On Lusztig-Dupont Homology of Flag Complexes

Roy Meshulam* Shira Zerbib ${ }^{\dagger}$

July 23, 2019

Abstract

Let V be an n-dimensional vector space over the finite field \mathbb{F}_{q}. The spherical building X_{V} associated with $G L(V)$ is the order complex of the nontrivial linear subspaces of V. Let \mathfrak{g} be the local coefficient system on X_{V}, whose value on the simplex $\sigma=\left[V_{0} \subset \cdots \subset V_{p}\right] \in X_{V}$ is given by $\mathfrak{g}(\sigma)=V_{0}$. The homology module $\mathcal{D}^{1}(V)=\tilde{H}_{n-2}\left(X_{V} ; \mathfrak{g}\right)$ plays a key role in Lusztig's seminal work on the discrete series representations of $G L(V)$. Here, some further properties of \mathfrak{g} and its exterior powers are established. These include a construction of an explicit basis of $\mathcal{D}^{1}(V)$, a computation of the dimension of $\mathcal{D}^{k}(V)=\tilde{H}_{n-k-1}\left(X_{V} ; \wedge^{k} \mathfrak{g}\right)$, and the following twisted analogue of a result of Smith and Yoshiara: For any $1 \leq k \leq n-1$, the minimal support size of a non-zero ($n-k-1$)-cycle in the twisted homology $\tilde{H}_{n-k-1}\left(X_{V} ; \wedge^{k} \mathfrak{g}\right)$ is $\frac{(n-k+2)!}{2}$.

2000 MSC: 55U10, 20E42
Keywords: Spherical buildings, Homology of local systems

1 Introduction

Let q be a prime power and let V be an n-dimensional vector space over the finite field \mathbb{F}_{q}. The spherical building associated with $G=G L(V)$ is the order complex X_{V} of the nontrivial linear subspaces of V : The vertices of X_{V} are the linear subspaces $0 \neq U \subsetneq V$, and the k-simplices are families of subspaces of the form $\left\{U_{0}, \ldots, U_{k}\right\}$, where $U_{0} \subsetneq \cdots \subsetneq U_{k}$. The homotopy type of X_{V} was determined by Solomon and Tits [9] (see also Theorem 4.73 in [1]).

[^0]Theorem 1.1 (Solomon-Tits). X_{V} is homotopy equivalent to a wedge of $q^{\binom{n}{2}}(n-2)$ spheres. In particular, the reduced homology of X_{V} with coefficients in a field \mathbb{K} is given by

$$
\operatorname{dim} \tilde{H}_{i}\left(X_{V} ; \mathbb{K}\right)= \begin{cases}0 & i \neq n-2 \\ q^{\binom{n}{2}} & i=n-2\end{cases}
$$

The natural action of G on X_{V} induces a representation of G on $\tilde{H}_{n-2}\left(X_{V} ; \mathbb{K}\right)$. Viewed as a G-module, $\tilde{H}_{n-2}\left(X_{V} ; \mathbb{K}\right)$ is the Steinberg module of G over \mathbb{K} (see e.g. section 6.4 in [6]). We recall some facts concerning X_{V} and the Steinberg module. For a subset $S \subset V$, let $\langle S\rangle=\operatorname{span}(S)$ denote the linear span of S. Let $[n]=\{1, \ldots, n\}$. Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V and let \tilde{B} be the set of vertices of X_{V} given by

$$
\tilde{B}=\left\{\left\langle v_{i}: i \in I\right\rangle: \emptyset \neq I \subsetneq[n]\right\}
$$

The induced subcomplex $X_{V}[\tilde{B}]$ is the apartment determined by B. Clearly, $X_{V}[\tilde{B}]$ is isomorphic to the barycentric subdivision of the boundary of a ($n-1$)-simplex, and thus

$$
\tilde{H}_{n-2}\left(X_{V}[\tilde{B}] ; \mathbb{K}\right) \cong \mathbb{K}
$$

We next exhibit a generator z_{B} of $\tilde{H}_{n-2}\left(X_{V}[\tilde{B}] ; \mathbb{K}\right)$. For a permutation π in the symmetric group \mathbb{S}_{n} and for $1 \leq i \leq n$, let $V_{\pi}(i)=\left\langle v_{\pi(1)}, \ldots, v_{\pi(i)}\right\rangle$ and let σ_{π} be the ordered $(n-2)$-simplex

$$
\sigma_{\pi}=\left[V_{\pi}(1) \subset \cdots \subset V_{\pi}(n-1)\right] .
$$

Then $z_{B}=\sum_{\pi \in \mathbb{S}_{n}} \operatorname{sgn}(\pi) \sigma_{\pi}$ is a generator of $\tilde{H}_{n-2}\left(X_{V}[\tilde{B}] ; \mathbb{K}\right)$. The following explicit construction of a basis of $\tilde{H}_{n-2}\left(X_{V}[\tilde{B}] ; \mathbb{K}\right)$ is due to Solomon [9] (see also Theorem 4.127 in [1]).

Theorem 1.2 (Solomon). Let σ be a fixed $(n-2)$-simplex of X_{V}. Then

$$
\left\{z_{B}: B \text { is a basis of } V \text { such that } \sigma \in X_{V}[\tilde{B}]\right\}
$$

is a basis of $\tilde{H}_{n-2}\left(X_{V}[\tilde{B}] ; \mathbb{K}\right)$.
The support of a $(n-2)$-chain $c=\sum_{\sigma} a_{\sigma} \sigma \in C_{n-2}\left(X_{V} ; \mathbb{K}\right)$ is

$$
\operatorname{supp}(c)=\left\{\sigma: a_{\sigma} \neq 0\right\} .
$$

Clearly, $\left|\operatorname{supp}\left(z_{B}\right)\right|=n!$ for any basis B of V. Smith and Yoshiara [7] proved that the z_{B} 's are in fact the nontrivial $(n-2)$-cycles of minimal support in X_{V}.

Theorem 1.3 (Smith-Yoshiara).

$$
\min \left\{|\operatorname{supp}(z)|: 0 \neq z \in \tilde{H}_{n-2}\left(X_{V} ; \mathbb{K}\right)\right\}=n!.
$$

In this paper we study analogues of Theorems 1.1, 1.2 and 1.3 for the homology of X_{V} with certain local coefficient systems introduced by Lusztig and Dupont. We first recall some definitions. Let X be a simplicial complex on a vertex set S. Let \prec be an arbitrary fixed linear order on S. For $k \geq-1$ let $X(k)$ denote the set of k-dimensional simplices of X, and let $X^{(k)}$ denote the k-dimensional skeleton of X. A simplex $\sigma \in X(k)$ will be written as $\sigma=\left[s_{1}, \ldots, s_{k+1}\right]$ where $s_{1} \prec \cdots \prec s_{k+1}$. The i-th face of σ as above is the $(k-1)$-simplex $\sigma_{i}=\left[s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{k+1}\right]$. For a 0 -dimensional simplex $\sigma=\left[s_{1}\right]$, let $\sigma_{1}=\emptyset$ be the empty simplex. A local system \mathcal{F} on X is an assignment of an abelian group $\mathcal{F}(\sigma)$ to each simplex $\sigma \in X$, together with homomorphisms $\rho_{\sigma}^{\tau}: \mathcal{F}(\tau) \rightarrow \mathcal{F}(\sigma)$ for each $\sigma \subset \tau$ satisfying the usual compatibility conditions: $\rho_{\sigma}^{\sigma}=$ identity, and $\rho_{\eta}^{\sigma} \rho_{\sigma}^{\tau}=\rho_{\eta}^{\tau}$ if $\eta \subset \sigma \subset \tau$. A \mathcal{F}-twisted k-chain of X is a formal linear combination $c=\sum_{\sigma \in X(k)} c(\sigma) \sigma$, where $c(\sigma) \in \mathcal{F}(\sigma)$. Let $C_{k}(X ; \mathcal{F})$ denote the group of \mathcal{F}-twisted k-chains of X. For $k \geq 0$ define the boundary map

$$
\partial_{k}: C_{k}(X ; \mathcal{F}) \rightarrow C_{k-1}(X ; \mathcal{F})
$$

by

$$
\partial_{k}\left(\sum_{\sigma \in X(k)} c(\sigma) \sigma\right)=\sum_{\sigma \in X(k)} \sum_{i=1}^{k+1}(-1)^{i+1} \rho_{\sigma_{i}}^{\sigma}(c(\sigma)) \sigma_{i} .
$$

For $k=-1$ let ∂_{-1} denote the zero $\operatorname{map} C_{-1}(X ; \mathcal{F})=\mathcal{F}(\emptyset) \rightarrow 0$. The homology of X with coefficients in \mathcal{F}, denoted by $H_{*}(X, \mathcal{F})$, is the homology of the complex $\oplus_{i \geq 0} C_{i}(X ; \mathcal{F})$. The reduced homology $\tilde{H}_{*}(X, \mathcal{F})$ is the homology of $\oplus_{i \geq-1} C_{i}(X ; \mathcal{F})$. Let X, Y be two simplicial complexes and let $f: X \rightarrow Y$ be a simplicial map such that $\operatorname{dim} f(\sigma)=\operatorname{dim} \sigma$ for all $\sigma \in X$. Let \mathcal{G} be a local system on Y. The inverse image system $\mathcal{F}=f^{-1} \mathcal{G}$ given by $\mathcal{F}(\sigma)=\mathcal{G}(f(\sigma))$ is a local system on X. The induced mapping on homology is denoted by $f_{*}: \tilde{H}_{k}(X ; \mathcal{F}) \rightarrow \tilde{H}_{k}(Y ; \mathcal{G})$. For further discussion of local coefficient homology, see e.g. chapter 7 in [3] and chapter 10 in [6].

Lusztig, in his seminal work [5] on discrete series representations of $G L(V)$, defined and studied the local system \mathfrak{g} on X_{V} given by $\mathfrak{g}\left(U_{1} \subset \cdots \subset U_{\ell}\right)=U_{1}$ and $\mathfrak{g}(\emptyset)=V$, where the connecting homomorphisms ρ_{σ}^{τ} 's are the natural inclusion maps. Dupont, in his study of homological approaches to scissors congruences [4], extended some of Lusztig's results to the higher exterior powers $\wedge^{k} \mathfrak{g}$ over flag complexes of Euclidean spaces. For $i \geq 0$ let $\tilde{H}_{i}\left(X_{V} ; \wedge^{k} \mathfrak{g}\right)$ denote the i-th homology $\mathbb{F}_{q^{-}}$-module of the chain complex of X_{V} with $\wedge^{k} \mathfrak{g}$ coefficients. Note that $C_{-1}\left(X_{V} ; \wedge^{k} \mathfrak{g}\right)=\wedge^{k} V$. The following result was proved by Lusztig (Theorem 1.12 in [5]) for $k=1$, and extended by Dupont (Theorem 3.12 in [4]) to all $k \geq 1$.
Theorem 1.4 (Lusztig, Dupont). Let $1 \leq k \leq n-1$. Then $\tilde{H}_{i}\left(X_{V} ; \wedge^{k} \mathfrak{g}\right)=0$ for $i \neq n-k-1$.
Let $\mathcal{D}^{k}(V)=\tilde{H}_{n-k-1}\left(X_{V} ; \wedge^{k} \mathfrak{g}\right)$. Lusztig (Theorem 1.14 in [5]) proved that

$$
\begin{equation*}
\operatorname{dim} \mathcal{D}^{1}(V)=\prod_{i=1}^{n-1}\left(q^{i}-1\right) \tag{1}
\end{equation*}
$$

The proof of (1) in [5] is based on the case $k=1$ of Theorem 1.4, combined with an Euler characteristic computation. In Section 2 we describe an explicit basis of $\mathcal{D}^{1}(V)$. This construction may be regarded as a twisted counterpart of Theorem 1.2. Concerning the dimension of $\mathcal{D}^{k}(V)$ for general k, we prove the following extension of Theorem 1.

Theorem 1.5.

$$
\begin{equation*}
\operatorname{dim} \mathcal{D}^{k}(V)=\sum_{1 \leq \alpha_{1}<\cdots<\alpha_{n-k} \leq n-1} \prod_{j=1}^{n-k}\left(q^{\alpha_{j}}-1\right) \tag{2}
\end{equation*}
$$

Our final result is an analogue of the Smith-Yoshiara Theorem 1.3 for the coefficient system $\wedge^{k} \mathfrak{g}$.

Theorem 1.6.

$$
\min \left\{|\operatorname{supp}(w)|: 0 \neq w \in \mathcal{D}^{k}(V)\right\}=\frac{(n-k+2)!}{2}
$$

The paper is organized as follows. In Section 2 we construct an explicit basis for $\mathcal{D}^{1}(V)$. In Section 3 we use an exact sequence due to Dupont to prove Theorem 1.5. In Section 4 we recall the Nerve lemma for homology with local coefficients, and obtain a vanishing result for a certain local system on the simplex. These results are used to prove Theorem 1.6. We conclude in Section 5 with some remarks and open problems.

2 A Basis for $\mathcal{D}^{1}(V)$

In this section we construct an explicit basis for $\mathcal{D}^{1}(V)=\tilde{H}_{n-2}\left(X_{V} ; \mathfrak{g}\right)$. Let $V=\mathbb{F}_{q}^{n}$ and let e_{1}, \ldots, e_{n} be the standard basis of V. For $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right) \in V$ let $a \cdot b$ denote the standard bilinear form $\sum_{i=1}^{n} a_{i} b_{i}$. For a subset $S \subset V$, let $S^{\perp}=\{u \in$ $V: u \cdot s=0$, for all $s \in S\}$. Let \prec be any linear order on $X_{V}(0)$ such that $U \prec U^{\prime}$ if $\operatorname{dim} U<\operatorname{dim} U^{\prime}$. Then an $(n-2)$-simplex in X_{V} is of the form $\left[U_{1}, \ldots, U_{n-1}\right]$, where $0 \neq U_{1} \subsetneq \cdots \subsetneq U_{n-1} \subsetneq V$.

For simplicial complexes Y, Z defined on disjoint vertex sets, let $Y * Z=\{\sigma \cup \tau$: $\sigma \in Y, \tau \in Z\}$ denote their simplicial join. Let $a_{1}^{0}, a_{1}^{1}, \ldots, a_{n-1}^{0}, a_{n-1}^{1}, b$ be $2 n-1$ distinct elements. Let M denote the octahedral ($n-2$)-sphere

$$
M=\left\{a_{1}^{0}, a_{1}^{1}\right\} * \cdots *\left\{a_{n-1}^{0}, a_{n-1}^{1}\right\}
$$

and let $K=M \cup\left(\{b\} * M^{(n-3)}\right)$. See Figure 1a for a depiction of the 2-dimensional complex K when $n=4$.

Choose a linear order \prec_{1} on the simplices of K such that $\sigma \prec_{1} \tau$ if $\operatorname{dim} \sigma>$ $\operatorname{dim} \tau$. The barycentric subdivision of K, denoted by $\operatorname{sd}(K)$, is the complex whose vertex set $\operatorname{sd}(K)(0)$ consists of all nonempty simplices of K, and whose k-simplices

(a) ($n-2$)-dimensional K for $n=4$

(b) $(n-3)$-simplices in $\operatorname{sd}(K)$

Figure 1: Four types of $(n-3)$-simplices in $\operatorname{sd}(K)=\operatorname{supp}\left(c_{\mathbf{v}}\right)$
(ordered according to \prec_{1}) are $\left[\sigma_{1}, \ldots, \sigma_{k+1}\right]$ where $\sigma_{1} \supsetneq \cdots \supsetneq \sigma_{k+1}$. For a sequence $\mathbf{x}=\left(x_{1}, \ldots, x_{n-1}\right)$ of distinct vertices of K, such that $\left\{x_{1}, \ldots, x_{n-1}\right\} \in K$, let $S(\mathbf{x})$ denote the $(n-2)$-simplex of $\operatorname{sd}(K)$ given by

$$
S(\mathbf{x})=\left[\left\{x_{1}, \ldots, x_{n-1}\right\},\left\{x_{1}, \ldots, x_{n-2}\right\}, \ldots,\left\{x_{1}\right\}\right] .
$$

For a permutation π in the symmetric group \mathbb{S}_{n-1} let $\pi(\mathbf{x})=\left(x_{\pi(1)}, \ldots, x_{\pi(n-1)}\right)$. Let $E=\{0,1\}^{n-1}$ and for $1 \leq j \leq n-1$ let

$$
E_{j}=\left\{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in E: \epsilon_{j}=0\right\} .
$$

For $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in E$ and $1 \leq j \leq n-1$ let $\mathbf{a}^{\boldsymbol{\epsilon}}=\left(a_{1}^{\epsilon_{1}}, \ldots, a_{n-1}^{\epsilon_{n-1}}\right)$ and let

$$
\mathbf{a}^{\boldsymbol{\epsilon}, j}=\left(a_{1}^{\epsilon_{1}}, \ldots, a_{j-1}^{\epsilon_{j-1}}, b, a_{j+1}^{\epsilon_{j+1}}, \ldots, a_{n-1}^{\epsilon_{n-1}}\right) .
$$

Let $T_{q, n}$ denote the set of all sequences $\mathbf{v}=\left(v_{1}, \ldots, v_{n-1}\right) \in V^{n-1}$ such that $v_{i} \in$ $e_{i}+\left\langle e_{i+1}, \ldots, e_{n}\right\rangle$ and $v_{i} \neq e_{i}$ for all $1 \leq i \leq n-1$. Clearly $\left|T_{q, n}\right|=\prod_{i=1}^{n-1}\left(q^{i}-1\right)$.
Fix $\mathbf{v}=\left(v_{1}, \ldots, v_{n-1}\right) \in T_{q, n}$. For $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in E$, let $\mathbf{v}^{\epsilon}=\left(u_{1}, \ldots, u_{n-1}\right)$, where

$$
u_{i}= \begin{cases}e_{i} & \epsilon_{i}=0, \\ v_{i} & \epsilon_{i}=1\end{cases}
$$

For $1 \leq j \leq n-1$ let $\mathbf{v}^{\boldsymbol{\epsilon}, j}=\left(u_{1}, \ldots, u_{n-1}\right)$, where

$$
u_{i}= \begin{cases}e_{n} & i=j \\ e_{i} & i \neq j \& \epsilon_{i}=0 \\ v_{i} & i \neq j \& \epsilon_{i}=1\end{cases}
$$

Define $\theta_{\mathbf{v}}: K(0) \rightarrow V$ by

$$
\theta_{\mathbf{v}}(x)= \begin{cases}e_{i} & x=a_{i}^{0} \\ v_{i} & x=a_{i}^{1} \\ e_{n} & x=b,\end{cases}
$$

and let $f_{\mathbf{v}}: \operatorname{sd}(K)(0) \rightarrow X_{V}(0)$ be the map given by

$$
f_{\mathbf{v}}(\sigma)=\left\langle\theta_{\mathbf{v}}(x): x \in \sigma\right\rangle^{\perp}
$$

Clearly, $f_{\mathbf{v}}$ extends to a simplicial map from $\operatorname{sd}(K)$ to X_{V}. The inverse of \mathfrak{g} under $f_{\mathbf{v}}$ is the local system of $\operatorname{sd}(K)$ given by $\mathfrak{h}_{\mathbf{v}}=f_{\mathbf{v}}^{-1} \mathfrak{g}$. We next define an element

$$
c_{\mathbf{v}}=\sum_{F \in \operatorname{sd}(K)(n-2)} c_{\mathbf{v}}(F) F \in C_{n-2}\left(\operatorname{sd}(K) ; \mathfrak{h}_{\mathbf{v}}\right) .
$$

For a sequence $\mathbf{u}=\left(u_{1}, \ldots, u_{n-1}\right) \in V^{n-1}$ of linearly independent vectors in V such that $e_{n} \notin\left\langle u_{1}, \ldots, u_{n-1}\right\rangle$, let $w(\mathbf{u})$ be the unique element $w \in\left\langle u_{1}, \ldots, u_{n-1}\right\rangle^{\perp}$ such that $w \cdot e_{n}=1$. For $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in\{0,1\}^{n-1}$ and $\pi \in \mathbb{S}_{n-1}$ let $\chi(\epsilon, \pi)=$ $(-1)^{\sum_{j=1}^{n-1} \epsilon_{j}} \operatorname{sgn}(\pi)$. On an $(n-2)$-simplex $F \in \operatorname{sd}(K)(n-2)$ define

$$
c_{\mathbf{v}}(F)= \begin{cases}\chi(\boldsymbol{\epsilon}, \pi) w\left(\mathbf{v}^{\epsilon}\right) & \boldsymbol{\epsilon} \in E, F=S\left(\pi\left(\mathbf{a}^{\epsilon}\right)\right), \tag{3}\\ \chi(\boldsymbol{\epsilon}, \pi)\left(w\left(\mathbf{v}^{\epsilon+e_{j}}\right)-w\left(\mathbf{v}^{\epsilon}\right)\right) & \boldsymbol{\epsilon} \in E_{j}, F=S\left(\pi\left(\mathbf{a}^{\epsilon, j}\right)\right), \\ 0 & \text { otherwise } .\end{cases}
$$

Note that $c_{\mathbf{v}}(F) \in \mathfrak{h}_{\mathbf{v}}(F)$ for all $F \in \operatorname{sd}(K)(n-2)$. Indeed, if $F=S\left(\pi\left(\mathbf{a}^{\epsilon}\right)\right)$ then

$$
\begin{aligned}
c_{\mathbf{v}}(F) & =\chi(\boldsymbol{\epsilon}, \pi) w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right) \in\left\langle v_{1}^{\epsilon_{1}}, \ldots, v_{n-1}^{\epsilon_{n-1}}\right\rangle^{\perp} \\
& =\mathfrak{g}\left(f_{\mathbf{v}}(F)\right)=\mathfrak{h}_{\mathbf{v}}(F) .
\end{aligned}
$$

If $F=S\left(\pi\left(\mathbf{a}^{\epsilon, j}\right)\right)$ for $1 \leq j \leq n-1$ and $\boldsymbol{\epsilon} \in E_{j}$ then

$$
\begin{aligned}
c_{\mathbf{v}}(F) & =\chi(\epsilon, \pi)\left(w\left(\mathbf{v}^{\epsilon+e_{j}}\right)-w\left(\mathbf{v}^{\epsilon}\right)\right) \in\left\langle v_{1}^{\epsilon_{1}}, \ldots, v_{j-1}^{\epsilon_{j-1}}, e_{n}, v_{j+1}^{\epsilon_{j+1}}, \ldots, v_{n-1}^{\epsilon_{n-1}}\right\rangle^{\perp} \\
& =\mathfrak{g}\left(f_{\mathbf{v}}(F)\right)=\mathfrak{h}(F) .
\end{aligned}
$$

Proposition 2.1. $c_{\mathbf{v}} \in \tilde{H}_{n-2}\left(\operatorname{sd}(K) ; \mathfrak{h}_{\mathbf{v}}\right)$.
Proof. Let $G \in \operatorname{sd}(K)(n-3)$. We have to show that $\partial_{n-2} c_{\mathbf{v}}(G)=0$. Let $\Gamma(G)$ denote the set of $(n-2)$-simplices in $\operatorname{sd}(K)$ that contain G. For $2 \leq \ell \leq n-1$ let $\eta_{\ell} \in \mathbb{S}_{n-1}$ denote the transposition $(n-\ell, n-\ell+1)$. We consider the following four cases according to the type of G. For $n=4$ we depict the types of the 24 bold edges in Figure 1b. The 6 edges incident with the vertex (1) are of type 1, and the 6 edges incident with the vertex (2) are of type 2 below. Of the remaining 12 edges, the 8 edges that are incident with vertices labelled (3) are of type 3, and the remaining 4 edges incident with vertices labelled by (4) are of type 4.

1. $G=S\left(\pi\left(\mathbf{a}^{\epsilon}\right)\right)_{\ell}$ for some $2 \leq \ell \leq n-1, \pi \in \mathbb{S}_{n-1}$ and $\boldsymbol{\epsilon} \in E$.

Then

$$
\Gamma(G)=\left\{S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}}\right)\right), S\left(\left(\pi \eta_{\ell}\right)\left(\mathbf{a}^{\epsilon}\right)\right)\right\}
$$

As G is the ℓ-th face of both these simplices, it follows that

$$
\begin{gathered}
(-1)^{\ell+1} \partial_{n-2} c_{\mathbf{v}}(G)=c_{\mathbf{v}}\left(S\left(\pi\left(\mathbf{a}^{\epsilon}\right)\right)\right)+c_{\mathbf{v}}\left(S\left(\left(\pi \eta_{\ell}\right)\left(\mathbf{a}^{\epsilon}\right)\right)\right) \\
\quad=\chi(\boldsymbol{\epsilon}, \pi) w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right)+\chi\left(\boldsymbol{\epsilon}, \pi \eta_{\ell}\right) w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right) \\
=\chi(\boldsymbol{\epsilon}, \pi) w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right)-\chi(\boldsymbol{\epsilon}, \pi) w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right)=0 .
\end{gathered}
$$

2. $G=S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}, j}\right)\right)_{\ell}$ for some $2 \leq \ell \leq n-1, \pi \in \mathbb{S}_{n-1}, 1 \leq j \leq n-1$ and $\epsilon \in E_{j}$.

Then

$$
\Gamma(G)=\left\{S\left(\pi\left(\mathbf{a}^{\epsilon, j}\right)\right), S\left(\left(\pi \eta_{\ell}\right)\left(\mathbf{a}^{\epsilon, j}\right)\right)\right\} .
$$

As G is the ℓ-th face of both these simplices, it follows that

$$
\begin{aligned}
& (-1)^{\ell+1} \partial_{n-2} c_{\mathbf{v}}(G)=c_{\mathbf{v}}\left(S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}, j}\right)\right)\right)+c_{\mathbf{v}}\left(S\left(\left(\pi \eta_{\ell}\right)\left(\mathbf{a}^{\boldsymbol{\epsilon}, j}\right)\right)\right) \\
& \quad=\chi(\boldsymbol{\epsilon}, \pi)\left(w\left(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}\right)-w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right)\right)+\chi\left(\boldsymbol{\epsilon}, \pi \eta_{\ell}\right)\left(w\left(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}\right)-w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right)\right) \\
& \quad=\chi(\boldsymbol{\epsilon}, \pi)\left(w\left(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}\right)-w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right)\right)-\chi(\boldsymbol{\epsilon}, \pi)\left(w\left(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}\right)-w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right)\right)=0 .
\end{aligned}
$$

3. $G=S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}}\right)\right)_{1}$ for some $\pi \in \mathbb{S}_{n-1}$ and $\boldsymbol{\epsilon} \in E_{j}$, where $j=\pi(n-1)$.

Then

$$
\Gamma(G)=\left\{S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}}\right)\right), S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}+e_{j}}\right)\right), S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}, j}\right)\right)\right\}
$$

As G is the 1-face of each of these simplices, it follows that

$$
\begin{aligned}
& \partial_{n-2} c_{\mathbf{v}}(G)=c_{\mathbf{v}}\left(S\left(\pi\left(\mathbf{a}^{\epsilon}\right)\right)\right)+c_{\mathbf{v}}\left(S\left(\pi\left(\mathbf{a}^{\epsilon+e_{j}}\right)\right)\right)+c_{\mathbf{v}}\left(S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}, j}\right)\right)\right) \\
& =\chi(\boldsymbol{\epsilon}, \pi) w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right)+\chi\left(\boldsymbol{\epsilon}+e_{j}, \pi\right) w\left(\mathbf{v}^{\epsilon+e_{j}}\right)+\chi(\boldsymbol{\epsilon}, \pi)\left(w\left(\mathbf{v}^{\boldsymbol{\epsilon + e _ { j }}}\right)-w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right)\right) \\
& =\chi(\boldsymbol{\epsilon}, \pi)\left(w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right)-w\left(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}\right)\right)+\chi(\boldsymbol{\epsilon}, \pi)\left(w\left(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}\right)-w\left(\mathbf{v}^{\epsilon}\right)\right)=0 .
\end{aligned}
$$

4. $G=S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}, j}\right)\right)_{1}$ for some $\pi \in \mathbb{S}_{n-1}$ and $\boldsymbol{\epsilon} \in E_{j}$, where $j \neq \pi(n-1)$.

Let $j^{\prime}=\pi(n-1)$ and let τ denote the transposition $\left(j, j^{\prime}\right)$. Since $S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}, j}\right)\right)_{1}$ is independent of $\epsilon_{\pi(n-1)}$, we may assume that $\epsilon_{j^{\prime}}=\epsilon_{\pi(n-1)}=0$. Then:

$$
\Gamma(G)=\left\{S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}, j}\right)\right), S\left(\pi\left(\mathbf{a}^{\epsilon+e_{j^{\prime}}, j}\right)\right), S\left((\tau \pi)\left(\mathbf{a}^{\epsilon^{,, j^{\prime}}}\right)\right), S\left((\tau \pi)\left(\mathbf{a}^{\epsilon+e_{j}, j^{\prime}}\right)\right)\right\} .
$$

As G is the 1 -face of each of these simplices, it follows that

$$
\begin{aligned}
\partial_{n-2} c_{\mathbf{v}}(G)= & c_{\mathbf{v}}\left(S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}, j}\right)\right)\right)+c_{\mathbf{v}}\left(S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}+e_{j^{\prime}}, j}\right)\right)\right) \\
& +c_{\mathbf{v}}\left(S\left((\tau \pi)\left(\mathbf{a}^{\boldsymbol{\epsilon}, j^{\prime}}\right)\right)\right)+c_{\mathbf{v}}\left(S\left((\tau \pi)\left(\mathbf{a}^{\boldsymbol{\epsilon}+e_{j}, j^{\prime}}\right)\right)\right) \\
= & \chi(\boldsymbol{\epsilon}, \pi)\left(w\left(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}\right)-w\left(\mathbf{v}^{\boldsymbol{v}}\right)\right)+\chi\left(\boldsymbol{\epsilon}+e_{j^{\prime}}, \pi\right)\left(w\left(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j^{\prime}}+e_{j}}\right)-w\left(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j^{\prime}}}\right)\right) \\
& +\chi(\boldsymbol{\epsilon}, \tau \pi)\left(w\left(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j^{\prime}}}\right)-w\left(\mathbf{v}^{\boldsymbol{\epsilon}}\right)\right)+\chi\left(\boldsymbol{\epsilon}+e_{j}, \tau \pi\right)\left(w\left(\mathbf{v}^{\epsilon+e_{j}+e_{j^{\prime}}}\right)-w\left(\mathbf{v}^{\epsilon+e_{j}}\right)\right) \\
= & \chi(\boldsymbol{\epsilon}, \pi)\left[\left(w\left(\mathbf{v}^{\epsilon+e_{j}}\right)-w\left(\mathbf{v}^{\epsilon}\right)\right)-\left(w\left(\mathbf{v}^{\epsilon+e_{j^{\prime}}+e_{j}}\right)-w\left(\mathbf{v}^{\epsilon+e_{j^{\prime}}}\right)\right)\right. \\
& -\left(w \left(\mathbf{v}^{\left.\left.\left.\boldsymbol{\epsilon + e _ { j ^ { \prime } }}\right)-w\left(\mathbf{v}^{\epsilon}\right)\right)+\left(w\left(\mathbf{v}^{\epsilon+e_{j^{\prime}}+e_{j}}\right)-w\left(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}\right)\right)\right]=0 .} .\right.\right.
\end{aligned}
$$

We have thus shown that $c_{\mathbf{v}} \in \tilde{H}_{n-2}(\operatorname{sd}(K) ; \mathfrak{h})$.

Proposition 2.1 implies that $\widetilde{c}_{\mathbf{v}}=\left(f_{\mathbf{v}}\right)_{*} c_{\mathbf{v}} \in \tilde{H}_{n-2}\left(X_{V} ; \mathfrak{g}\right)$.
Theorem 2.2. The family $\left\{\widetilde{c}_{\mathbf{v}}: \mathbf{v} \in T_{q, n}\right\}$ is a basis of $\mathcal{D}^{1}(V)=\tilde{H}_{n-2}\left(X_{V} ; \mathfrak{g}\right)$.
Proof. Let $\mathbf{v} \in T_{q, n}$. Let $R(\mathbf{v}) \in X_{V}(n-2)$ be the $(n-2)$-simplex

$$
R(\mathbf{v})=\left[\left\langle v_{1}, \ldots, v_{n-1}\right\rangle^{\perp},\left\langle v_{1}, \ldots, v_{n-2}\right\rangle^{\perp}, \ldots,\left\langle v_{1}, v_{2}\right\rangle^{\perp},\left\langle v_{1}\right\rangle^{\perp}\right] .
$$

Let $\mathbf{1}=(1, \ldots, 1) \in E$. It is straightforward to check that $F=S\left(\mathbf{a}^{\mathbf{1}}\right)$ is the unique $(n-2)$-simplex in $\operatorname{sd}(K)$ such that $f_{\mathbf{v}}(F)=R(\mathbf{v})$. It follows that

$$
\widetilde{c}_{\mathbf{v}}(R(\mathbf{v}))=c_{\mathbf{v}}\left(S\left(\mathbf{a}^{1}\right)\right)=(-1)^{n-1} w(\mathbf{v})
$$

On the other hand, if $\mathbf{v} \neq \mathbf{v}^{\prime} \in T_{q, n}$, then $R\left(\mathbf{v}^{\prime}\right) \notin f_{\mathbf{v}}(\mathrm{sd}(K))$ and so $\widetilde{c}_{\mathbf{v}}\left(R\left(\mathbf{v}^{\prime}\right)\right)=0$. It follows that the $(n-2)$-cycles $\left\{\widetilde{c}_{\mathbf{v}}: \mathbf{v} \in T_{q, n}\right\}$ are linearly independent in $\mathcal{D}^{1}(V)$. As $\left|T_{q, n}\right|=\prod_{i=1}^{n-1}\left(q^{i}-1\right)=\operatorname{dim} \mathcal{D}^{1}(V)$, this completes the proof of Theorem 2.2.

Example: Let $n=3$ and let

$$
\mathbf{v}=\left(v_{1}, v_{2}\right)=((1, r, s),(0,1, t)) \in T_{q, 3} .
$$

Figure 2 depicts the cycle $c_{\mathbf{v}} \in H_{1}(\operatorname{sd}(K) ; \mathfrak{h})$. Black vertices correspond to vertices of K and white vertices correspond to edges of K. The values of c_{v} are indicated on the edges of the diagram. For example, let $\epsilon=(1,1)$ and $\pi=(1,2)$. Then $F=S\left(\pi\left(\mathbf{a}^{\epsilon}\right)\right)=\left[\left\{a_{2}^{1}, a_{1}^{1}\right\},\left\{a_{2}^{1}\right\}\right]$, and

$$
c_{\mathbf{v}}(F)=\chi(\epsilon, \pi) w\left(\left(v_{1}, v_{2}\right)\right)=-w\left(\left(v_{1}, v_{2}\right)\right)=(s-r t, t,-1) .
$$

Similarly, if $j=1, \boldsymbol{\epsilon}=(0,1) \in E_{1}$ and $\pi=(1,2)$, then $F=S\left(\pi\left(\mathbf{a}^{\boldsymbol{\epsilon}, j}\right)\right)=\left[\left\{a_{2}^{1}, b\right\},\left\{a_{2}^{1}\right\}\right]$ and

$$
\begin{aligned}
c_{\mathbf{v}}(F) & =\chi(\boldsymbol{\epsilon}, \pi)\left(w\left(\left(v_{1}, v_{2}\right)\right)-w\left(\left(e_{1}, v_{2}\right)\right)\right) \\
& =(r t-s,-t, 1)-(0,-t, 1)=(r t-s, 0,0)
\end{aligned}
$$

Figures 3 and 4 depict the 1-cycle $\widetilde{c}_{\mathbf{v}} \in H_{1}\left(X_{V} ; \mathfrak{g}\right)$. Here, the black vertices correspond to 2-dimensional subspaces of V. The white vertices and their labels correspond to 1-dimensional subspaces and their generating vectors. Figure 3 depicts the generic case when $r s t(r t-s) \neq 0$. The labels of the left most 6 white points together with the \pm signs, indicate the values of $\widetilde{c}_{\mathbf{v}}$ on the incident edges. The remaining three values of $\widetilde{c}_{\mathrm{v}}$ are indicated on the edges incident with the vertex corresponding to the line spanned by $(1,0,0)$. Figure 4 similarly depicts the case $s=0$. Note that in both cases, the simplicial map $f_{\mathrm{v}}: \operatorname{sd}(K) \rightarrow X_{V}$ is not injective.

Figure 2: The cycle $c_{\mathbf{v}}$ for $\mathbf{v}=\left(v_{1}, v_{2}\right)=((1, r, s),(0,1, t))$.

3 The Dimension of $\mathcal{D}^{k}(V)$

Proof of Theorem 1.5: For an \mathbb{F}_{q}-space W let $\operatorname{St}(W)=\tilde{H}_{\operatorname{dim} W-2}\left(X_{W} ; \mathbb{F}_{q}\right)$ denote the Steinberg module of W over \mathbb{F}_{q}. Recall that $\operatorname{dim} \operatorname{St}(W)=q^{\left(\operatorname{dim}_{2} W\right)}$ by Theorem 1.1. Let $G_{j}(V)$ denote the family of all j-dimensional linear subspaces of V. The following result is due to Dupont (Proposition 5.38 in [4]).

Theorem 3.1 (Dupont). There is an exact sequence

$$
\begin{aligned}
0 \rightarrow \mathcal{D}^{k}(V) & \rightarrow \bigoplus_{U_{k} \in G_{k}(V)} \wedge^{k} U_{k} \otimes \operatorname{St}\left(V / U_{k}\right) \rightarrow \bigoplus_{U_{k+1} \in G_{k+1}(V)} \wedge^{k} U_{k+1} \otimes \operatorname{St}\left(V / U_{k}\right) \rightarrow \\
& \cdots \rightarrow \bigoplus_{U_{n-2} \in G_{n-2}(V)} \wedge^{k} U_{n-2} \otimes \operatorname{St}\left(V / U_{n-2}\right) \rightarrow \bigoplus_{U_{n-1} \in G_{n-1}(V)} \wedge^{k} U_{n-1} \rightarrow \wedge^{k} V \rightarrow 0 .
\end{aligned}
$$

Writing $\left[\begin{array}{l}n \\ j\end{array}\right]_{q}$ for the q-binomial coefficient, Theorem 3.1 implies that

$$
\operatorname{dim} \mathcal{D}^{k}(V)=\sum_{j=k}^{n}(-1)^{j-k}\binom{j}{k} q^{\left(\begin{array}{c}
n-j
\end{array}\right)}\left[\begin{array}{l}
n \tag{4}\\
j
\end{array}\right]_{q} .
$$

Figure 3: The cycle $\widetilde{c}_{\mathbf{v}}$ for a generic $\mathbf{v}=((1, r, s),(0,1, t))$.

By the q-binomial theorem (see e.g. (1.87) in [8])

$$
\prod_{j=0}^{n-1}\left(1+q^{j} \lambda\right)=\sum_{j=0}^{n} q^{\binom{j}{2}}\left[\begin{array}{l}
n \tag{5}\\
j
\end{array} \lambda_{q} \lambda^{j}\right.
$$

Substituting $\lambda=-t^{-1}$ in (5) and multiplying by t^{n} it follows that

$$
\prod_{j=0}^{n-1}\left(t-q^{j}\right)=\sum_{j=0}^{n}(-1)^{j} q^{\binom{j}{2}}\left[\begin{array}{l}
n \tag{6}\\
j
\end{array}\right]_{q} t^{n-j}
$$

Differentiating (6) k times and multiplying by $\frac{(-1)^{n-k}}{k!}$ we obtain

$$
\begin{align*}
& \prod_{j=0}^{n-1}\left(q^{j}-t\right) \sum_{0 \leq \alpha_{0}<\cdots<\alpha_{k-1} \leq n-1} \prod_{\ell=0}^{k-1} \frac{1}{q^{\alpha_{\ell}-t}} \\
& =\sum_{j=0}^{n}(-1)^{n-k+j}\binom{n-j}{k} q^{\left(\frac{j}{2}\right)}\left[\begin{array}{c}
n \\
j
\end{array}\right]_{q} t^{n-j-k} \tag{7}\\
& \left.=\sum_{j=0}^{n}(-1)^{j-k}\binom{j}{k} q^{(n-j} 2\right)\left[\begin{array}{c}
n \\
j
\end{array}\right]_{q} t^{j-k} .
\end{align*}
$$

Figure 4: The cycle $\widetilde{c}_{\mathbf{v}}$ for $\mathbf{v}=\left(v_{1}, v_{2}\right)=((1, r, 0),(0,1, t))$.

Substituting $t=1$ in (7) and using (4) we obtain (2).

3.1 A Basis for $\mathcal{D}^{n-1}(V)$

In this subsection we describe an explicit basis for $\mathcal{D}^{n-1}(V)=\tilde{H}_{0}\left(X_{V} ; \wedge^{n-1} \mathfrak{g}\right)$. We first recall some facts concerning the exterior algebra $\wedge V$. Let $V=\mathbb{F}_{q}^{n}$. Using the notation of Section 2, recall that e_{1}, \ldots, e_{n} are the unit vectors in V, and $a \cdot b$ denotes the standard symmetric bilinear form on V. Let $\mathbf{e}=e_{1} \wedge \cdots \wedge e_{n} \in \wedge^{n} V$. The induced bilinear form on $\wedge^{p} V$ is given by

$$
\left(u_{1} \wedge \cdots \wedge u_{p}\right) \cdot\left(v_{1} \wedge \cdots \wedge v_{p}\right)=\operatorname{det}\left(u_{i} \cdot v_{j}\right)_{i, j=1}^{p} .
$$

The star operator $*: \wedge^{n-k} V \rightarrow \wedge^{k} V$ is the unique linear map that satisfies

$$
(* \alpha) \cdot \beta=\mathbf{e} \cdot(\alpha \wedge \beta)
$$

for any $\alpha \in \wedge^{n-k} V, \beta \in \wedge^{k} V$.
Claim 3.2. Let v_{1}, \ldots, v_{n-k} be linearly independent vectors in V and let $M=\left\langle v_{1}, \ldots, v_{n-k}\right\rangle^{\perp}$. Then

$$
0 \neq *\left(v_{1} \wedge \cdots \wedge v_{n-k}\right) \in \wedge^{k} M
$$

Proof. Extend $\left\{v_{i}\right\}_{i=1}^{n-k}$ to a basis $\left\{v_{i}\right\}_{i=1}^{n}$ of V, and let $\left\{w_{j}\right\}_{j=1}^{n}$ be the dual basis, i.e. $v_{i} \cdot w_{j}=\delta_{i, j}$. Then $M=\left\langle w_{n-k+1}, \ldots, w_{n}\right\rangle$. For a subset $L=\left\{i_{1}, \ldots, i_{\ell}\right\} \in\binom{[n]}{\ell}$ such that $1 \leq i_{1}<\cdots<i_{\ell} \leq n$ let $v_{L}=v_{i_{1}} \wedge \cdots \wedge v_{i_{\ell}}$ and $w_{L}=w_{i_{1}} \wedge \cdots \wedge w_{i_{\ell}}$. If $L, L^{\prime} \in\binom{[n]}{\ell}$ then $v_{L} \cdot w_{L^{\prime}}=\delta_{L, L^{\prime}}$.
Let $I_{0}=\{1, \ldots, n-k\}, J_{0}=\{n-k+1, \ldots, n\}$, and let $* v_{I_{0}}=\sum_{|J|=k} \lambda_{J} w_{J}$. Then for any $J^{\prime} \in\binom{[n]}{k}$

$$
\begin{equation*}
* v_{I_{0}} \cdot v_{J^{\prime}}=\sum_{|J|=k} \lambda_{J} w_{J} \cdot v_{J^{\prime}}=\lambda_{J^{\prime}} \tag{8}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
* v_{I_{0}} \cdot v_{J^{\prime}} & =\mathbf{e} \cdot\left(v_{I_{0}} \wedge v_{J^{\prime}}\right) \\
& = \begin{cases}\operatorname{det}\left(v_{1}, \ldots, v_{n}\right) & J^{\prime}=J_{0} \\
0 & J^{\prime} \neq J_{0}\end{cases} \tag{9}
\end{align*}
$$

Combining (8) and (9), it follows that $0 \neq * v_{I_{0}}=\operatorname{det}\left(v_{1}, \ldots, v_{n}\right) w_{J_{0}} \in \wedge^{k} M$.

We proceed to construct a basis of $\mathcal{D}^{n-1}(V)=\tilde{H}_{0}\left(X_{V} ; \wedge^{n-1} \mathfrak{g}\right)$. Note that if $u \in V$, then by Claim 3.2, $(* u) u^{\perp} \in C_{0}\left(X_{V} ; \wedge^{n-1} \mathfrak{g}\right)$. For any $1 \leq i \leq n$ let

$$
z_{u, i}=\left(* e_{i}\right) e_{i}^{\perp}+(* u) u^{\perp}-\left(*\left(u+e_{i}\right)\right)\left(u+e_{i}\right)^{\perp} \in C_{0}\left(X_{V} ; \wedge^{n-1} \mathfrak{g}\right) .
$$

Then

$$
\partial_{0}\left(z_{u, i}\right)=* e_{i}+* u-*\left(u+e_{i}\right)=*\left(e_{i}+u-\left(u+e_{i}\right)\right)=0
$$

and therefore $z_{u, i} \in \mathcal{D}^{n-1}(V)$. For $2 \leq i \leq n$ let $R_{i}=\left(\mathbb{F}_{q}^{i-1} \backslash\{0\}\right) \times\{0\}^{n-i+1}$.

Claim 3.3.

$$
\begin{equation*}
\mathcal{B}=\left\{z_{u, i}: 2 \leq i \leq n, u \in R_{i}\right\} \tag{10}
\end{equation*}
$$

is a basis of $\mathcal{D}^{n-1}(V)$.
Proof. By Theorem 1.5

$$
\operatorname{dim} \mathcal{D}^{n-1}(V)=\sum_{i=2}^{n}\left(q^{i-1}-1\right)=\sum_{i=2}^{n}\left|R_{i}\right|=|\mathcal{B}| .
$$

It therefore suffices to show that the elements of \mathcal{B} are linearly independent. This in turn follows from the fact that for any $2 \leq j \leq n$ and $v \in R_{j}$, it holds that $\left(v+e_{j}\right)^{\perp} \in \operatorname{supp}\left(z_{v, j}\right)$, but $\left(v+e_{j}\right)^{\perp} \notin \operatorname{supp}\left(z_{u, i}\right)$ for any $(u, i) \neq(v, j)$ such that $2 \leq i \leq j$ and $u \in R_{i}$.

4 Minimal Cycles in $\mathcal{D}^{k}(V)$

In this section we prove Theorem 1.6. The upper bound follows from a construction of certain explicit $(n-k-1)$-cycles of $\mathcal{D}^{k}(V)$ given in Subsection 4.1. The lower bound is established in Subsection 4.2.

4.1 The Upper Bound

Let $1 \leq k \leq n-1$ and let $m=n-k+2$. Let $\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right) \in V^{m}$ be an ordered m-tuple of vectors in V whose only linear dependence is $\sum_{i=1}^{m} u_{i}=0$. Let $\mathbb{I}_{m-2, m}$ denote the family of injective functions $\pi:[n-k]=[m-2] \rightarrow[m]$. For $\pi \in \mathbb{I}_{m-2, m}$ let $T(\mathbf{u}, \pi)$ be the $(n-k-1)$-simplex given by

$$
T(\mathbf{u}, \pi)=\left[\left\langle u_{\pi(1)}, \ldots, u_{\pi(n-k)}\right\rangle^{\perp} \subset \cdots \subset\left\langle u_{\pi(1)}\right\rangle^{\perp}\right] .
$$

Let $\gamma_{\mathbf{u}} \in C_{n-k-1}\left(X_{V} ; \wedge^{k} \mathfrak{g}\right)$ be the chain whose value on an $(n-k-1)$-simplex F is given by

$$
\gamma_{\mathbf{u}}(F)= \begin{cases}*\left(u_{\pi(1)} \wedge \cdots \wedge u_{\pi(n-k)}\right) & F=T(\mathbf{u}, \pi) \tag{11}\\ 0 & \text { otherwise }\end{cases}
$$

Proposition 4.1. $\gamma_{\mathbf{u}} \in \mathcal{D}^{k}(V)$.
Proof. Let G be an $(n-k-2)$-simplex in X_{V}. Let $\Gamma_{\mathbf{u}}(G)$ denote the set of $(n-k-1)$ simplices in $\operatorname{supp}\left(\gamma_{\mathbf{u}}\right)$ that contain G. For $2 \leq \ell \leq n-k$ let $\eta_{\ell} \in \mathbb{S}_{n-k-2}$ denote the transposition $(n-k-\ell+1, n-k-\ell+2)$. We consider the following two cases:

1. $G=T(\mathbf{u}, \pi)_{\ell}$ for some $2 \leq \ell \leq n-k$ and $\pi \in \mathbb{I}_{m-2, m}$.

Then

$$
\Gamma_{\mathbf{u}}(G)=\left\{T(\mathbf{u}, \pi), T\left(\mathbf{u}, \pi \eta_{\ell}\right)\right\} .
$$

As G is the ℓ-th face of both these simplices, it follows that

$$
\begin{aligned}
(-1)^{\ell+1} \partial_{n-k-1} \gamma_{\mathbf{u}}(G) & =\gamma_{\mathbf{u}}(T(\mathbf{u}, \pi))+\gamma_{\mathbf{u}}\left(T\left(\mathbf{u}, \pi \eta_{\ell}\right)\right) \\
= & *\left(u_{\pi(1)} \wedge \cdots \wedge u_{\pi(n-k-\ell+1)} \wedge u_{\pi(n-k-\ell+2)} \wedge \cdots \wedge u_{\pi(n-k)}\right) \\
\quad+*\left(u_{\pi(1)}\right. & \left.\wedge \cdots \wedge u_{\pi(n-k-\ell+2)} \wedge u_{\pi(n-k-\ell+1)} \wedge \cdots \wedge u_{\pi(n-k)}\right)=0 .
\end{aligned}
$$

2. $G=T(\mathbf{u}, \pi)_{1}$ for some $\pi \in \mathbb{I}_{m-2, m}$.

Let $[m] \backslash \pi([m-3])=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. For $i=1,2,3$ define $\pi_{i} \in \mathbb{I}_{m-2, m}$ by

$$
\pi_{i}(j)= \begin{cases}\pi(j) & 1 \leq j \leq n-k-1 \\ \alpha_{i} & j=n-k\end{cases}
$$

Then

$$
\Gamma_{\mathbf{u}}(G)=\left\{T\left(\mathbf{u}, \pi_{1}\right), T\left(\mathbf{u}, \pi_{2}\right), T\left(\mathbf{u}, \pi_{3}\right)\right\}
$$

As G is the 1-th face of these three simplices, it follows that

$$
\begin{aligned}
& \partial_{n-k-1} \gamma_{\mathbf{u}}(G)=\sum_{i=1}^{3} \gamma_{\mathbf{u}}\left(T\left(\mathbf{u}, \pi_{i}\right)\right) \\
& =\sum_{i=1}^{3} *\left(u_{\pi(1)} \wedge \cdots \wedge u_{\pi(n-k-1)} \wedge u_{\alpha_{i}}\right) \\
& =*\left(u_{\pi(1)} \wedge \cdots \wedge u_{\pi(n-k-1)} \wedge\left(\sum_{i=1}^{3} u_{\alpha_{i}}\right)\right) \\
& =*\left(u_{\pi(1)} \wedge \cdots \wedge u_{\pi(n-k-1)} \wedge\left(\sum_{j=1}^{m} u_{j}\right)\right)=0 .
\end{aligned}
$$

We have thus shown that $\gamma_{\mathbf{u}} \in \mathcal{D}^{k}(V)$.

Corollary 4.2 .

$$
\begin{aligned}
\min & \left\{|\operatorname{supp}(w)|: 0 \neq w \in \mathcal{D}^{k}(V)\right\} \leq\left|\operatorname{supp}\left(\gamma_{\mathbf{u}}\right)\right| \\
& =\left|\mathbb{I}_{m-2, m}\right|=\frac{(n-k+2)!}{2}
\end{aligned}
$$

Example: Let $n=3, k=1$. A minimal twisted 1-cycle in $\mathcal{D}^{1}\left(X_{V}\right)$ is depicted in Figure 4.

4.2 The Lower Bound

In preparation for the proof of the lower bound in Theorem 1.6, we first recall a twisted version of the nerve lemma. Let \mathcal{F} be a local system on a finite simplicial complex Y, and let $\mathcal{Y}=\left\{Y_{i}\right\}_{i=1}^{m}$ be a family of subcomplexes of Y such that $Y=\bigcup_{i=1}^{m} Y_{i}$. The nerve of the cover \mathcal{Y} is the simplicial complex $N=N(\mathcal{Y})$ on the vertex $[m]=$ $\{1, \ldots, m\}$, whose simplices are the subsets $\tau \subset[m]$ such that $Y_{\tau}:=\bigcap_{i \in \tau} Y_{i} \neq \emptyset$. For $j \geq 1$ let $N_{j}(\mathcal{F})$ be the local system on N given by $N_{j}(\mathcal{F})(\tau)=H_{j}\left(Y_{\tau} ; \mathcal{F}\right)$. The following result is twisted version of the Mayer-Vietoris spectral sequence (see e.g. [5]).

Proposition 4.3. There exists a spectral sequence $\left\{E_{p, q}^{r}\right\}$ converging to $H_{*}(Y ; \mathcal{F})$ such that $E_{p, q}^{1}=\bigoplus_{\sigma \in N(p)} H_{q}\left(Y_{\sigma} ; \mathcal{F}\right)$ and $E_{p, q}^{2}=H_{p}\left(N ; N_{q}(\mathcal{F})\right)$.
The Nerve Lemma is the following
Corollary 4.4. Suppose that $H_{q}\left(Y_{\sigma} ; \mathcal{F}\right)=0$ for all $q \geq 1$ and $\sigma \in N(p)$ such that $p+q \leq t$. Then $H_{p}(Y ; \mathcal{F}) \cong H_{p}\left(N ; N_{0}(\mathcal{F})\right)$ for all $0 \leq p \leq t$.

We will also need a simple observation concerning a certain twisted homology of the simplex. Let $r \geq 2$ and let W_{1}, \ldots, W_{r} be arbitrary linear subspaces of a finite dimensional vector space W over a field \mathbb{K}. Let Δ_{r-1} denote the simplex on the vertex set $[r]$, and let \mathcal{G} be the local system on Δ_{r-1} given by

$$
\mathcal{G}(\sigma)= \begin{cases}\bigcap_{i \in \sigma} W_{i} & \emptyset \neq \sigma \in \Delta_{r-1}, \\ W & \sigma=\emptyset\end{cases}
$$

with the natural inclusion maps.
Proposition 4.5. $\tilde{H}_{k}\left(\Delta_{r-1} ; \mathcal{G}\right)=0$ for $k \geq r-2$.
Proof: Using the natural order on $\{1, \ldots, r\}$, the top dimensional simplex in Δ_{r-1} is $\tau=[1,2, \cdots, r]$, and its i-th face is $\tau_{i}=[1, \ldots, i-1, i+1, \ldots, r]$. For $1 \leq i<j \leq r$ let

$$
\tau_{i, j}=[1, \ldots, i-1, i+1, \ldots, j-1, j+1, \ldots, r] .
$$

Then

$$
C_{r-1}\left(\Delta_{r-1}, \mathcal{G}\right)=\left\{w \tau: w \in \bigcap_{i=1}^{r} W_{i}\right\}
$$

and

$$
C_{r-2}\left(\Delta_{r-1}, \mathcal{G}\right)=\left\{\sum_{i=1}^{r} w_{i} \tau_{i}: w_{i} \in \bigcap_{\ell \in \tau_{i}} W_{\ell}\right\} .
$$

The boundary map $\partial_{r-1}: C_{r-1}\left(\Delta_{r-1} ; \mathcal{G}\right) \rightarrow C_{r-2}\left(\Delta_{r-1} ; \mathcal{G}\right)$ is given by

$$
\begin{equation*}
\partial_{r-1}(w \tau)=\sum_{i=1}^{r}(-1)^{i+1} w \tau_{i} . \tag{12}
\end{equation*}
$$

Note that for $1 \leq i \leq r$ and $1 \leq j \leq r-1$, the j-th face of τ_{i} is

$$
\left(\tau_{i}\right)_{j}= \begin{cases}\tau_{j, i} & 1 \leq j<i \leq r, \\ \tau_{i, j+1} & 1 \leq i \leq j \leq r-1 .\end{cases}
$$

It follows that the boundary map $\partial_{r-2}: C_{r-2}\left(\Delta_{r-1} ; \mathcal{G}\right) \rightarrow C_{r-3}\left(\Delta_{r-1} ; \mathcal{G}\right)$ is given by

$$
\begin{align*}
\partial_{r-2}\left(\sum_{i=1}^{r} w_{i} \tau_{i}\right) & =\sum_{i=1}^{r} \sum_{j=1}^{r-1}(-1)^{j+1} w_{i}\left(\tau_{i}\right)_{j} \\
& =\sum_{i=1}^{r} \sum_{j=1}^{i-1}(-1)^{j+1} w_{i} \tau_{j, i}+\sum_{i=1}^{r} \sum_{j=i}^{r-1}(-1)^{j+1} w_{i} \tau_{i, j+1} \tag{13}\\
& =\sum_{j=1}^{r} \sum_{i=1}^{j-1}(-1)^{i+1} w_{j} \tau_{i, j}+\sum_{i=1}^{r} \sum_{j=i+1}^{r}(-1)^{j} w_{i} \tau_{i, j} \\
& =\sum_{1 \leq i<j \leq r}\left((-1)^{i+1} w_{j}+(-1)^{j} w_{i}\right) \tau_{i, j} .
\end{align*}
$$

Eq. (12) implies that $\tilde{H}_{r-1}\left(\Delta_{r-1} ; \mathcal{G}\right)=0$. Next let $c=\sum_{i=1}^{r} w_{i} \tau_{i} \in \operatorname{ker} \partial_{r-2}$ be a \mathcal{G} twisted $(r-2)$-cycle of Δ_{r-1}. It follows by (13) that $w_{j}=(-1)^{j+1} w_{1}$ for all $1 \leq j \leq r$. Therefore $w_{1} \in \bigcap_{i=1}^{r} W_{i}$ and hence $w_{1} \tau \in C_{r-1}(X ; \mathcal{G})$. Eq. (12) then implies that $\partial_{r-1}\left(w_{1} \tau\right)=c$. Thus $\tilde{H}_{r-2}\left(\Delta_{r-1} ; \mathcal{G}\right)=0$.

Proof of the lower bound in Theorem 1.6. We argue by induction on $n-k$. For the induction basis $k=n-1$, we have to show that if $0 \neq z \in \mathcal{D}^{n-1}(V)=$ $\tilde{H}_{0}\left(X_{V} ; \wedge^{n-1} \mathfrak{g}\right)$, then $|\operatorname{supp}(z)| \geq \frac{(n-k+2)!}{2}=3$. Suppose for contradiction that $|\operatorname{supp}(z)|<$ 3. Then $z=(* u) u^{\perp}+(* v) v^{\perp}$ for some $u, v \in V$. As

$$
0=\partial_{0} z=(* u)+(* v)=*(u+v),
$$

it follows that $u+v=0$ and hence $z=0$, a contradiction. For the induction step, assume that $n-k \geq 2$ and let

$$
0 \neq z=\sum_{z \in X_{V}(n-k-1)} z(\tau) \tau \in H_{n-k-1}\left(X_{V} ; \wedge^{k} \mathfrak{g}\right)=Z_{n-k-1}\left(X_{V} ; \wedge^{k} \mathfrak{g}\right)
$$

Let $\operatorname{supp}(z)=\left\{\tau_{1}, \ldots, \tau_{s}\right\} \in X_{V}(n-k-1)$ and write

$$
\tau_{i}=\left[V_{k}(i), \ldots, V_{n-1}(i)\right],
$$

where $\operatorname{dim} V_{j}(i)=j$ for all $1 \leq i \leq s$ and $k \leq j \leq n-1$. Let

$$
\left\{V_{n-1}(i): 1 \leq i \leq s\right\}=\left\{U_{1}, \ldots, U_{r}\right\}
$$

where the U_{i} 's are distinct $(n-1)$-dimensional subspaces. Let $\mathcal{U}_{i}=\left\{U: 0 \neq U \subset U_{i}\right\}$ and let $Y_{i}=X_{V}\left[\mathcal{U}_{i}\right]$. Let $Y=\cup_{i=1}^{r} Y_{i}$ then clearly $z \in Z_{n-k-1}\left(Y ; \wedge^{k} \mathfrak{g}\right)$. Let N be the nerve of the cover $\left\{Y_{i}\right\}_{i=1}^{r}$ of Y. For $\sigma \subset[r]$ let $U_{\sigma}=\cap_{i \in \sigma} U_{i}$ and $Y_{\sigma}=\cap_{i \in \sigma} Y_{i}$. If $\sigma \in N$ then Y_{σ} is the order complex of the poset $P_{\sigma}=\left\{W: 0 \neq W \subset U_{\sigma}\right\}$. As P_{σ} has a unique maximal element U_{σ} it follows (see e.g. Lemma 1.4 in [5]) that

$$
N_{q}\left(\wedge^{k} \mathfrak{g}\right)(\sigma)=H_{q}\left(Y_{\sigma} ; \wedge^{k} \mathfrak{g}\right)= \begin{cases}\wedge^{k} U_{\sigma} & q=0 \tag{14}\\ 0 & q>0\end{cases}
$$

Write

$$
\mathcal{F}(\sigma)=N_{0}\left(\wedge^{k} \mathfrak{g}\right)(\sigma)=\wedge^{k} U_{\sigma}
$$

Eq. (14) and Corollary 4.4 imply that for all $p \geq 0$

$$
\begin{equation*}
H_{p}\left(Y ; \wedge^{k} \mathfrak{g}\right) \cong H_{p}(N ; \mathcal{F}) \tag{15}
\end{equation*}
$$

Proposition 4.6. $r \geq n-k+2$.

Proof: Suppose to the contrary that $r \leq n-k+1$. Then $\Delta_{r-1}^{(r-2)} \subset N \subset \Delta_{r-1}$. For $1 \leq i \leq r$ let $W_{i}=\wedge^{k} U_{i} \subset \wedge^{k} V$. Let \mathcal{G} be the local system on Δ_{r-1} given by $\mathcal{G}(\sigma)=\cap_{i \in \sigma} W_{i}=\wedge^{k} U_{\sigma}$. Then $\mathcal{G}(\sigma)=\mathcal{F}(\sigma)$ if $\sigma \in N$ and $\mathcal{G}(\sigma)=0$ otherwise. Hence $H_{*}\left(\Delta_{r-1} ; \mathcal{G}\right)=H_{*}(N ; \mathcal{F})$. As $n-k-1 \geq r-2$, it follows by combining (15) and Proposition 4.5 that

$$
H_{n-k-1}\left(Y ; \wedge^{k} \mathfrak{g}\right) \cong H_{n-k-1}(N ; \mathcal{F})=H_{n-k-1}\left(\Delta_{r-1} ; \mathcal{G}\right)=0
$$

in contradiction with the assumption that z is a nonzero element of $H_{n-k-1}\left(Y ; \wedge^{k} \mathfrak{g}\right)$.

We now conclude the proof of Theorem 1.6. For $1 \leq j \leq r$ define $z_{j} \in C_{n-k-2}\left(X_{U_{j}} ; \wedge^{k} \mathfrak{g}\right)$ as follows. For an $(n-k-2)$-simplex $F=\left[V_{k}, \ldots, V_{n-2}\right] \in X_{U_{j}}(n-k-2)$ let $z_{j}(F)=z\left(\left[V_{k}, \ldots, V_{n-2}, U_{j}\right]\right)$. Then $\partial_{n-k-2} z_{j}=0$. Indeed, suppose that

$$
\left[V_{k}, \ldots, V_{i-1}, V_{i+1}, \ldots, V_{n-2}\right] \in X_{U_{j}}(n-k-3)
$$

where $\operatorname{dim} V_{\ell}=\ell$ for $i \neq \ell \in\{k, \ldots, n-2\}$. Then:

$$
\begin{aligned}
& \partial_{n-k-2} z_{j}\left(\left[V_{k}, \ldots, V_{i-1}, V_{i+1}, \ldots, V_{n-2}\right]\right) \\
& =(-1)^{i+k} \sum_{V_{i-1} \subset V_{i} \subset V_{i+1}} z_{j}\left(\left[V_{k}, \ldots, V_{i-1}, V_{i}, V_{i+1}, \ldots, V_{n-2}\right]\right) \\
& =(-1)^{i+k} \sum_{V_{i-1} \subset V_{i} \subset V_{i+1}} z\left(\left[V_{k}, \ldots, V_{i-1}, V_{i}, V_{i+1}, \ldots, V_{n-2}, U_{j}\right]\right) \\
& =\partial_{n-k-1} z\left(\left[V_{k}, \ldots, V_{i-1}, V_{i+1}, \ldots, V_{n-2}, U_{j}\right]\right)=0 .
\end{aligned}
$$

As $0 \neq z_{j} \in H_{n-k-2}\left(X_{U_{j}} ; \wedge^{k} \mathfrak{g}\right)$, it follows by induction that $\left|\operatorname{supp}\left(z_{j}\right)\right| \geq \frac{(n-k+1)!}{2}$. Therefore by Proposition 4.6

$$
|\operatorname{supp}(z)|=\sum_{j=1}^{r}\left|\operatorname{supp}\left(z_{j}\right)\right| \geq(n-k+2) \frac{(n-k+1)!}{2}=\frac{(n-k+2)!}{2}
$$

5 Concluding Remarks

In this paper we studied some aspects of the twisted homology modules $\mathcal{D}^{k}(V)=$ $\tilde{H}_{n-k-1}\left(X_{V} ; \wedge^{k} \mathfrak{g}\right)$. Our results suggest several problems and directions for further research:

- In Sections 2 and 3.1 we described explicit bases for $\mathcal{D}^{1}(V)=\tilde{H}_{n-2}\left(X_{V} ; \mathfrak{g}\right)$ and for $\mathcal{D}^{n-1}(V)=\tilde{H}_{0}\left(X_{V} ; \wedge^{n-1} \mathfrak{g}\right)$. It would be interesting to obtain analogous constructions for other $\mathcal{D}^{k}(V)$'s.
- The Nerve Lemma argument used in the proof of Theorem 1.6 can be adapted to give a simple alternative proof of the Smith-Yoshiara Theorem 1.3. We hope that this approach can also be useful for the study of minimal cycles of local systems over other highly symmetric complexes.
- The Smith-Yoshiara Theorem 1.3 and its counterpart for the local system $\wedge^{k} \mathfrak{g}$, Theorem 1.6, show that the linear codes that arise from (twisted) homology of X_{V} have small distance relative to their length, and are therefore far from good codes. On the other hand, it is known (see [2]) that for fixed integers $n \geq 2$ and $K>0$ there is a constant $\lambda=\lambda(n, K)>0$, such that for sufficiently large N there exists a complex $X_{N} \subset \Delta_{N-1}^{(n)}$ whose number of n-faces satisfies $f_{n}\left(X_{N}\right)=$ $K\binom{N}{n}$, and such that $|\operatorname{supp}(z)| \geq \lambda\binom{N}{n}$ for all $0 \neq z \in C=H_{n}\left(X_{N} ; \mathbb{F}_{2}\right)$. In particular, the rate $r(C)$ and relative distance $\delta(C)$ of C satisfy

$$
r(C)=\frac{\operatorname{dim} C}{f_{n}\left(X_{N}\right)} \geq \frac{K-1}{K}
$$

and

$$
\delta(C)=\frac{\min \{|\operatorname{supp}(c)|: 0 \neq c \in C\}}{f_{n}\left(X_{N}\right)} \geq \frac{\lambda}{K} .
$$

It would be interesting to give explicit constructions of simplicial complexes that give rise to homological codes with similar parameters.

References

[1] P. Abramenko and K.S. Brown, Buildings - Theory and applications, Graduate Texts in Mathematics, 248. Springer, New York, 2008.
[2] L. Aronshtam, N. Linial, T. Łuczak and R. Meshulam, Collapsibility and vanishing of top homology in random simplicial complexes, Discrete Comput. Geom., 49(2013) 317-334.
[3] D. J. Benson, Representations and cohomology. II. Cohomology of groups and modules. Cambridge Studies in Advanced Mathematics, 31. Cambridge University Press, Cambridge, 1991.
[4] J. L. Dupont, Algebra of polytopes and homology of flag complexes, Osaka J. Math. 19(1982) 599-641.
[5] G. Lusztig, The discrete series of $G L(n)$ over a finite field, Annals of Mathematics Studies, 81. Princeton University Press, 1974.
[6] S. D. Smith, Subgroup complexes, Mathematical Surveys and Monographs, 179. American Mathematical Society, Providence, RI, 2011.
[7] S. D. Smith and S. Yoshiara, Group geometries and error-correcting codes, J. Algebra 175(1995) 199-211.
[8] R. P. Stanley, Enumerative combinatorics. Volume 1. Second edition. Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, 2012.
[9] L. Solomon, The Steinberg character of a finite group with a BN-pair, Theory of Finite Groups, R. Brauer and C.H. Sah, Eds., Benjamin, New York, 1969, pp. 213-221.

[^0]: *Department of Mathematics, Technion, Haifa 32000, Israel. e-mail: meshulam@technion.ac.il . Supported by ISF grant 326/16 and GIF grant 1261/14.
 ${ }^{\dagger}$ Department of Mathematics, University of Michigan, Ann Arbor. e-mail: zerbib@umich.edu .

