ON mod p TRANSVERSALS

JEFF KAHN and ROY MESHULAM

Received January 31, 1989 Revised April 25, 1989

1. Introduction

Let \mathbb{Z}_2^n denote the *n*-dimensional affine space over \mathbb{Z}_2 . A multiset $S = \{x_1, \ldots, x_s\}$ is called a *mod p* transversal of \mathbb{Z}_2^n if any hyperplane $H \subset \mathbb{Z}_2^n$ which does not contain 0 satisfies $|\{i : x_i \in H\}| \neq 0 \pmod{p}$.

For a prime p > 2, let f(p, n) denote the minimal cardinality (counting multiplicities) of such a mod-p transversal.

Our interest in these quantities stems from a problems on Boolean circuit complexity which is described in section 4. The purpose of this note is to prove

Theorem 1.
$$e^{-1}(p-1)^{\frac{n}{p-1}} - (p-1) \le f(p,n) \le (p-1)2^{\lceil \frac{n}{p-1} \rceil} - (p-1).$$

The lower bound is proved in section 2, using a Fourier transform approach. In section 3, we prove a version of the uncertainty principle (Theorem 2) which may be used to obtain a defect form of Theorem 1. It follows, for instance, that if $|S| = 2^{o(n/(p-1))}$, then $|S \cap H| \equiv 0 \pmod{p}$ for at least $2^{n(1-o(1))}$ hyperplanes H.

To show the upper bound of Theorem 1, we first note that since $f(p,n) \leq f(p,m)$ whenever $n \leq m$, it suffices to show that $f(p, (p-1)t) \leq (p-1)2^t - (p-1)$. To this end we partition $\{1, \ldots, (p-1)t\}$ into p-1 sets I_1, \ldots, I_{p-1} of size t, and define $V_i = \{x \in \mathbb{Z}_2^n \setminus \{0\} : x_j = 0 \quad \forall j \notin I_i\}$. It is clear that for any hyperplane H not containing 0, $|H \cap V_i|$ is either 0 or 2^{t-1} , and that the latter holds for at least one i. This implies that $S = \bigcup_{i=1}^{p-1} V_i$ is a mod p transversal, and hence $f(p,n) \leq |S| = (p-1)(2^t-1)$.

AMS subject classification (1980): 05, 68

Supported in part by AFOSR 0271. First author supported by NSF and a Sloan Research Fellowship.

As far as we know this upper bound may be sharp when $p-1 \mid n$.

2. Mod p transversals and the Fourier transform

Let G be a finite abelian group and K a field containing a primitive m-th root of 1, where m = m(G) is the exponent of G (i.e. the l.c.m. of the orders of the elements of G). A character of G is a homomorphism $G \to K^{\times}$. The characters under pointwise multiplication form a group \widehat{G} which is isomorphic to G. The Fourier transform of a function $f: G \to K$ is the function $\widehat{f}: \widehat{G} \to K$ defined by $\widehat{f}(\chi) = \sum_{x \in G} \chi(-x)f(x)$. The convolution of two functions $f, g: G \to \mathbb{R}$ is given by $f * g(x) = \sum_{y \in G} f(y)g(x-y)$, and its Fourier transform satisfies $\widehat{f * g}(x) = \widehat{f}(x) \cdot \widehat{g}(x)$. The unit element with respect to convolution is $u(x) = \delta_{0,x}$. We abbreviate $f * \cdots * f$

(k factors) by f^{*k} , and for $A \subseteq G$ set $kA = \{a_1 + \dots + a_k : a_i \in A\}$. For the rest of this section we take $G = \mathbb{Z}_2^n$ and $K = \mathbb{Z}_p$. The Fourier transform of a function $f : \mathbb{Z}_2^n \to \mathbb{Z}_p$ is $\widehat{f}(x) = \sum_{y \in \mathbb{Z}_2^n} f(y)(-1)^{y \cdot x}$ (where $x \cdot y$ denotes the

standard inner product on \mathbb{Z}_2^n).

We turn now to the proof of the lower bound. Suppose $S = \{x_1, \ldots, x_s\}$ is a mod p transversal of \mathbb{Z}_2^n , and for convenience let $0 \in S$. Let f(x) denote the indicator function of S, and if $x \neq 0$ denote by H_x the hyperplane $\{y : y \cdot x = 1\}$.

Set g = su - f. Then $\hat{g}(0) = 0$, and for each $x \neq 0$

$$\widehat{g}(x) = s - \sum_{i=1}^{s} (-1)^{x_i \cdot x}$$

= $\sum_{i=1}^{s} [1 - (-1)^{x_i \cdot x}]$
= $2|\{i : 1 \le i \le s, x_i \in H_x\}|$
 $\neq 0 \quad (\text{in } \mathbb{Z}_p).$

Letting $h = g^{*(p-1)}$ we have $\widehat{h}(x) = \widehat{g}(x)^{p-1} = 1 - u$. Thus $h(x) = 2^{-n}\widehat{\widehat{h}}(x) = u(x) - 2^{-n}$ and in particular su

Thus $h(x) = 2^{-n} \widehat{h}(x) = u(x) - 2^{-n}$, and in particular supp $(h) \supseteq \mathbb{Z}_2^n \setminus \{0\}$. On the other hand,

$$\operatorname{supp} h = \operatorname{supp}(su - f)^{*(p-1)} \subseteq (p-1)\operatorname{supp}(su - f) = (p-1)|S|$$

(note $0 \in S$). Thus $(p-1)S = \mathbb{Z}_2^n$, and so finally

$$s \ge e^{-1}(p-1)^{\frac{n}{p-1}} - (p-2)$$

follows from

.

$$2^{n} = |(p-1)S| \le |\{(a_{1}, \cdots, a_{s}) : a_{i} \ge 0, \sum a_{i} = p-1\}| = \binom{p+s-2}{p-1}$$

$$\leq \left[\frac{\mathrm{e}(p+s-2)}{p-1}\right]^{p-1}.$$

3. An uncertainty inequality for finite abelian groups

We shall need the following inequality which in the case $K = \mathbb{C}$ is a well-known consequence of the uncertainty principle (e.g. [4]).

Theorem 2. If $f: G \to K$ is not identically 0, then

$$|\operatorname{supp} f| |\operatorname{supp} f| \ge G.$$

Proof. We argue by induction on the number of direct summands in G. Assume first that $G = \mathbb{Z}_m$, so that $\widehat{f}(k) = \sum_{\ell=0}^{m-1} f(\ell) \zeta^{-\ell k}$ where ζ is some (fixed) primitive *m*-th root of 1. If $t = |\operatorname{supp} f|$, then there exists a cyclic interval $\{a+1,\ldots,a+\lceil m/t\rceil-1\} \subset \mathbb{Z}_m$, which is disjoint from supp f. Let $b = a + \lceil m/t\rceil$, and consider the polynomial

$$F(x) = \sum_{\ell=0}^{m-1} f(\ell+b) x^{\ell} \in K[x].$$

We have

$$F(\zeta^{k}) = \sum_{\ell=0}^{m-1} f(\ell+b)\zeta^{k\ell} = \zeta^{-kb} \sum_{\ell=0}^{m-1} f(\ell+b)\zeta^{k(\ell+b)}$$
$$= \zeta^{-kb} \hat{f}(-k).$$

On the other hand, f(a+i) = 0 for $1 \le i \le \lceil m/t \rceil - 1$ implies deg $F \le m - \lceil m/t \rceil$, whence F has at most $m - \lceil m/t \rceil$ roots in K, and in particular $F(\zeta^k) \ne 0$ for at least $\lceil m/t \rceil$ values of k. Thus $|\operatorname{supp} \widehat{f}| \ge \lceil m/t \rceil$.

For the induction step, suppose that the theorem holds for G_1 and G_2 , and let $0 \neq f: G_1 \oplus G_2 \to K$. For $y \in G_2$ define $f_y: G_1 \to K$ by $f_y(x) = f(x, y)$, and for $\chi \in \widehat{G_1}$ define $F_{\chi}: G_2 \to K$ by $F_{\chi}(y) = \widehat{f_y}(\chi)$. For $(\chi, \eta) \in \widehat{G_1} \oplus \widehat{G_2} \cong G_1 \oplus G_2$ we have

$$\begin{split} \widehat{f}(\chi,\eta) &= \sum_{x \in G_1} \sum_{y \in G_2} \chi(-x)\eta(-y)f(x,y) = \sum_{y \in G_2} \eta(-y)\widehat{f}_y(\chi) \\ &= \widehat{F_\chi}(\eta). \end{split}$$

So if $F_{\chi} \neq 0$, then by induction

$$|\{\eta\in\widehat{G_2}:\widehat{f}(\chi,\eta)\neq 0\}|=|\mathrm{supp}\,\widehat{F_\chi}|\geq \frac{|G_2|}{|\mathrm{supp}\,F_\chi|}\geq \frac{|G_2|}{|\{z:f_z\not\equiv 0\}|}$$

Therefore, for any fixed $y \in G_2$

$$|\operatorname{supp} \widehat{f}| \geq \frac{|\operatorname{supp} \widehat{f}_y| \cdot |G_2|}{|\{z : f_z \not\equiv 0\}|}.$$

Summing over all y, and using induction, we obtain

$$\begin{aligned} |\operatorname{supp} f| \ |\operatorname{supp} \widehat{f}| &= \sum_{\{y: f_y \neq 0\}} |\operatorname{supp} f_y| \cdot |\operatorname{supp} \widehat{f}| \\ &\geq \sum_{\{y: f_y \neq 0\}} \frac{|\operatorname{supp} f_y| \cdot |\operatorname{supp} \widehat{f_y}| \ |G_2|}{|\{z: f_z \neq 0\}|} \\ &\geq |G_1| \cdot |G_2| \,. \end{aligned}$$

Theorem 2 easily implies the following quantitative version of Theorem 1.

Corollary 3. If $S \subset \mathbb{Z}_2^n$, $|S| = O\left(2^{(1-\varepsilon)\frac{n}{p-1}}\right)$, then $|H_x \cap S| \equiv 0 \pmod{p}$ for $\Omega(2^{\varepsilon n})$ values of χ .

Proof. With the notation of section 2, it is clear that $|H_x \cap S| \equiv 0 \pmod{p}$ iff $\widehat{g}(x) = 0$ iff $(u - g^{*(p-1)})(x) \neq 0$. Hence

$$\begin{aligned} |\{x: |H_x \cap S| &\equiv 0 \pmod{p}\}| &= |\operatorname{supp}(u - g^{*(p-1)})| \\ &\geq \frac{2^n}{|\operatorname{supp}(u - g^{*(p-1)})|} \geq \frac{2^n}{1 + (1+s)^{p-1}} = \Omega(2^{\varepsilon n}). \end{aligned}$$

4. Something like motivation

We assume some familiarity with Boolean (logical) circuits. (See e.g. [2]. Our circuits allow negated variables as inputs and place no restriction on fanin (=number of wires entering a gate).) For $m \in \mathbb{N}$ a mod_m -gate in a circuit is a gate which outputs 1 iff the mod m sum of its inputs is 1 (0 otherwise). More generally an m-gate is any gate whose output depends only on the mod m sum of its inputs. It is not hard to see that any m gate may be (finitely) simulated by mod_m-gates.

For p a prime power, a beautiful theorem of Smolensky [5] (following work of Razborov [3]) places a limits on the computational power of constant depth circuits which use \wedge -, \vee - and mod_m-gates. In particular, such a circuit which computes the MAJORITY function of n variables (i.e. $MAJ(x_1, \ldots, x_n) = 1$ iff $\sum x_i \ge n/2$) has $\exp(\Omega(n^{1/2d}))$ gates (where the implied constant depends on p). It has been conjectured by Barrington [1] that a similar result (at least with a superpolynomial lower bound) should hold for general m, but at this time essentially nothing is known for any m not a prime power. This led us to consider the more restricted question of the power of constant depth circuits which use only m-gates, e.g.

 $\mathbf{20}$

Question. How large must a depth d circuit be if it computes $\bigvee_{i=1}^{n} x_i$ using only mgates?

It is not hard to see that if m is a prime power then $\forall x_i$ cannot be computed at all. (For m prime such a circuit computes a bounded degree polynomial in $\mathbb{Z}_m[x_1,\ldots,x_n]$, while $\forall x_i$ is a polynomial of degree n; the assertion for prime powers follows (see [5]).)

It is thus a little surprising that if m is not a prime power, there are depth 2 circuits using only m-gates which compute $\forall x_i$ (so also bounded depth circuits computing $\forall x_i$ and using only mod_m -gates). We show this for m = 2p. The general case is similar (although to maintain the depth at 2, rather than 3, we must allow multiple wires from an input to a gate at level 1). Let, then, m = 2p, and let $S = \{y_1, \ldots, y_s\}$ be a mod p transversal of \mathbb{Z}_2^n , with $y_i = \{y_{i1}, \ldots, y_{in}\}$. For $i = 1, \ldots, s$ let G_i be the mod₂-gate with input set $\{x_j : y_{ij} = 1\}$, and let G be the p-gate with input set $\{G_1, \ldots, G_s\}$ which outputs 0 iff the inputs sum to 0 mod p.

(Note an ℓ -gate is an *m*-gate if $\ell \mid m$.) It is easy to see that G computes $\bigvee_{i=1}^{n} x_i$.

Thus the most one can hope for here is that computing $\forall x_i$ in depth d with m-gates requires $\exp(\Omega(n^{f(d,m)}))$ gates for some f(d,m) > 0. In light of the above construction, our theorem is a (very) small step in this direction, but we are unable to go much further at this time.

Added in proof: Ravi Boppana has pointed out to us that a result equivalent to Theorem 1 (strictly speaking, only for p = 3) is proved in D. A. Barrington, Width 3 permutation branching programs, Technical Memorandum TM-291 (Dec. 1985), MIT Laboratory for CS, while a more general result for any two primes is given in D. A. Mix Barrington, H. Straubing and D. Thérien, Non-uniform automata over groups, Manuscript, August 1988.

References

- D. BARRINGTON: Bounded-width polynomial-size branching programs recognize exactly those languages in NC, Proc. 18th ACM STOC, 1986.
- [2] R. BOPPANA, and M. SIPSER: The complexity of finite function, preprint.
- [3] A. A. RAZBOROV: Lower bounds on the size of bounded depth networks over a complete basis with logical addition, Matematischi Zametki 41:4, 598-607 (in Russian). English translation in Mathematical Notes of the Academy of Sciences of the USSR 41:4, 333-338.
- [4] K. T. SMITH: The uncertainty principle on groups, IMA Preprint Series #402, 1988.

JEFF KAHN, ROY MESHULAM : ON mod p TRANSVERSALS

[5] R. SMOLENSKY: Algebraic methods in the theory of lower bounds for Boolean circuit complexity, Proc. 19th ACM STOC, 1987.

Roy Meshulam

Center for Operations Research Rutgers University New Brunswick, NJ 08903 U.S.A.

Current address: Department of Mathematics, Technion, Haifa 32000 Israel Jeff Kahn

Department of Mathematics and Center for Operations Research Rutgers University New Brunswick, NJ 08903 U.S.A.

22