vI0 = det(v1, . . . , vn)wJ0 ∈ ∧kM .

�

We proceed to construct a basis of Dn−1(V ) = H̃0(XV ;∧n−1g). Note that if u ∈ V ,
then by Claim 3.2, (∗u)u⊥ ∈ C0(XV ;∧n−1g). For any 1 ≤ i ≤ n let

zu,i = (∗ei)e
⊥
i + (∗u)u⊥ − (∗(u + ei))(u + ei)

⊥ ∈ C0(XV ;∧n−1g).

Then
∂0(zu,i) = ∗ei + ∗u− ∗(u + ei) = ∗(ei + u− (u + ei)) = 0

and therefore zu,i ∈ Dn−1(V ). For 2 ≤ i ≤ n let Ri =
(
Fi−1
q \ {0}

)
× {0}n−i+1.

Claim 3.3.

B =
{
zu,i : 2 ≤ i ≤ n , u ∈ Ri

}
(10)

is a basis of Dn−1(V ).

Proof. By Theorem 1.5

dimDn−1(V ) =

n∑

i=2

(qi−1 − 1) =

n∑

i=2

|Ri| = |B|.

It therefore suffices to show that the elements of B are linearly independent. This
in turn follows from the fact that for any 2 ≤ j ≤ n and v ∈ Rj , it holds that
(v + ej)

⊥ ∈ supp(zv,j), but (v + ej)
⊥ 6∈ supp(zu,i) for any (u, i) 6= (v, j) such that

2 ≤ i ≤ j and u ∈ Ri.

�
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4 Minimal Cycles in Dk(V )

In this section we prove Theorem 1.6. The upper bound follows from a construction of
certain explicit (n− k− 1)-cycles of Dk(V ) given in Subsection 4.1. The lower bound
is established in Subsection 4.2.

4.1 The Upper Bound

Let 1 ≤ k ≤ n− 1 and let m = n− k + 2. Let u = (u1, . . . , um) ∈ V m be an ordered
m-tuple of vectors in V whose only linear dependence is

∑m

i=1 ui = 0. Let Im−2,m

denote the family of injective functions π : [n − k] = [m − 2] → [m]. For π ∈ Im−2,m

let T (u, π) be the (n− k − 1)-simplex given by

T (u, π) = [〈uπ(1), . . . , uπ(n−k)〉
⊥ ⊂ · · · ⊂ 〈uπ(1)〉

⊥].

Let γu ∈ Cn−k−1(XV ;∧kg) be the chain whose value on an (n − k − 1)-simplex F is
given by

γu(F ) =

{
∗
(
uπ(1) ∧ · · · ∧ uπ(n−k)

)
F = T (u, π),

0 otherwise.
(11)

Proposition 4.1. γu ∈ Dk(V ).

Proof. Let G be an (n−k−2)-simplex in XV . Let Γu(G) denote the set of (n−k−1)-
simplices in supp(γu) that contain G. For 2 ≤ ℓ ≤ n − k let ηℓ ∈ Sn−k−2 denote the
transposition (n− k − ℓ + 1, n− k − ℓ + 2). We consider the following two cases:

1. G = T (u, π)ℓ for some 2 ≤ ℓ ≤ n− k and π ∈ Im−2,m.
Then

Γu(G) = {T (u, π), T (u, πηℓ)} .

As G is the ℓ-th face of both these simplices, it follows that

(−1)ℓ+1∂n−k−1γu(G) = γu(T (u, π)) + γu(T (u, πηℓ))

= ∗
(
uπ(1) ∧ · · · ∧ uπ(n−k−ℓ+1) ∧ uπ(n−k−ℓ+2) ∧ · · · ∧ uπ(n−k)

)

+ ∗
(
uπ(1) ∧ · · · ∧ uπ(n−k−ℓ+2) ∧ uπ(n−k−ℓ+1) ∧ · · · ∧ uπ(n−k)

)
= 0.

2. G = T (u, π)1 for some π ∈ Im−2,m.
Let [m] \ π([m− 3]) = {α1, α2, α3}. For i = 1, 2, 3 define πi ∈ Im−2,m by

πi(j) =

{
π(j) 1 ≤ j ≤ n− k − 1,
αi j = n− k.

Then
Γu(G) = {T (u, π1), T (u, π2), T (u, π3)} .
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As G is the 1-th face of these three simplices, it follows that

∂n−k−1γu(G) =
3∑

i=1

γu(T (u, πi))

=

3∑

i=1

∗
(
uπ(1) ∧ · · · ∧ uπ(n−k−1) ∧ uαi

)

= ∗
(
uπ(1) ∧ · · · ∧ uπ(n−k−1) ∧ (

3∑

i=1

uαi
)
)

= ∗
(
uπ(1) ∧ · · · ∧ uπ(n−k−1) ∧ (

m∑

j=1

uj)
)

= 0.

We have thus shown that γu ∈ Dk(V ).

�

Corollary 4.2.

min
{
|supp(w)| : 0 6= w ∈ Dk(V )

}
≤ |supp(γu)|

= |Im−2,m| =
(n− k + 2)!

2
.

Example: Let n = 3, k = 1. A minimal twisted 1-cycle in D1(XV ) is depicted in
Figure 4.

4.2 The Lower Bound

In preparation for the proof of the lower bound in Theorem 1.6, we first recall a twisted
version of the nerve lemma. Let F be a local system on a finite simplicial complex
Y , and let Y = {Yi}

m
i=1 be a family of subcomplexes of Y such that Y =

⋃m

i=1 Yi.
The nerve of the cover Y is the simplicial complex N = N(Y) on the vertex [m] =
{1, . . . , m}, whose simplices are the subsets τ ⊂ [m] such that Yτ :=

⋂
i∈τ Yi 6= ∅.

For j ≥ 1 let Nj(F) be the local system on N given by Nj(F)(τ) = Hj(Yτ ;F). The
following result is twisted version of the Mayer-Vietoris spectral sequence (see e.g.
[5]).

Proposition 4.3. There exists a spectral sequence {Er
p,q} converging to H∗(Y ;F) such

that E1
p,q =

⊕
σ∈N(p) Hq(Yσ;F) and E2

p,q = Hp(N ;Nq(F)).

The Nerve Lemma is the following

Corollary 4.4. Suppose that Hq(Yσ;F) = 0 for all q ≥ 1 and σ ∈ N(p) such that

p + q ≤ t. Then Hp(Y ;F) ∼= Hp(N ;N0(F)) for all 0 ≤ p ≤ t.
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We will also need a simple observation concerning a certain twisted homology of the
simplex. Let r ≥ 2 and let W1, . . . ,Wr be arbitrary linear subspaces of a finite
dimensional vector space W over a field K. Let ∆r−1 denote the simplex on the vertex
set [r], and let G be the local system on ∆r−1 given by

G(σ) =

{ ⋂
i∈σ Wi ∅ 6= σ ∈ ∆r−1,

W σ = ∅,

with the natural inclusion maps.

Proposition 4.5. H̃k(∆r−1;G) = 0 for k ≥ r − 2.

Proof: Using the natural order on {1, . . . , r}, the top dimensional simplex in ∆r−1 is
τ = [1, 2, · · · , r], and its i-th face is τi = [1, . . . , i− 1, i + 1, . . . , r]. For 1 ≤ i < j ≤ r
let

τi,j = [1, . . . , i− 1, i + 1, . . . , j − 1, j + 1, . . . , r].

Then

Cr−1(∆r−1,G) =

{
wτ : w ∈

r⋂

i=1

Wi

}

and

Cr−2(∆r−1,G) =

{
r∑

i=1

wiτi : wi ∈
⋂

ℓ∈τi

Wℓ

}
.

The boundary map ∂r−1 : Cr−1(∆r−1;G) → Cr−2(∆r−1;G) is given by

∂r−1(wτ) =

r∑

i=1

(−1)i+1wτi. (12)

Note that for 1 ≤ i ≤ r and 1 ≤ j ≤ r − 1, the j-th face of τi is

(τi)j =

{
τj,i 1 ≤ j < i ≤ r,
τi,j+1 1 ≤ i ≤ j ≤ r − 1.

It follows that the boundary map ∂r−2 : Cr−2(∆r−1;G) → Cr−3(∆r−1;G) is given by

∂r−2

( r∑

i=1

wiτi
)

=
r∑

i=1

r−1∑

j=1

(−1)j+1wi(τi)j

=
r∑

i=1

i−1∑

j=1

(−1)j+1wiτj,i +
r∑

i=1

r−1∑

j=i

(−1)j+1wiτi,j+1

=

r∑

j=1

j−1∑

i=1

(−1)i+1wjτi,j +

r∑

i=1

r∑

j=i+1

(−1)jwiτi,j

=
∑

1≤i<j≤r

(
(−1)i+1wj + (−1)jwi

)
τi,j.

(13)
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Eq. (12) implies that H̃r−1(∆r−1;G) = 0. Next let c =
∑r

i=1wiτi ∈ ker ∂r−2 be a G-
twisted (r−2)-cycle of ∆r−1. It follows by (13) that wj = (−1)j+1w1 for all 1 ≤ j ≤ r.
Therefore w1 ∈

⋂r

i=1Wi and hence w1τ ∈ Cr−1(X ;G). Eq. (12) then implies that
∂r−1(w1τ) = c. Thus H̃r−2(∆r−1;G) = 0.

�

Proof of the lower bound in Theorem 1.6. We argue by induction on n − k.
For the induction basis k = n − 1, we have to show that if 0 6= z ∈ Dn−1(V ) =

H̃0(XV ;∧n−1g), then |supp(z)| ≥ (n−k+2)!
2

= 3. Suppose for contradiction that |supp(z)| <
3. Then z = (∗u)u⊥ + (∗v)v⊥ for some u, v ∈ V . As

0 = ∂0z = (∗u) + (∗v) = ∗(u + v),

it follows that u + v = 0 and hence z = 0, a contradiction. For the induction step,
assume that n− k ≥ 2 and let

0 6= z =
∑

z∈XV (n−k−1)

z(τ)τ ∈ Hn−k−1(XV ;∧kg) = Zn−k−1(XV ;∧kg).

Let supp(z) = {τ1, . . . , τs} ∈ XV (n− k − 1) and write

τi = [Vk(i), . . . , Vn−1(i)],

where dim Vj(i) = j for all 1 ≤ i ≤ s and k ≤ j ≤ n− 1. Let

{Vn−1(i) : 1 ≤ i ≤ s} = {U1, . . . , Ur},

where the Ui’s are distinct (n− 1)-dimensional subspaces. Let Ui = {U : 0 6= U ⊂ Ui}
and let Yi = XV [Ui]. Let Y = ∪r

i=1Yi then clearly z ∈ Zn−k−1(Y ;∧kg). Let N be the
nerve of the cover {Yi}

r
i=1 of Y . For σ ⊂ [r] let Uσ = ∩i∈σUi and Yσ = ∩i∈σYi. If

σ ∈ N then Yσ is the order complex of the poset Pσ = {W : 0 6= W ⊂ Uσ}. As Pσ has
a unique maximal element Uσ it follows (see e.g. Lemma 1.4 in [5]) that

Nq(∧
kg)(σ) = Hq(Yσ;∧kg) =

{
∧kUσ q = 0,
0 q > 0.

(14)

Write
F(σ) = N0(∧

kg)(σ) = ∧kUσ.

Eq. (14) and Corollary 4.4 imply that for all p ≥ 0

Hp(Y ;∧kg) ∼= Hp(N ;F). (15)

Proposition 4.6. r ≥ n− k + 2.
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Proof: Suppose to the contrary that r ≤ n − k + 1. Then ∆
(r−2)
r−1 ⊂ N ⊂ ∆r−1.

For 1 ≤ i ≤ r let Wi = ∧kUi ⊂ ∧kV . Let G be the local system on ∆r−1 given by
G(σ) = ∩i∈σWi = ∧kUσ. Then G(σ) = F(σ) if σ ∈ N and G(σ) = 0 otherwise. Hence
H∗(∆r−1;G) = H∗(N ;F). As n − k − 1 ≥ r − 2, it follows by combining (15) and
Proposition 4.5 that

Hn−k−1(Y ;∧kg) ∼= Hn−k−1(N ;F) = Hn−k−1(∆r−1;G) = 0,

in contradiction with the assumption that z is a nonzero element of Hn−k−1(Y ;∧kg).

�

We now conclude the proof of Theorem 1.6. For 1 ≤ j ≤ r define zj ∈ Cn−k−2(XUj
;∧kg)

as follows. For an (n − k − 2)-simplex F = [Vk, . . . , Vn−2] ∈ XUj
(n − k − 2) let

zj(F ) = z([Vk, . . . , Vn−2, Uj]). Then ∂n−k−2zj = 0. Indeed, suppose that

[Vk, . . . , Vi−1, Vi+1, . . . , Vn−2] ∈ XUj
(n− k − 3),

where dim Vℓ = ℓ for i 6= ℓ ∈ {k, . . . , n− 2}. Then:

∂n−k−2zj ([Vk, . . . , Vi−1, Vi+1, . . . , Vn−2])

= (−1)i+k
∑

Vi−1⊂Vi⊂Vi+1

zj ([Vk, . . . , Vi−1, Vi, Vi+1, . . . , Vn−2])

= (−1)i+k
∑

Vi−1⊂Vi⊂Vi+1

z ([Vk, . . . , Vi−1, Vi, Vi+1, . . . , Vn−2, Uj ])

= ∂n−k−1z ([Vk, . . . , Vi−1, Vi+1, . . . , Vn−2, Uj]) = 0.

As 0 6= zj ∈ Hn−k−2(XUj
;∧kg), it follows by induction that |supp(zj)| ≥

(n−k+1)!
2

.
Therefore by Proposition 4.6

|supp(z)| =

r∑

j=1

|supp(zj)| ≥ (n− k + 2)
(n− k + 1)!

2
=

(n− k + 2)!

2
.

�

5 Concluding Remarks

In this paper we studied some aspects of the twisted homology modules Dk(V ) =
H̃n−k−1(XV ;∧kg). Our results suggest several problems and directions for further
research:

• In Sections 2 and 3.1 we described explicit bases for D1(V ) = H̃n−2(XV ; g) and
for Dn−1(V ) = H̃0(XV ;∧n−1g). It would be interesting to obtain analogous
constructions for other Dk(V )’s.
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• The Nerve Lemma argument used in the proof of Theorem 1.6 can be adapted
to give a simple alternative proof of the Smith-Yoshiara Theorem 1.3. We hope
that this approach can also be useful for the study of minimal cycles of local
systems over other highly symmetric complexes.

• The Smith-Yoshiara Theorem 1.3 and its counterpart for the local system ∧kg,
Theorem 1.6, show that the linear codes that arise from (twisted) homology of
XV have small distance relative to their length, and are therefore far from good
codes. On the other hand, it is known (see [2]) that for fixed integers n ≥ 2 and
K > 0 there is a constant λ = λ(n,K) > 0, such that for sufficiently large N

there exists a complex XN ⊂ ∆
(n)
N−1 whose number of n-faces satisfies fn(XN) =

K
(
N

n

)
, and such that |supp(z)| ≥ λ

(
N

n

)
for all 0 6= z ∈ C = Hn(XN ;F2). In

particular, the rate r(C) and relative distance δ(C) of C satisfy

r(C) =
dimC

fn(XN)
≥

K − 1

K

and

δ(C) =
min{|supp(c)| : 0 6= c ∈ C}

fn(XN )
≥

λ

K
.

It would be interesting to give explicit constructions of simplicial complexes that
give rise to homological codes with similar parameters.
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