On Lusztig-Dupont Homology of Flag Complexes

Roy Meshulam^{*} Shira Zerbib[†]

July 23, 2019

Abstract

Let V be an n-dimensional vector space over the finite field \mathbb{F}_q . The spherical building X_V associated with GL(V) is the order complex of the nontrivial linear subspaces of V. Let \mathfrak{g} be the local coefficient system on X_V , whose value on the simplex $\sigma = [V_0 \subset \cdots \subset V_p] \in X_V$ is given by $\mathfrak{g}(\sigma) = V_0$. The homology module $\mathcal{D}^1(V) = \tilde{H}_{n-2}(X_V;\mathfrak{g})$ plays a key role in Lusztig's seminal work on the discrete series representations of GL(V). Here, some further properties of \mathfrak{g} and its exterior powers are established. These include a construction of an explicit basis of $\mathcal{D}^1(V)$, a computation of the dimension of $\mathcal{D}^k(V) = \tilde{H}_{n-k-1}(X_V; \wedge^k \mathfrak{g})$, and the following twisted analogue of a result of Smith and Yoshiara: For any $1 \leq k \leq n-1$, the minimal support size of a non-zero (n-k-1)-cycle in the twisted homology $\tilde{H}_{n-k-1}(X_V; \wedge^k \mathfrak{g})$ is $\frac{(n-k+2)!}{2}$.

2000 MSC: 55U10 , 20E42 **Keywords:** Spherical buildings, Homology of local systems

1 Introduction

Let q be a prime power and let V be an n-dimensional vector space over the finite field \mathbb{F}_q . The spherical building associated with G = GL(V) is the order complex X_V of the nontrivial linear subspaces of V: The vertices of X_V are the linear subspaces $0 \neq U \subsetneq V$, and the k-simplices are families of subspaces of the form $\{U_0, \ldots, U_k\}$, where $U_0 \subsetneq \cdots \subsetneq U_k$. The homotopy type of X_V was determined by Solomon and Tits [9] (see also Theorem 4.73 in [1]).

^{*}Department of Mathematics, Technion, Haifa 32000, Israel. e-mail: meshulam@technion.ac.il . Supported by ISF grant 326/16 and GIF grant 1261/14.

 $^{^\}dagger \mathrm{Department}$ of Mathematics, University of Michigan, Ann Arbor. e-mail: <code>zerbib@umich.edu</code> .

Theorem 1.1 (Solomon-Tits). X_V is homotopy equivalent to a wedge of $q^{\binom{n}{2}}$ (n-2)-spheres. In particular, the reduced homology of X_V with coefficients in a field \mathbb{K} is given by

$$\dim \tilde{H}_i(X_V; \mathbb{K}) = \begin{cases} 0 & i \neq n-2, \\ q^{\binom{n}{2}} & i = n-2. \end{cases}$$

The natural action of G on X_V induces a representation of G on $H_{n-2}(X_V; \mathbb{K})$. Viewed as a G-module, $\tilde{H}_{n-2}(X_V; \mathbb{K})$ is the *Steinberg module* of G over \mathbb{K} (see e.g. section 6.4 in [6]). We recall some facts concerning X_V and the Steinberg module. For a subset $S \subset V$, let $\langle S \rangle = \text{span}(S)$ denote the linear span of S. Let $[n] = \{1, \ldots, n\}$. Let $B = \{v_1, \ldots, v_n\}$ be a basis of V and let \tilde{B} be the set of vertices of X_V given by

$$\tilde{B} = \{ \langle v_i : i \in I \rangle : \emptyset \neq I \subsetneq [n] \}.$$

The induced subcomplex $X_V[\tilde{B}]$ is the *apartment* determined by B. Clearly, $X_V[\tilde{B}]$ is isomorphic to the barycentric subdivision of the boundary of a (n-1)-simplex, and thus

$$\tilde{H}_{n-2}(X_V[\tilde{B}];\mathbb{K})\cong\mathbb{K}.$$

We next exhibit a generator z_B of $\tilde{H}_{n-2}(X_V[\tilde{B}]; \mathbb{K})$. For a permutation π in the symmetric group \mathbb{S}_n and for $1 \leq i \leq n$, let $V_{\pi}(i) = \langle v_{\pi(1)}, \ldots, v_{\pi(i)} \rangle$ and let σ_{π} be the ordered (n-2)-simplex

$$\sigma_{\pi} = [V_{\pi}(1) \subset \cdots \subset V_{\pi}(n-1)]$$

Then $z_B = \sum_{\pi \in \mathbb{S}_n} \operatorname{sgn}(\pi) \sigma_{\pi}$ is a generator of $\tilde{H}_{n-2}(X_V[\tilde{B}]; \mathbb{K})$. The following explicit construction of a basis of $\tilde{H}_{n-2}(X_V[\tilde{B}]; \mathbb{K})$ is due to Solomon [9] (see also Theorem 4.127 in [1]).

Theorem 1.2 (Solomon). Let σ be a fixed (n-2)-simplex of X_V . Then

 $\{z_B : B \text{ is a basis of } V \text{ such that } \sigma \in X_V[\tilde{B}]\}$

is a basis of $\tilde{H}_{n-2}(X_V[\tilde{B}];\mathbb{K})$.

The support of a (n-2)-chain $c = \sum_{\sigma} a_{\sigma} \sigma \in C_{n-2}(X_V; \mathbb{K})$ is

$$\operatorname{supp}(c) = \{ \sigma : a_{\sigma} \neq 0 \}.$$

Clearly, $|\operatorname{supp}(z_B)| = n!$ for any basis B of V. Smith and Yoshiara [7] proved that the z_B 's are in fact the nontrivial (n-2)-cycles of minimal support in X_V .

Theorem 1.3 (Smith-Yoshiara).

$$\min\left\{|\operatorname{supp}(z)|: 0 \neq z \in \tilde{H}_{n-2}(X_V; \mathbb{K})\right\} = n!.$$

In this paper we study analogues of Theorems 1.1, 1.2 and 1.3 for the homology of X_V with certain local coefficient systems introduced by Lusztig and Dupont. We first recall some definitions. Let X be a simplicial complex on a vertex set S. Let \prec be an arbitrary fixed linear order on S. For $k \geq -1$ let X(k) denote the set of k-dimensional simplices of X, and let $X^{(k)}$ denote the k-dimensional skeleton of X. A simplex $\sigma \in X(k)$ will be written as $\sigma = [s_1, \ldots, s_{k+1}]$ where $s_1 \prec \cdots \prec s_{k+1}$. The *i*-th face of σ as above is the (k-1)-simplex $\sigma_i = [s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{k+1}]$. For a 0-dimensional simplex $\sigma = [s_1]$, let $\sigma_1 = \emptyset$ be the empty simplex. A *local system* \mathcal{F} on X is an assignment of an abelian group $\mathcal{F}(\sigma)$ to each simplex $\sigma \in X$, together with homomorphisms $\rho_{\sigma}^{\tau} : \mathcal{F}(\tau) \to \mathcal{F}(\sigma)$ for each $\sigma \subset \tau$. A \mathcal{F} -twisted k-chain of X is a formal linear combination $c = \sum_{\sigma \in X(k)} c(\sigma)\sigma$, where $c(\sigma) \in \mathcal{F}(\sigma)$. Let $C_k(X; \mathcal{F})$ denote the group of \mathcal{F} -twisted k-chains of X. For $k \geq 0$ define the boundary map

$$\partial_k : C_k(X; \mathcal{F}) \to C_{k-1}(X; \mathcal{F})$$

by

$$\partial_k \left(\sum_{\sigma \in X(k)} c(\sigma) \sigma \right) = \sum_{\sigma \in X(k)} \sum_{i=1}^{k+1} (-1)^{i+1} \rho_{\sigma_i}^{\sigma} (c(\sigma)) \sigma_i.$$

For k = -1 let ∂_{-1} denote the zero map $C_{-1}(X; \mathcal{F}) = \mathcal{F}(\emptyset) \to 0$. The homology of X with coefficients in \mathcal{F} , denoted by $H_*(X, \mathcal{F})$, is the homology of the complex $\bigoplus_{i\geq 0}C_i(X; \mathcal{F})$. The reduced homology $\tilde{H}_*(X, \mathcal{F})$ is the homology of $\bigoplus_{i\geq -1}C_i(X; \mathcal{F})$. Let X, Y be two simplicial complexes and let $f : X \to Y$ be a simplicial map such that dim $f(\sigma) = \dim \sigma$ for all $\sigma \in X$. Let \mathcal{G} be a local system on Y. The inverse image system $\mathcal{F} = f^{-1}\mathcal{G}$ given by $\mathcal{F}(\sigma) = \mathcal{G}(f(\sigma))$ is a local system on X. The induced mapping on homology is denoted by $f_* : \tilde{H}_k(X; \mathcal{F}) \to \tilde{H}_k(Y; \mathcal{G})$. For further discussion of local coefficient homology, see e.g. chapter 7 in [3] and chapter 10 in [6].

Lusztig, in his seminal work [5] on discrete series representations of GL(V), defined and studied the local system \mathfrak{g} on X_V given by $\mathfrak{g}(U_1 \subset \cdots \subset U_\ell) = U_1$ and $\mathfrak{g}(\emptyset) = V$, where the connecting homomorphisms ρ_{σ}^{τ} 's are the natural inclusion maps. Dupont, in his study of homological approaches to scissors congruences [4], extended some of Lusztig's results to the higher exterior powers $\wedge^k \mathfrak{g}$ over flag complexes of Euclidean spaces. For $i \geq 0$ let $\tilde{H}_i(X_V; \wedge^k \mathfrak{g})$ denote the *i*-th homology \mathbb{F}_q -module of the chain complex of X_V with $\wedge^k \mathfrak{g}$ coefficients. Note that $C_{-1}(X_V; \wedge^k \mathfrak{g}) = \wedge^k V$. The following result was proved by Lusztig (Theorem 1.12 in [5]) for k = 1, and extended by Dupont (Theorem 3.12 in [4]) to all $k \geq 1$.

Theorem 1.4 (Lusztig, Dupont). Let $1 \leq k \leq n-1$. Then $\tilde{H}_i(X_V; \wedge^k \mathfrak{g}) = 0$ for $i \neq n-k-1$.

Let $\mathcal{D}^k(V) = \tilde{H}_{n-k-1}(X_V; \wedge^k \mathfrak{g})$. Lusztig (Theorem 1.14 in [5]) proved that

$$\dim \mathcal{D}^{1}(V) = \prod_{i=1}^{n-1} (q^{i} - 1).$$
(1)

The proof of (1) in [5] is based on the case k = 1 of Theorem 1.4, combined with an Euler characteristic computation. In Section 2 we describe an explicit basis of $\mathcal{D}^1(V)$. This construction may be regarded as a twisted counterpart of Theorem 1.2. Concerning the dimension of $\mathcal{D}^k(V)$ for general k, we prove the following extension of Theorem 1.

Theorem 1.5.

$$\dim \mathcal{D}^k(V) = \sum_{1 \le \alpha_1 < \dots < \alpha_{n-k} \le n-1} \prod_{j=1}^{n-k} (q^{\alpha_j} - 1).$$
(2)

Our final result is an analogue of the Smith-Yoshiara Theorem 1.3 for the coefficient system $\wedge^k \mathfrak{g}$.

Theorem 1.6.

$$\min\left\{|\operatorname{supp}(w)|: 0 \neq w \in \mathcal{D}^k(V)\right\} = \frac{(n-k+2)!}{2}.$$

The paper is organized as follows. In Section 2 we construct an explicit basis for $\mathcal{D}^1(V)$. In Section 3 we use an exact sequence due to Dupont to prove Theorem 1.5. In Section 4 we recall the Nerve lemma for homology with local coefficients, and obtain a vanishing result for a certain local system on the simplex. These results are used to prove Theorem 1.6. We conclude in Section 5 with some remarks and open problems.

2 A Basis for $\mathcal{D}^1(V)$

In this section we construct an explicit basis for $\mathcal{D}^1(V) = \tilde{H}_{n-2}(X_V; \mathfrak{g})$. Let $V = \mathbb{F}_q^n$ and let e_1, \ldots, e_n be the standard basis of V. For $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in V$ let $a \cdot b$ denote the standard bilinear form $\sum_{i=1}^n a_i b_i$. For a subset $S \subset V$, let $S^{\perp} = \{u \in V : u \cdot s = 0, \text{ for all } s \in S\}$. Let \prec be any linear order on $X_V(0)$ such that $U \prec U'$ if dim $U < \dim U'$. Then an (n-2)-simplex in X_V is of the form $[U_1, \ldots, U_{n-1}]$, where $0 \neq U_1 \subsetneq \cdots \subsetneq U_{n-1} \subsetneq V$.

For simplicial complexes Y, Z defined on disjoint vertex sets, let $Y * Z = \{ \sigma \cup \tau : \sigma \in Y, \tau \in Z \}$ denote their simplicial join. Let $a_1^0, a_1^1, \ldots, a_{n-1}^0, a_{n-1}^1, b$ be 2n - 1 distinct elements. Let M denote the octahedral (n - 2)-sphere

$$M = \{a_1^0, a_1^1\} * \dots * \{a_{n-1}^0, a_{n-1}^1\},\$$

and let $K = M \cup (\{b\} * M^{(n-3)})$. See Figure 1a for a depiction of the 2-dimensional complex K when n = 4.

Choose a linear order \prec_1 on the simplices of K such that $\sigma \prec_1 \tau$ if dim $\sigma > \dim \tau$. The barycentric subdivision of K, denoted by sd(K), is the complex whose vertex set sd(K)(0) consists of all nonempty simplices of K, and whose k-simplices

Figure 1: Four types of (n-3)-simplices in $sd(K) = supp(c_v)$

(ordered according to \prec_1) are $[\sigma_1, \ldots, \sigma_{k+1}]$ where $\sigma_1 \supseteq \cdots \supseteq \sigma_{k+1}$. For a sequence $\mathbf{x} = (x_1, \ldots, x_{n-1})$ of distinct vertices of K, such that $\{x_1, \ldots, x_{n-1}\} \in K$, let $S(\mathbf{x})$ denote the (n-2)-simplex of sd(K) given by

$$S(\mathbf{x}) = [\{x_1, \dots, x_{n-1}\}, \{x_1, \dots, x_{n-2}\}, \dots, \{x_1\}].$$

For a permutation π in the symmetric group \mathbb{S}_{n-1} let $\pi(\mathbf{x}) = (x_{\pi(1)}, \ldots, x_{\pi(n-1)})$. Let $E = \{0, 1\}^{n-1}$ and for $1 \leq j \leq n-1$ let

$$E_j = \{(\epsilon_1, \dots, \epsilon_{n-1}) \in E : \epsilon_j = 0\}.$$

$$\boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_{n-1}) \in E \text{ and } 1 \leq j \leq n-1 \text{ let } \mathbf{a}^{\boldsymbol{\epsilon}} = (a_1^{\epsilon_1}, \dots, a_{n-1}^{\epsilon_{n-1}}) \text{ and let}$$
$$\mathbf{a}^{\boldsymbol{\epsilon}, j} = (a_1^{\epsilon_1}, \dots, a_{j-1}^{\epsilon_{j-1}}, b, a_{j+1}^{\epsilon_{j+1}}, \dots, a_{n-1}^{\epsilon_{n-1}}).$$

Let $T_{q,n}$ denote the set of all sequences $\mathbf{v} = (v_1, \ldots, v_{n-1}) \in V^{n-1}$ such that $v_i \in e_i + \langle e_{i+1}, \ldots, e_n \rangle$ and $v_i \neq e_i$ for all $1 \leq i \leq n-1$. Clearly $|T_{q,n}| = \prod_{i=1}^{n-1} (q^i - 1)$. Fix $\mathbf{v} = (v_1, \ldots, v_{n-1}) \in T_{q,n}$. For $\boldsymbol{\epsilon} = (\epsilon_1, \ldots, \epsilon_{n-1}) \in E$, let $\mathbf{v}^{\boldsymbol{\epsilon}} = (u_1, \ldots, u_{n-1})$, where

$$u_i = \begin{cases} e_i & \epsilon_i = 0, \\ v_i & \epsilon_i = 1. \end{cases}$$

For $1 \leq j \leq n-1$ let $\mathbf{v}^{\boldsymbol{\epsilon},j} = (u_1, \dots, u_{n-1})$, where

For

$$u_i = \begin{cases} e_n & i = j, \\ e_i & i \neq j \& \epsilon_i = 0, \\ v_i & i \neq j \& \epsilon_i = 1. \end{cases}$$

Define $\theta_{\mathbf{v}}: K(0) \to V$ by

$$\theta_{\mathbf{v}}(x) = \begin{cases} e_i & x = a_i^0, \\ v_i & x = a_i^1, \\ e_n & x = b, \end{cases}$$

and let $f_{\mathbf{v}} : \mathrm{sd}(K)(0) \to X_V(0)$ be the map given by

$$f_{\mathbf{v}}(\sigma) = \langle \theta_{\mathbf{v}}(x) : x \in \sigma \rangle^{\perp}$$

Clearly, $f_{\mathbf{v}}$ extends to a simplicial map from $\mathrm{sd}(K)$ to X_V . The inverse of \mathfrak{g} under $f_{\mathbf{v}}$ is the local system of $\mathrm{sd}(K)$ given by $\mathfrak{h}_{\mathbf{v}} = f_{\mathbf{v}}^{-1}\mathfrak{g}$. We next define an element

$$c_{\mathbf{v}} = \sum_{F \in \mathrm{sd}(K)(n-2)} c_{\mathbf{v}}(F)F \in C_{n-2}(\mathrm{sd}(K);\mathfrak{h}_{\mathbf{v}}).$$

For a sequence $\mathbf{u} = (u_1, \ldots, u_{n-1}) \in V^{n-1}$ of linearly independent vectors in V such that $e_n \notin \langle u_1, \ldots, u_{n-1} \rangle$, let $w(\mathbf{u})$ be the unique element $w \in \langle u_1, \ldots, u_{n-1} \rangle^{\perp}$ such that $w \cdot e_n = 1$. For $\boldsymbol{\epsilon} = (\epsilon_1, \ldots, \epsilon_{n-1}) \in \{0, 1\}^{n-1}$ and $\pi \in \mathbb{S}_{n-1}$ let $\chi(\epsilon, \pi) = (-1)^{\sum_{j=1}^{n-1} \epsilon_j} \operatorname{sgn}(\pi)$. On an (n-2)-simplex $F \in \operatorname{sd}(K)(n-2)$ define

$$c_{\mathbf{v}}(F) = \begin{cases} \chi(\boldsymbol{\epsilon}, \pi) w(\mathbf{v}^{\boldsymbol{\epsilon}}) & \boldsymbol{\epsilon} \in E, F = S(\pi(\mathbf{a}^{\boldsymbol{\epsilon}})), \\ \chi(\boldsymbol{\epsilon}, \pi) (w(\mathbf{v}^{\boldsymbol{\epsilon}+e_j}) - w(\mathbf{v}^{\boldsymbol{\epsilon}})) & \boldsymbol{\epsilon} \in E_j, F = S(\pi(\mathbf{a}^{\boldsymbol{\epsilon},j})), \\ 0 & \text{otherwise.} \end{cases}$$
(3)

Note that $c_{\mathbf{v}}(F) \in \mathfrak{h}_{\mathbf{v}}(F)$ for all $F \in \mathrm{sd}(K)(n-2)$. Indeed, if $F = S(\pi(\mathbf{a}^{\epsilon}))$ then

$$c_{\mathbf{v}}(F) = \chi(\boldsymbol{\epsilon}, \pi) w(\mathbf{v}^{\boldsymbol{\epsilon}}) \in \langle v_1^{\epsilon_1}, \dots, v_{n-1}^{\epsilon_{n-1}} \rangle^{\perp}$$

= $\mathfrak{g}(f_{\mathbf{v}}(F)) = \mathfrak{h}_{\mathbf{v}}(F).$

If $F = S(\pi(\mathbf{a}^{\epsilon,j}))$ for $1 \le j \le n-1$ and $\epsilon \in E_j$ then

$$c_{\mathbf{v}}(F) = \chi(\boldsymbol{\epsilon}, \pi) \left(w(\mathbf{v}^{\boldsymbol{\epsilon}+e_j}) - w(\mathbf{v}^{\boldsymbol{\epsilon}}) \right) \in \langle v_1^{\epsilon_1}, \dots, v_{j-1}^{\epsilon_{j-1}}, e_n, v_{j+1}^{\epsilon_{j+1}}, \dots, v_{n-1}^{\epsilon_{n-1}} \rangle^{\perp}$$

= $\mathfrak{g}(f_{\mathbf{v}}(F)) = \mathfrak{h}(F).$

Proposition 2.1. $c_{\mathbf{v}} \in \tilde{H}_{n-2}(\mathrm{sd}(K); \mathfrak{h}_{\mathbf{v}}).$

Proof. Let $G \in \operatorname{sd}(K)(n-3)$. We have to show that $\partial_{n-2}c_{\mathbf{v}}(G) = 0$. Let $\Gamma(G)$ denote the set of (n-2)-simplices in $\operatorname{sd}(K)$ that contain G. For $2 \leq \ell \leq n-1$ let $\eta_{\ell} \in \mathbb{S}_{n-1}$ denote the transposition $(n-\ell, n-\ell+1)$. We consider the following four cases according to the type of G. For n = 4 we depict the types of the 24 bold edges in Figure 1b. The 6 edges incident with the vertex ① are of type 1, and the 6 edges incident with the vertex ② are of type 2 below. Of the remaining 12 edges, the 8 edges that are incident with vertices labelled ③ are of type 3, and the remaining 4 edges incident with vertices labelled by ④ are of type 4.

1. $G = S(\pi(\mathbf{a}^{\epsilon}))_{\ell}$ for some $2 \leq \ell \leq n-1$, $\pi \in \mathbb{S}_{n-1}$ and $\epsilon \in E$. Then

$$\Gamma(G) = \{ S(\pi(\mathbf{a}^{\epsilon})), S((\pi\eta_{\ell})(\mathbf{a}^{\epsilon})) \}$$

As G is the ℓ -th face of both these simplices, it follows that

$$(-1)^{\ell+1}\partial_{n-2}c_{\mathbf{v}}(G) = c_{\mathbf{v}}(S(\pi(\mathbf{a}^{\boldsymbol{\epsilon}}))) + c_{\mathbf{v}}(S((\pi\eta_{\ell})(\mathbf{a}^{\boldsymbol{\epsilon}})))$$
$$= \chi(\boldsymbol{\epsilon}, \pi)w(\mathbf{v}^{\boldsymbol{\epsilon}}) + \chi(\boldsymbol{\epsilon}, \pi\eta_{\ell})w(\mathbf{v}^{\boldsymbol{\epsilon}})$$
$$= \chi(\boldsymbol{\epsilon}, \pi)w(\mathbf{v}^{\boldsymbol{\epsilon}}) - \chi(\boldsymbol{\epsilon}, \pi)w(\mathbf{v}^{\boldsymbol{\epsilon}}) = 0.$$

2. $G = S(\pi(\mathbf{a}^{\epsilon,j}))_{\ell}$ for some $2 \leq \ell \leq n-1, \pi \in \mathbb{S}_{n-1}, 1 \leq j \leq n-1$ and $\epsilon \in E_j$. Then

$$\Gamma(G) = \{ S(\pi(\mathbf{a}^{\epsilon,j})), S((\pi\eta_{\ell})(\mathbf{a}^{\epsilon,j})) \}.$$

As G is the ℓ -th face of both these simplices, it follows that

$$(-1)^{\ell+1}\partial_{n-2}c_{\mathbf{v}}(G) = c_{\mathbf{v}}(S(\pi(\mathbf{a}^{\boldsymbol{\epsilon},j}))) + c_{\mathbf{v}}(S((\pi\eta_{\ell})(\mathbf{a}^{\boldsymbol{\epsilon},j})))$$

= $\chi(\boldsymbol{\epsilon},\pi) (w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}})) + \chi(\boldsymbol{\epsilon},\pi\eta_{\ell}) (w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}}))$
= $\chi(\boldsymbol{\epsilon},\pi) (w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}})) - \chi(\boldsymbol{\epsilon},\pi) (w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}})) = 0.$

3. $G = S(\pi(\mathbf{a}^{\boldsymbol{\epsilon}}))_1$ for some $\pi \in \mathbb{S}_{n-1}$ and $\boldsymbol{\epsilon} \in E_j$, where $j = \pi(n-1)$. Then

$$\Gamma(G) = \{ S(\pi(\mathbf{a}^{\epsilon})), S(\pi(\mathbf{a}^{\epsilon+e_j})), S(\pi(\mathbf{a}^{\epsilon,j})) \}$$

As G is the 1-face of each of these simplices, it follows that

$$\begin{aligned} \partial_{n-2}c_{\mathbf{v}}(G) &= c_{\mathbf{v}}\left(S(\pi(\mathbf{a}^{\boldsymbol{\epsilon}}))\right) + c_{\mathbf{v}}\left(S(\pi(\mathbf{a}^{\boldsymbol{\epsilon}+e_j}))\right) + c_{\mathbf{v}}\left(S(\pi(\mathbf{a}^{\boldsymbol{\epsilon},j}))\right) \\ &= \chi(\boldsymbol{\epsilon},\pi)w(\mathbf{v}^{\boldsymbol{\epsilon}}) + \chi(\boldsymbol{\epsilon}+e_j,\pi)w(\mathbf{v}^{\boldsymbol{\epsilon}+e_j}) + \chi(\boldsymbol{\epsilon},\pi)\left(w(\mathbf{v}^{\boldsymbol{\epsilon}+e_j}) - w(\mathbf{v}^{\boldsymbol{\epsilon}})\right) \\ &= \chi(\boldsymbol{\epsilon},\pi)\left(w(\mathbf{v}^{\boldsymbol{\epsilon}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}+e_j})\right) + \chi(\boldsymbol{\epsilon},\pi)\left(w(\mathbf{v}^{\boldsymbol{\epsilon}+e_j}) - w(\mathbf{v}^{\boldsymbol{\epsilon}})\right) = 0. \end{aligned}$$

4. $G = S(\pi(\mathbf{a}^{\epsilon,j}))_1$ for some $\pi \in \mathbb{S}_{n-1}$ and $\epsilon \in E_j$, where $j \neq \pi(n-1)$. Let $j' = \pi(n-1)$ and let τ denote the transposition (j, j'). Since $S(\pi(\mathbf{a}^{\epsilon,j}))_1$ is independent of $\epsilon_{\pi(n-1)}$, we may assume that $\epsilon_{j'} = \epsilon_{\pi(n-1)} = 0$. Then:

$$\Gamma(G) = \{ S(\pi(\mathbf{a}^{\epsilon,j})), S(\pi(\mathbf{a}^{\epsilon+e_j,j})), S((\tau\pi)(\mathbf{a}^{\epsilon,j'})), S((\tau\pi)(\mathbf{a}^{\epsilon+e_j,j'})) \}.$$

As G is the 1-face of each of these simplices, it follows that

$$\begin{aligned} \partial_{n-2}c_{\mathbf{v}}(G) &= c_{\mathbf{v}}(S(\pi(\mathbf{a}^{\boldsymbol{\epsilon},j}))) + c_{\mathbf{v}}(S(\pi(\mathbf{a}^{\boldsymbol{\epsilon}+e_{j'},j}))) \\ &+ c_{\mathbf{v}}(S((\tau\pi)(\mathbf{a}^{\boldsymbol{\epsilon},j'}))) + c_{\mathbf{v}}(S((\tau\pi)(\mathbf{a}^{\boldsymbol{\epsilon}+e_{j},j'}))) \\ &= \chi(\boldsymbol{\epsilon},\pi)(w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}})) + \chi(\boldsymbol{\epsilon}+e_{j'},\pi)(w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j'}+e_{j}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j'}})) \\ &+ \chi(\boldsymbol{\epsilon},\tau\pi)(w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j'}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}})) + \chi(\boldsymbol{\epsilon}+e_{j},\tau\pi)(w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}+e_{j'}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}})) \\ &= \chi(\boldsymbol{\epsilon},\pi)[(w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}})) - (w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j'}+e_{j}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j'}})) \\ &- (w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j'}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}})) + (w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j'}+e_{j}}) - w(\mathbf{v}^{\boldsymbol{\epsilon}+e_{j'}}))] = 0. \end{aligned}$$

We have thus shown that $c_{\mathbf{v}} \in H_{n-2}(\mathrm{sd}(K); \mathfrak{h})$.

Proposition 2.1 implies that $\tilde{c}_{\mathbf{v}} = (f_{\mathbf{v}})_* c_{\mathbf{v}} \in \tilde{H}_{n-2}(X_V; \mathfrak{g}).$

Theorem 2.2. The family $\{\tilde{c}_{\mathbf{v}}: \mathbf{v} \in T_{q,n}\}$ is a basis of $\mathcal{D}^1(V) = \tilde{H}_{n-2}(X_V; \mathfrak{g})$.

Proof. Let $\mathbf{v} \in T_{q,n}$. Let $R(\mathbf{v}) \in X_V(n-2)$ be the (n-2)-simplex

 $R(\mathbf{v}) = [\langle v_1, \dots, v_{n-1} \rangle^{\perp}, \langle v_1, \dots, v_{n-2} \rangle^{\perp}, \dots, \langle v_1, v_2 \rangle^{\perp}, \langle v_1 \rangle^{\perp}].$

Let $\mathbf{1} = (1, \ldots, 1) \in E$. It is straightforward to check that $F = S(\mathbf{a}^1)$ is the unique (n-2)-simplex in sd(K) such that $f_{\mathbf{v}}(F) = R(\mathbf{v})$. It follows that

$$\widetilde{c}_{\mathbf{v}}(R(\mathbf{v})) = c_{\mathbf{v}}(S(\mathbf{a}^1)) = (-1)^{n-1}w(\mathbf{v}).$$

On the other hand, if $\mathbf{v} \neq \mathbf{v}' \in T_{q,n}$, then $R(\mathbf{v}') \notin f_{\mathbf{v}}(\mathrm{sd}(K))$ and so $\tilde{c}_{\mathbf{v}}(R(\mathbf{v}')) = 0$. It follows that the (n-2)-cycles $\{\tilde{c}_{\mathbf{v}} : \mathbf{v} \in T_{q,n}\}$ are linearly independent in $\mathcal{D}^1(V)$. As $|T_{q,n}| = \prod_{i=1}^{n-1} (q^i - 1) = \dim \mathcal{D}^1(V)$, this completes the proof of Theorem 2.2.

Example: Let n = 3 and let

$$\mathbf{v} = (v_1, v_2) = ((1, r, s), (0, 1, t)) \in T_{q,3}.$$

Figure 2 depicts the cycle $c_{\mathbf{v}} \in H_1(\mathrm{sd}(K); \mathfrak{h})$. Black vertices correspond to vertices of K and white vertices correspond to edges of K. The values of $c_{\mathbf{v}}$ are indicated on the edges of the diagram. For example, let $\boldsymbol{\epsilon} = (1, 1)$ and $\pi = (1, 2)$. Then $F = S(\pi(\mathbf{a}^{\epsilon})) = [\{a_2^1, a_1^1\}, \{a_2^1\}], \text{ and }$

$$c_{\mathbf{v}}(F) = \chi(\boldsymbol{\epsilon}, \pi) w((v_1, v_2)) = -w((v_1, v_2)) = (s - rt, t, -1).$$

Similarly, if j = 1, $\epsilon = (0, 1) \in E_1$ and $\pi = (1, 2)$, then $F = S(\pi(\mathbf{a}^{\epsilon, j})) = [\{a_2^1, b\}, \{a_2^1\}]$ and

$$c_{\mathbf{v}}(F) = \chi(\boldsymbol{\epsilon}, \pi) \left(w((v_1, v_2)) - w((e_1, v_2)) \right) = (rt - s, -t, 1) - (0, -t, 1) = (rt - s, 0, 0).$$

Figures 3 and 4 depict the 1-cycle $\tilde{c}_{\mathbf{v}} \in H_1(X_V; \mathfrak{g})$. Here, the black vertices correspond to 2-dimensional subspaces of V. The white vertices and their labels correspond to 1-dimensional subspaces and their generating vectors. Figure 3 depicts the generic case when $rst(rt-s) \neq 0$. The labels of the left most 6 white points together with the \pm signs, indicate the values of $\tilde{c}_{\mathbf{v}}$ on the incident edges. The remaining three values of $\tilde{c}_{\mathbf{v}}$ are indicated on the edges incident with the vertex corresponding to the line spanned by (1,0,0). Figure 4 similarly depicts the case s = 0. Note that in both cases, the simplicial map $f_{\mathbf{v}} : \operatorname{sd}(K) \to X_V$ is not injective.

Figure 2: The cycle $c_{\mathbf{v}}$ for $\mathbf{v} = (v_1, v_2) = ((1, r, s), (0, 1, t)).$

3 The Dimension of $\mathcal{D}^k(V)$

Proof of Theorem 1.5: For an \mathbb{F}_q -space W let $\operatorname{St}(W) = \tilde{H}_{\dim W-2}(X_W; \mathbb{F}_q)$ denote the Steinberg module of W over \mathbb{F}_q . Recall that $\dim \operatorname{St}(W) = q^{\binom{\dim W}{2}}$ by Theorem 1.1. Let $G_j(V)$ denote the family of all *j*-dimensional linear subspaces of V. The following result is due to Dupont (Proposition 5.38 in [4]).

Theorem 3.1 (Dupont). There is an exact sequence

$$0 \to \mathcal{D}^{k}(V) \to \bigoplus_{U_{k} \in G_{k}(V)} \wedge^{k} U_{k} \otimes \operatorname{St}(V/U_{k}) \to \bigoplus_{U_{k+1} \in G_{k+1}(V)} \wedge^{k} U_{k+1} \otimes \operatorname{St}(V/U_{k}) \to \dots \to \bigoplus_{U_{n-2} \in G_{n-2}(V)} \wedge^{k} U_{n-2} \otimes \operatorname{St}(V/U_{n-2}) \to \bigoplus_{U_{n-1} \in G_{n-1}(V)} \wedge^{k} U_{n-1} \to \wedge^{k} V \to 0.$$

Writing $\binom{n}{j}_{q}$ for the q-binomial coefficient, Theorem 3.1 implies that

$$\dim \mathcal{D}^k(V) = \sum_{j=k}^n (-1)^{j-k} \binom{j}{k} q^{\binom{n-j}{2}} \begin{bmatrix} n\\ j \end{bmatrix}_q.$$
(4)

Figure 3: The cycle $\widetilde{c}_{\mathbf{v}}$ for a generic $\mathbf{v}=((1,r,s),(0,1,t)).$

By the q-binomial theorem (see e.g. (1.87) in [8])

$$\prod_{j=0}^{n-1} (1+q^j \lambda) = \sum_{j=0}^n q^{\binom{j}{2}} {n \brack j}_q \lambda^j.$$
(5)

Substituting $\lambda = -t^{-1}$ in (5) and multiplying by t^n it follows that

$$\prod_{j=0}^{n-1} (t-q^j) = \sum_{j=0}^n (-1)^j q^{\binom{j}{2}} {n \brack j}_q t^{n-j}.$$
 (6)

Differentiating (6) k times and multiplying by $\frac{(-1)^{n-k}}{k!}$ we obtain

$$\prod_{j=0}^{n-1} (q^{j} - t) \sum_{0 \le \alpha_{0} < \dots < \alpha_{k-1} \le n-1} \prod_{\ell=0}^{k-1} \frac{1}{q^{\alpha_{\ell}} - t} \\
= \sum_{j=0}^{n} (-1)^{n-k+j} \binom{n-j}{k} q^{\binom{j}{2}} \begin{bmatrix} n\\ j \end{bmatrix}_{q} t^{n-j-k} \\
= \sum_{j=0}^{n} (-1)^{j-k} \binom{j}{k} q^{\binom{n-j}{2}} \begin{bmatrix} n\\ j \end{bmatrix}_{q} t^{j-k}.$$
(7)

Figure 4: The cycle $\tilde{c}_{\mathbf{v}}$ for $\mathbf{v} = (v_1, v_2) = ((1, r, 0), (0, 1, t)).$

Substituting t = 1 in (7) and using (4) we obtain (2).

3.1 A Basis for $\mathcal{D}^{n-1}(V)$

In this subsection we describe an explicit basis for $\mathcal{D}^{n-1}(V) = \tilde{H}_0(X_V; \wedge^{n-1}\mathfrak{g})$. We first recall some facts concerning the exterior algebra $\wedge V$. Let $V = \mathbb{F}_q^n$. Using the notation of Section 2, recall that e_1, \ldots, e_n are the unit vectors in V, and $a \cdot b$ denotes the standard symmetric bilinear form on V. Let $\mathbf{e} = e_1 \wedge \cdots \wedge e_n \in \wedge^n V$. The induced bilinear form on $\wedge^p V$ is given by

$$(u_1 \wedge \dots \wedge u_p) \cdot (v_1 \wedge \dots \wedge v_p) = \det (u_i \cdot v_j)_{i,j=1}^p$$

The star operator $*: \wedge^{n-k}V \to \wedge^k V$ is the unique linear map that satisfies

$$(*\alpha) \cdot \beta = \mathbf{e} \cdot (\alpha \wedge \beta)$$

for any $\alpha \in \wedge^{n-k}V, \beta \in \wedge^k V$.

Claim 3.2. Let v_1, \ldots, v_{n-k} be linearly independent vectors in V and let $M = \langle v_1, \ldots, v_{n-k} \rangle^{\perp}$. Then

$$0 \neq *(v_1 \wedge \dots \wedge v_{n-k}) \in \wedge^k M$$

Proof. Extend $\{v_i\}_{i=1}^{n-k}$ to a basis $\{v_i\}_{i=1}^n$ of V, and let $\{w_j\}_{j=1}^n$ be the dual basis, i.e. $v_i \cdot w_j = \delta_{i,j}$. Then $M = \langle w_{n-k+1}, \ldots, w_n \rangle$. For a subset $L = \{i_1, \ldots, i_\ell\} \in {[n] \choose \ell}$ such that $1 \leq i_1 < \cdots < i_\ell \leq n$ let $v_L = v_{i_1} \wedge \cdots \wedge v_{i_\ell}$ and $w_L = w_{i_1} \wedge \cdots \wedge w_{i_\ell}$. If $L, L' \in {[n] \choose \ell}$ then $v_L \cdot w_{L'} = \delta_{L,L'}$. Let $I_0 = \{1, \ldots, n-k\}, J_0 = \{n-k+1, \ldots, n\}$, and let $*v_{I_0} = \sum_{|J|=k} \lambda_J w_J$. Then for any $J' \in {[n] \choose k}$

$$* v_{I_0} \cdot v_{J'} = \sum_{|J|=k} \lambda_J w_J \cdot v_{J'} = \lambda_{J'}.$$
(8)

On the other hand

Combining (8) and (9), it follows that $0 \neq *v_{I_0} = \det(v_1, \ldots, v_n) w_{J_0} \in \wedge^k M$.

We proceed to construct a basis of $\mathcal{D}^{n-1}(V) = \tilde{H}_0(X_V; \wedge^{n-1}\mathfrak{g})$. Note that if $u \in V$, then by Claim 3.2, $(*u)u^{\perp} \in C_0(X_V; \wedge^{n-1}\mathfrak{g})$. For any $1 \leq i \leq n$ let

$$z_{u,i} = (*e_i)e_i^{\perp} + (*u)u^{\perp} - (*(u+e_i))(u+e_i)^{\perp} \in C_0(X_V; \wedge^{n-1}\mathfrak{g}).$$

Then

$$\partial_0(z_{u,i}) = *e_i + *u - *(u + e_i) = *(e_i + u - (u + e_i)) = 0$$

and therefore $z_{u,i} \in \mathcal{D}^{n-1}(V)$. For $2 \leq i \leq n$ let $R_i = \left(\mathbb{F}_q^{i-1} \setminus \{0\}\right) \times \{0\}^{n-i+1}$.

Claim 3.3.

$$\mathcal{B} = \left\{ z_{u,i} : 2 \le i \le n \ , \ u \in R_i \right\}$$
(10)

is a basis of $\mathcal{D}^{n-1}(V)$.

Proof. By Theorem 1.5

$$\dim \mathcal{D}^{n-1}(V) = \sum_{i=2}^{n} (q^{i-1} - 1) = \sum_{i=2}^{n} |R_i| = |\mathcal{B}|$$

It therefore suffices to show that the elements of \mathcal{B} are linearly independent. This in turn follows from the fact that for any $2 \leq j \leq n$ and $v \in R_j$, it holds that $(v + e_j)^{\perp} \in \operatorname{supp}(z_{v,j})$, but $(v + e_j)^{\perp} \notin \operatorname{supp}(z_{u,i})$ for any $(u, i) \neq (v, j)$ such that $2 \leq i \leq j$ and $u \in R_i$.

4 Minimal Cycles in $\mathcal{D}^k(V)$

In this section we prove Theorem 1.6. The upper bound follows from a construction of certain explicit (n - k - 1)-cycles of $\mathcal{D}^k(V)$ given in Subsection 4.1. The lower bound is established in Subsection 4.2.

4.1 The Upper Bound

Let $1 \leq k \leq n-1$ and let m = n-k+2. Let $\mathbf{u} = (u_1, \ldots, u_m) \in V^m$ be an ordered m-tuple of vectors in V whose only linear dependence is $\sum_{i=1}^m u_i = 0$. Let $\mathbb{I}_{m-2,m}$ denote the family of injective functions $\pi : [n-k] = [m-2] \to [m]$. For $\pi \in \mathbb{I}_{m-2,m}$ let $T(\mathbf{u}, \pi)$ be the (n-k-1)-simplex given by

$$T(\mathbf{u},\pi) = [\langle u_{\pi(1)}, \dots, u_{\pi(n-k)} \rangle^{\perp} \subset \dots \subset \langle u_{\pi(1)} \rangle^{\perp}].$$

Let $\gamma_{\mathbf{u}} \in C_{n-k-1}(X_V; \wedge^k \mathfrak{g})$ be the chain whose value on an (n-k-1)-simplex F is given by

$$\gamma_{\mathbf{u}}(F) = \begin{cases} * \left(u_{\pi(1)} \wedge \dots \wedge u_{\pi(n-k)} \right) & F = T(\mathbf{u}, \pi), \\ 0 & \text{otherwise.} \end{cases}$$
(11)

Proposition 4.1. $\gamma_{\mathbf{u}} \in \mathcal{D}^k(V)$.

Proof. Let G be an (n-k-2)-simplex in X_V . Let $\Gamma_{\mathbf{u}}(G)$ denote the set of (n-k-1)simplices in $\operatorname{supp}(\gamma_{\mathbf{u}})$ that contain G. For $2 \leq \ell \leq n-k$ let $\eta_{\ell} \in \mathbb{S}_{n-k-2}$ denote the
transposition $(n-k-\ell+1, n-k-\ell+2)$. We consider the following two cases:

1. $G = T(\mathbf{u}, \pi)_{\ell}$ for some $2 \le \ell \le n - k$ and $\pi \in \mathbb{I}_{m-2,m}$. Then

$$\Gamma_{\mathbf{u}}(G) = \{T(\mathbf{u}, \pi), T(\mathbf{u}, \pi\eta_{\ell})\}.$$

As G is the ℓ -th face of both these simplices, it follows that

$$(-1)^{\ell+1}\partial_{n-k-1}\gamma_{\mathbf{u}}(G) = \gamma_{\mathbf{u}}(T(\mathbf{u},\pi)) + \gamma_{\mathbf{u}}(T(\mathbf{u},\pi\eta_{\ell}))$$

= * $(u_{\pi(1)} \wedge \cdots \wedge u_{\pi(n-k-\ell+1)} \wedge u_{\pi(n-k-\ell+2)} \wedge \cdots \wedge u_{\pi(n-k)})$
+ * $(u_{\pi(1)} \wedge \cdots \wedge u_{\pi(n-k-\ell+2)} \wedge u_{\pi(n-k-\ell+1)} \wedge \cdots \wedge u_{\pi(n-k)}) = 0.$

2. $G = T(\mathbf{u}, \pi)_1$ for some $\pi \in \mathbb{I}_{m-2,m}$. Let $[m] \setminus \pi([m-3]) = \{\alpha_1, \alpha_2, \alpha_3\}$. For i = 1, 2, 3 define $\pi_i \in \mathbb{I}_{m-2,m}$ by

$$\pi_i(j) = \begin{cases} \pi(j) & 1 \le j \le n-k-1, \\ \alpha_i & j = n-k. \end{cases}$$

Then

$$\Gamma_{\mathbf{u}}(G) = \{T(\mathbf{u}, \pi_1), T(\mathbf{u}, \pi_2), T(\mathbf{u}, \pi_3)\}$$

As G is the 1-th face of these three simplices, it follows that

$$\partial_{n-k-1}\gamma_{\mathbf{u}}(G) = \sum_{i=1}^{3} \gamma_{\mathbf{u}}(T(\mathbf{u}, \pi_i))$$
$$= \sum_{i=1}^{3} * \left(u_{\pi(1)} \wedge \dots \wedge u_{\pi(n-k-1)} \wedge u_{\alpha_i}\right)$$
$$= * \left(u_{\pi(1)} \wedge \dots \wedge u_{\pi(n-k-1)} \wedge \left(\sum_{i=1}^{3} u_{\alpha_i}\right)\right)$$
$$= * \left(u_{\pi(1)} \wedge \dots \wedge u_{\pi(n-k-1)} \wedge \left(\sum_{j=1}^{m} u_j\right)\right) = 0.$$

We have thus shown that $\gamma_{\mathbf{u}} \in \mathcal{D}^k(V)$.

Corollary 4.2.

$$\min\{|\operatorname{supp}(w)|: 0 \neq w \in \mathcal{D}^k(V)\} \leq |\operatorname{supp}(\gamma_{\mathbf{u}})|$$
$$= |\mathbb{I}_{m-2,m}| = \frac{(n-k+2)!}{2}.$$

Example: Let n = 3, k = 1. A minimal twisted 1-cycle in $\mathcal{D}^1(X_V)$ is depicted in Figure 4.

4.2 The Lower Bound

In preparation for the proof of the lower bound in Theorem 1.6, we first recall a twisted version of the nerve lemma. Let \mathcal{F} be a local system on a finite simplicial complex Y, and let $\mathcal{Y} = \{Y_i\}_{i=1}^m$ be a family of subcomplexes of Y such that $Y = \bigcup_{i=1}^m Y_i$. The *nerve* of the cover \mathcal{Y} is the simplicial complex $N = N(\mathcal{Y})$ on the vertex [m] = $\{1, \ldots, m\}$, whose simplices are the subsets $\tau \subset [m]$ such that $Y_\tau := \bigcap_{i \in \tau} Y_i \neq \emptyset$. For $j \geq 1$ let $N_j(\mathcal{F})$ be the local system on N given by $N_j(\mathcal{F})(\tau) = H_j(Y_\tau; \mathcal{F})$. The following result is twisted version of the Mayer-Vietoris spectral sequence (see e.g. [5]).

Proposition 4.3. There exists a spectral sequence $\{E_{p,q}^r\}$ converging to $H_*(Y; \mathcal{F})$ such that $E_{p,q}^1 = \bigoplus_{\sigma \in N(p)} H_q(Y_{\sigma}; \mathcal{F})$ and $E_{p,q}^2 = H_p(N; N_q(\mathcal{F}))$.

The Nerve Lemma is the following

Corollary 4.4. Suppose that $H_q(Y_{\sigma}; \mathcal{F}) = 0$ for all $q \ge 1$ and $\sigma \in N(p)$ such that $p + q \le t$. Then $H_p(Y; \mathcal{F}) \cong H_p(N; N_0(\mathcal{F}))$ for all $0 \le p \le t$.

	_	_	Ľ
			L
			L
_	_	_	L

We will also need a simple observation concerning a certain twisted homology of the simplex. Let $r \geq 2$ and let W_1, \ldots, W_r be arbitrary linear subspaces of a finite dimensional vector space W over a field \mathbb{K} . Let Δ_{r-1} denote the simplex on the vertex set [r], and let \mathcal{G} be the local system on Δ_{r-1} given by

$$\mathcal{G}(\sigma) = \begin{cases} \bigcap_{i \in \sigma} W_i & \emptyset \neq \sigma \in \Delta_{r-1}, \\ W & \sigma = \emptyset, \end{cases}$$

with the natural inclusion maps.

Proposition 4.5. $\tilde{H}_k(\Delta_{r-1}; \mathcal{G}) = 0$ for $k \ge r-2$.

Proof: Using the natural order on $\{1, \ldots, r\}$, the top dimensional simplex in Δ_{r-1} is $\tau = [1, 2, \cdots, r]$, and its *i*-th face is $\tau_i = [1, \ldots, i-1, i+1, \ldots, r]$. For $1 \le i < j \le r$ let

$$\tau_{i,j} = [1, \dots, i-1, i+1, \dots, j-1, j+1, \dots, r]$$

Then

$$C_{r-1}(\Delta_{r-1},\mathcal{G}) = \left\{ w\tau : w \in \bigcap_{i=1}^r W_i \right\}$$

and

$$C_{r-2}(\Delta_{r-1},\mathcal{G}) = \left\{ \sum_{i=1}^r w_i \tau_i : w_i \in \bigcap_{\ell \in \tau_i} W_\ell \right\}.$$

The boundary map $\partial_{r-1}: C_{r-1}(\Delta_{r-1}; \mathcal{G}) \to C_{r-2}(\Delta_{r-1}; \mathcal{G})$ is given by

$$\partial_{r-1}(w\tau) = \sum_{i=1}^{r} (-1)^{i+1} w\tau_i.$$
(12)

Note that for $1 \leq i \leq r$ and $1 \leq j \leq r - 1$, the *j*-th face of τ_i is

$$(\tau_i)_j = \begin{cases} \tau_{j,i} & 1 \le j < i \le r, \\ \tau_{i,j+1} & 1 \le i \le j \le r-1 \end{cases}$$

It follows that the boundary map $\partial_{r-2}: C_{r-2}(\Delta_{r-1}; \mathcal{G}) \to C_{r-3}(\Delta_{r-1}; \mathcal{G})$ is given by

$$\partial_{r-2} \Big(\sum_{i=1}^{r} w_i \tau_i \Big) = \sum_{i=1}^{r} \sum_{j=1}^{r-1} (-1)^{j+1} w_i (\tau_i)_j$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{i-1} (-1)^{j+1} w_i \tau_{j,i} + \sum_{i=1}^{r} \sum_{j=i}^{r-1} (-1)^{j+1} w_i \tau_{i,j+1}$$

$$= \sum_{j=1}^{r} \sum_{i=1}^{j-1} (-1)^{i+1} w_j \tau_{i,j} + \sum_{i=1}^{r} \sum_{j=i+1}^{r} (-1)^j w_i \tau_{i,j}$$

$$= \sum_{1 \le i < j \le r} \left((-1)^{i+1} w_j + (-1)^j w_i \right) \tau_{i,j}.$$
(13)

Eq. (12) implies that $\tilde{H}_{r-1}(\Delta_{r-1};\mathcal{G}) = 0$. Next let $c = \sum_{i=1}^{r} w_i \tau_i \in \ker \partial_{r-2}$ be a \mathcal{G} -twisted (r-2)-cycle of Δ_{r-1} . It follows by (13) that $w_j = (-1)^{j+1} w_1$ for all $1 \leq j \leq r$. Therefore $w_1 \in \bigcap_{i=1}^{r} W_i$ and hence $w_1 \tau \in C_{r-1}(X;\mathcal{G})$. Eq. (12) then implies that $\partial_{r-1}(w_1\tau) = c$. Thus $\tilde{H}_{r-2}(\Delta_{r-1};\mathcal{G}) = 0$.

Proof of the lower bound in Theorem 1.6. We argue by induction on n - k. For the induction basis k = n - 1, we have to show that if $0 \neq z \in \mathcal{D}^{n-1}(V) = \tilde{H}_0(X_V; \wedge^{n-1}\mathfrak{g})$, then $|\operatorname{supp}(z)| \geq \frac{(n-k+2)!}{2} = 3$. Suppose for contradiction that $|\operatorname{supp}(z)| < 3$. Then $z = (*u)u^{\perp} + (*v)v^{\perp}$ for some $u, v \in V$. As

$$0 = \partial_0 z = (*u) + (*v) = *(u+v),$$

it follows that u + v = 0 and hence z = 0, a contradiction. For the induction step, assume that $n - k \ge 2$ and let

$$0 \neq z = \sum_{z \in X_V(n-k-1)} z(\tau)\tau \in H_{n-k-1}(X_V; \wedge^k \mathfrak{g}) = Z_{n-k-1}(X_V; \wedge^k \mathfrak{g})$$

Let $\operatorname{supp}(z) = \{\tau_1, \ldots, \tau_s\} \in X_V(n-k-1)$ and write

 $\tau_i = [V_k(i), \ldots, V_{n-1}(i)],$

where dim $V_i(i) = j$ for all $1 \le i \le s$ and $k \le j \le n-1$. Let

$$\{V_{n-1}(i): 1 \le i \le s\} = \{U_1, \dots, U_r\},\$$

where the U_i 's are distinct (n-1)-dimensional subspaces. Let $\mathcal{U}_i = \{U : 0 \neq U \subset U_i\}$ and let $Y_i = X_V[\mathcal{U}_i]$. Let $Y = \bigcup_{i=1}^r Y_i$ then clearly $z \in Z_{n-k-1}(Y; \wedge^k \mathfrak{g})$. Let N be the nerve of the cover $\{Y_i\}_{i=1}^r$ of Y. For $\sigma \subset [r]$ let $U_{\sigma} = \bigcap_{i \in \sigma} U_i$ and $Y_{\sigma} = \bigcap_{i \in \sigma} Y_i$. If $\sigma \in N$ then Y_{σ} is the order complex of the poset $P_{\sigma} = \{W : 0 \neq W \subset U_{\sigma}\}$. As P_{σ} has a unique maximal element U_{σ} it follows (see e.g. Lemma 1.4 in [5]) that

$$N_q(\wedge^k \mathfrak{g})(\sigma) = H_q(Y_\sigma; \wedge^k \mathfrak{g}) = \begin{cases} \wedge^k U_\sigma & q = 0, \\ 0 & q > 0. \end{cases}$$
(14)

Write

$$\mathcal{F}(\sigma) = N_0(\wedge^k \mathfrak{g})(\sigma) = \wedge^k U_{\sigma}.$$

Eq. (14) and Corollary 4.4 imply that for all $p \ge 0$

$$H_p(Y; \wedge^k \mathfrak{g}) \cong H_p(N; \mathcal{F}).$$
(15)

Proposition 4.6. $r \ge n - k + 2$.

Proof: Suppose to the contrary that $r \leq n - k + 1$. Then $\Delta_{r-1}^{(r-2)} \subset N \subset \Delta_{r-1}$. For $1 \leq i \leq r$ let $W_i = \wedge^k U_i \subset \wedge^k V$. Let \mathcal{G} be the local system on Δ_{r-1} given by $\mathcal{G}(\sigma) = \bigcap_{i \in \sigma} W_i = \wedge^k U_{\sigma}$. Then $\mathcal{G}(\sigma) = \mathcal{F}(\sigma)$ if $\sigma \in N$ and $\mathcal{G}(\sigma) = 0$ otherwise. Hence $H_*(\Delta_{r-1}; \mathcal{G}) = H_*(N; \mathcal{F})$. As $n - k - 1 \geq r - 2$, it follows by combining (15) and Proposition 4.5 that

$$H_{n-k-1}(Y;\wedge^k \mathfrak{g}) \cong H_{n-k-1}(N;\mathcal{F}) = H_{n-k-1}(\Delta_{r-1};\mathcal{G}) = 0,$$

in contradiction with the assumption that z is a nonzero element of $H_{n-k-1}(Y; \wedge^k \mathfrak{g})$.

We now conclude the proof of Theorem 1.6. For $1 \leq j \leq r$ define $z_j \in C_{n-k-2}(X_{U_j}; \wedge^k \mathfrak{g})$ as follows. For an (n-k-2)-simplex $F = [V_k, \ldots, V_{n-2}] \in X_{U_j}(n-k-2)$ let $z_j(F) = z([V_k, \ldots, V_{n-2}, U_j])$. Then $\partial_{n-k-2}z_j = 0$. Indeed, suppose that

$$[V_k, \ldots, V_{i-1}, V_{i+1}, \ldots, V_{n-2}] \in X_{U_j}(n-k-3),$$

where dim $V_{\ell} = \ell$ for $i \neq \ell \in \{k, \dots, n-2\}$. Then:

$$\begin{aligned} \partial_{n-k-2} z_j \left([V_k, \dots, V_{i-1}, V_{i+1}, \dots, V_{n-2}] \right) \\ &= (-1)^{i+k} \sum_{V_{i-1} \subset V_i \subset V_{i+1}} z_j \left([V_k, \dots, V_{i-1}, V_i, V_{i+1}, \dots, V_{n-2}] \right) \\ &= (-1)^{i+k} \sum_{V_{i-1} \subset V_i \subset V_{i+1}} z \left([V_k, \dots, V_{i-1}, V_i, V_{i+1}, \dots, V_{n-2}, U_j] \right) \\ &= \partial_{n-k-1} z \left([V_k, \dots, V_{i-1}, V_{i+1}, \dots, V_{n-2}, U_j] \right) = 0. \end{aligned}$$

As $0 \neq z_j \in H_{n-k-2}(X_{U_j}; \wedge^k \mathfrak{g})$, it follows by induction that $|\operatorname{supp}(z_j)| \geq \frac{(n-k+1)!}{2}$. Therefore by Proposition 4.6

$$|\operatorname{supp}(z)| = \sum_{j=1}^{r} |\operatorname{supp}(z_j)| \ge (n-k+2)\frac{(n-k+1)!}{2} = \frac{(n-k+2)!}{2}.$$

5 Concluding Remarks

In this paper we studied some aspects of the twisted homology modules $\mathcal{D}^k(V) = \tilde{H}_{n-k-1}(X_V; \wedge^k \mathfrak{g})$. Our results suggest several problems and directions for further research:

• In Sections 2 and 3.1 we described explicit bases for $\mathcal{D}^1(V) = \tilde{H}_{n-2}(X_V; \mathfrak{g})$ and for $\mathcal{D}^{n-1}(V) = \tilde{H}_0(X_V; \wedge^{n-1}\mathfrak{g})$. It would be interesting to obtain analogous constructions for other $\mathcal{D}^k(V)$'s.

- The Nerve Lemma argument used in the proof of Theorem 1.6 can be adapted to give a simple alternative proof of the Smith-Yoshiara Theorem 1.3. We hope that this approach can also be useful for the study of minimal cycles of local systems over other highly symmetric complexes.
- The Smith-Yoshiara Theorem 1.3 and its counterpart for the local system $\wedge^k \mathfrak{g}$, Theorem 1.6, show that the linear codes that arise from (twisted) homology of X_V have small distance relative to their length, and are therefore far from good codes. On the other hand, it is known (see [2]) that for fixed integers $n \ge 2$ and K > 0 there is a constant $\lambda = \lambda(n, K) > 0$, such that for sufficiently large Nthere exists a complex $X_N \subset \Delta_{N-1}^{(n)}$ whose number of *n*-faces satisfies $f_n(X_N) =$ $K\binom{N}{n}$, and such that $|\operatorname{supp}(z)| \ge \lambda\binom{N}{n}$ for all $0 \ne z \in C = H_n(X_N; \mathbb{F}_2)$. In particular, the rate r(C) and relative distance $\delta(C)$ of C satisfy

$$r(C) = \frac{\dim C}{f_n(X_N)} \ge \frac{K-1}{K}$$

and

$$\delta(C) = \frac{\min\{|\operatorname{supp}(c)| : 0 \neq c \in C\}}{f_n(X_N)} \ge \frac{\lambda}{K}.$$

It would be interesting to give explicit constructions of simplicial complexes that give rise to homological codes with similar parameters.

References

- P. Abramenko and K.S. Brown, Buildings Theory and applications, Graduate Texts in Mathematics, 248. Springer, New York, 2008.
- [2] L. Aronshtam, N. Linial, T. Łuczak and R. Meshulam, Collapsibility and vanishing of top homology in random simplicial complexes, *Discrete Comput. Geom.*, 49(2013) 317-334.
- [3] D. J. Benson, Representations and cohomology. II. Cohomology of groups and modules. Cambridge Studies in Advanced Mathematics, 31. Cambridge University Press, Cambridge, 1991.
- [4] J. L. Dupont, Algebra of polytopes and homology of flag complexes, Osaka J. Math. 19(1982) 599-641.
- [5] G. Lusztig, The discrete series of GL(n) over a finite field, Annals of Mathematics Studies, 81. Princeton University Press, 1974.
- [6] S. D. Smith, Subgroup complexes, Mathematical Surveys and Monographs, 179. American Mathematical Society, Providence, RI, 2011.

- [7] S. D. Smith and S. Yoshiara, Group geometries and error-correcting codes, J. Algebra 175(1995) 199-211.
- [8] R. P. Stanley, Enumerative combinatorics. Volume 1. Second edition. Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, 2012.
- [9] L. Solomon, The Steinberg character of a finite group with a BN-pair, Theory of Finite Groups, R. Brauer and C.H. Sah, Eds., Benjamin, New York, 1969, pp. 213-221.