ON mod p TRANSVERSALS

JEFF KAHN and ROY MESHULAM

Received January 31, 1989 Revised April 25, 1989

1. **Introduction**

Let \mathcal{L}_2^n denote the *n*-dimensional affine space over \mathcal{L}_2 . A multiset $S = \{x_1, \ldots, x_s\}$ is called a *mod p transversal* of \mathbb{Z}_2^n if any hyperplane $H \subset \mathbb{Z}_2^n$ which does not contain 0 satisfies $|\{i : x_i \in H\}| \not\equiv 0 \pmod{p}$.

For a prime $p > 2$, let $f(p, n)$ denote the minimal cardinality (counting multiplicities) of such a mod-p transversal.

Our interest in these quantities stems from a problems on Boolean circuit complexity which is described in section 4. The purpose of this note is to prove

Theorem 1.
$$
e^{-1}(p-1)^{\frac{n}{p-1}} - (p-1) \le f(p,n) \le (p-1)2^{\left\lceil \frac{n}{p-1} \right\rceil} - (p-1).
$$

The lower bound is proved in section 2, using a Fourier transform approach. In section 3, we prove a version of the uncertainty principle (Theorem 2) which may be used to obtain a defect form of Theorem 1. It follows, for instance, that if $|S| = 2^{o(n/(p-1))}$, then $|S \cap H| \equiv 0 \pmod{p}$ for at least $2^{n(1-o(1))}$ hyperplanes H.

To show the upper bound of Theorem 1, we first note that since $f(p, n) \leq f(p, m)$ whenever $n \leq m$, it suffices to show that $f(p, (p-1)t) \leq (p-1)2^t - (p-1)$. To this end we partition $\{1,\ldots,(p-1)t\}$ into $p-1$ sets I_1,\ldots,I_{p-1} of size t , and define $V_i = \{x \in \mathbb{Z}_2^n \setminus \{0\} : x_j = 0 \quad \forall j \notin I_i\}.$ It is clear that for any hyperplane H not containing 0, $|H \cap V_i|$ is either 0 or 2^{t-1} , and that the latter holds for $p-1$ at least one *i*. This implies that $S = \bigcup_{i=1}^{n} V_i$ is a mod *p* transversal, and hence $f(p, n) \leq |S| = (p - 1)(2^t - 1).$

AMS subject classification (1980): 05, 68

Supported in part by AFOSR 0271. First author supported by NSF and a Sloan Research Fellowship.

As far as we know this upper bound may be sharp when $p-1 \mid n$.

2. Mod p transversals and the Fourier transform

Let G be a finite abelian group and K a field containing a primitive m -th root of 1, where $m = m(G)$ is the exponent of G (i.e. the 1.c.m. of the orders of the elements of G). A *character* of G is a homomorphism $G \to K^{\times}$. The characters under pointwise multiplication form a group \widehat{G} which is isomorphic to G. The Fourier transform of a function $f: G \to K$ is the function $\hat{f}: \hat{G} \to K$ defined by $f(\chi) = \sum \chi(-x) f(x)$. The convolution of two functions $f, g : G \to \mathbb{R}$ is given by *xEG* $f * g(x) = \sum f(y)g(x-y)$, and its Fourier transform satisfies $f * g(x) = f(x) \cdot \hat{g}(x)$. *yEG* The unit element with respect to convolution is $u(x) = \delta_{0,x}$. We abbreviate $f * \cdots * f$ (k factors) by f^{*k} , and for $A \subseteq G$ set $kA = \{a_1 + \cdots + a_k : a_i \in A\}.$

For the rest of this section we take $G = \mathcal{L}^{\alpha}_{2}$ and $K = \mathcal{L}_{p}$. The Fourier transform of a function $f : L_2^n \to L_p$ is $f(x) = \sum f(y)(-1)^{y \cdot x}$ (where $x \cdot y$ denotes the \imath e $\overline{\mathsf{z}}_{\,2}^{\,n}$

standard inner product on \mathbb{Z}_2^n .

We turn now to the proof of the lower bound. Suppose $S = \{x_1, \ldots, x_s\}$ is a mod p transversal of \mathbb{Z}_2^n , and for convenience let $0 \in S$. Let $f(x)$ denote the indicator function of S, and if $x \neq 0$ denote by H_x the hyperplane $\{y : y \cdot x = 1\}.$

Set $g = su - f$. Then $\hat{g}(0) = 0$, and for each $x \neq 0$

$$
\widehat{g}(x) = s - \sum_{i=1}^{s} (-1)^{x_i \cdot x}
$$

$$
= \sum_{i=1}^{s} [1 - (-1)^{x_i \cdot x}]
$$

$$
= 2 | \{ i : 1 \le i \le s, x_i \in H_x \}
$$

$$
\neq 0 \quad (\text{in } \mathbb{Z}_p).
$$

Letting $h = g^{*(p-1)}$ we have $\widehat{h}(x) = \widehat{g}(x)^{p-1} = 1 - u$. Thus $h(x) = 2^{-n} \widehat{h}(x) = u(x) - 2^{-n}$, and in particular supp $(h) \supseteq \mathbb{Z}_2^n \setminus \{0\}.$

On the other hand,

$$
supp h = supp(su - f)^{*(p-1)} \subseteq (p-1) supp(su - f) = (p-1)|S|
$$

(note $0 \in S$). Thus $(p-1)S = \mathbb{Z}_2^n$, and so finally

$$
s \ge e^{-1}(p-1)^{\frac{n}{p-1}} - (p-2)
$$

follows from

٠

$$
2^{n} = |(p-1)S| \leq |\{(a_1, \cdots, a_s): a_i \geq 0, \sum a_i = p-1\}| = {p+s-2 \choose p-1}
$$

$$
\leq \left[\frac{e(p+s-2)}{p-1}\right]^{p-1}.
$$

3. An uncertainty inequality for finite abelian groups

We shall need the following inequality which in the case $K = C$ is a well-known consequence of the uncertainty principle (e.g. [4]).

Theorem 2. If $f: G \to K$ is not identically 0, then

$$
|\mathrm{supp}\, f| \, |\mathrm{supp}\, \widehat{f}| \ge G.
$$

Proof. We argue by induction on the number of direct summands in G . Assume first that $G = \mathbb{Z}_m$, so that $\widehat{f}(k) = \sum_{k=1}^{m-1} f(\ell) \zeta^{-\ell k}$ where ζ is some (fixed) $\ell = 0$ primitive m-th root of 1. If $t = |\text{supp } f|$, then there exists a cyclic interval ${a+1,\ldots,a+[m/t]-1}\subset \mathbb{Z}_m$, which is disjoint from supp f. Let $b=a+[m/t]$, and consider the polynomial

$$
F(x) = \sum_{\ell=0}^{m-1} f(\ell+b)x^{\ell} \in K[x].
$$

We have

$$
F(\zeta^k) = \sum_{\ell=0}^{m-1} f(\ell+b)\zeta^{k\ell} = \zeta^{-kb} \sum_{\ell=0}^{m-1} f(\ell+b)\zeta^{k(\ell+b)}
$$

$$
= \zeta^{-kb}\widehat{f}(-k).
$$

On the other hand, $f(a + i) = 0$ for $1 \leq i \leq \lceil m/t \rceil - 1$ implies deg $F \leq m - \lceil m/t \rceil$, whence F has at most $m - \lfloor m/t \rfloor$ roots in K, and in particular $F(\zeta^k) \neq 0$ for at least $\lceil m/t \rceil$ values of k. Thus $|\text{supp }\hat{f}| \geq \lceil m/t \rceil$.

For the induction step, suppose that the theorem holds for G_1 and G_2 , and let $0 \neq f: G_1 \oplus G_2 \rightarrow K$. For $y \in G_2$ define $f_y: G_1 \rightarrow K$ by $f_y(x) = f(x, y)$, and for $\chi \in \widehat{G_1}$ define $F_\chi: G_2 \to K$ by $F_\chi(y) = \widehat{f}_y(\chi)$. For $(\chi, \eta) \in \widehat{G_1} \oplus \widehat{G_2} \cong G_1 \oplus G_2$ we have

$$
\widehat{f}(\chi,\eta) = \sum_{x \in G_1} \sum_{y \in G_2} \chi(-x)\eta(-y)f(x,y) = \sum_{y \in G_2} \eta(-y)\widehat{f}_y(\chi)
$$

$$
= \widehat{F}_\chi(\eta).
$$

So if $F_\chi \not\equiv 0$, then by induction

$$
|\{\eta \in \widehat{G_2} : \widehat{f}(\chi,\eta) \neq 0\}| = |\text{supp }\widehat{F_\chi}| \geq \frac{|G_2|}{|\text{supp }F_\chi|} \geq \frac{|G_2|}{|\{z : f_z \neq 0\}|}.
$$

Therefore, for any fixed $y \in G_2$

$$
|\mathrm{supp}\,\widehat{f}| \geq \frac{|\mathrm{supp}\widehat{f}_y|\cdot |G_2|}{|\{z: f_z \not\equiv 0\}|}.
$$

Summing over all y , and using induction, we obtain

$$
|\text{supp } f| \, |\text{supp } \hat{f}| = \sum_{\{y: f_y \neq 0\}} |\text{supp } f_y| \cdot |\text{supp } \hat{f}|
$$
\n
$$
\geq \sum_{\{y: f_y \neq 0\}} \frac{|\text{supp } f_y| \cdot |\text{supp } \hat{f}_y| |G_2|}{|\{z: f_z \neq 0\}|}
$$
\n
$$
\geq |G_1| \cdot |G_2|.
$$

Theorem 2 easily implies the following quantitative version of Theorem 1.

Corollary 3. If $S \subset \mathbb{Z}_{2}^{n}$, $|S| = O(2^{(1-\varepsilon)\frac{n}{p-1}})$, then $|H_x \cap S| \equiv 0 \pmod{p}$ for $\Omega(2^{\varepsilon n})$ va/ues *of X.*

Proof. With the notation of section 2, it is clear that $|H_x \cap S| \equiv 0 \pmod{p}$ iff $\hat{q}(x) = 0$ iff $(u - q^{*(p-1)}) (x) \neq 0$. Hence

$$
|\{x : |H_x \cap S| \equiv 0 \pmod{p}\}| = |\text{supp}(u - g^{*(p-1)})|
$$

$$
\ge \frac{2^n}{|\text{supp}(u - g^{*(p-1)})|} \ge \frac{2^n}{1 + (1 + s)^{p-1}} = \Omega(2^{\epsilon n}).
$$

4. Something like motivation

We assume some familiarity with Boolean (logical) circuits. (See e.g. [2]. Our circuits allow negated variables as inputs and place no restriction on fanin (=number of wires entering a gate).) For $m \in \mathbb{N}$ a mod_m-gate in a circuit is a gate which outputs 1 iff the rood m sum of its inputs is 1 (0 otherwise). More generally an *m-gate* is any gate whose output depends only on the mod m sum of its inputs. It is not hard to see that any m gate may be (finitely) simulated by mod_m -gates.

For p a prime power, a beautiful theorem of Smolensky [5] (following work of Razborov [3]) places a limits on the computational power of constant depth circuits which use Λ -, \vee - and mod_m-gates. In particular, such a circuit which computes the MAJORITY function of *n* variables (i.e. $MAJ(x_1,...,x_n) = 1$ iff $\sum x_i \ge n/2$) has $\exp(\Omega(n^{1/2d}))$ gates (where the implied constant depends on p). It has been conjectured by Barrington [1] that a similar result (at least with a superpolynomial lower bound) should hold for general m , but at this time essentially nothing is known for *any m* not a prime power. This led us to consider the more restricted question of the power of constant depth circuits which use *only* m-gates, e.g.

Question. How large must a depth d circuit be if it computes $\bigvee_{i=1}^{n} x_i$ using only m*gates?*

It is not hard to see that if m is a prime power then $\forall x_i$ cannot be computed *at all.* (For m prime such a circuit computes a bounded degree polynomial in $\mathcal{I}_{m}[x_1,\ldots,x_n]$, while $\vee x_i$ is a polynomial of degree n; the assertion for prime powers follows (see $[5]$).)

It is thus a little surprising that if m is *not* a prime power, there are depth 2 circuits using only m -gates which compute $\forall x_i$ (so also bounded depth circuits computing $\forall x_i$ and using only mod_m-gates). We show this for $m = 2p$. The general case is similar (although to maintain the depth at: 2, rather than 3, we must allow multiple wires from an input to a gate at level 1). Let, then, $m = 2p$, and let $S = \{y_1, \ldots, y_s\}$ be a mod p transversal of \mathcal{L}_2^s , with $y_i = \{y_{i1}, \ldots, y_{in}\}$. For $i = 1, \ldots, s$ let G_i be the mod₂-gate with input set $\{x_j : y_{ij} = 1\}$, and let G be the p-gate with input set $\{G_1,\ldots,G_s\}$ which outputs 0 iff the inputs sum to 0 mod p.

(Note an ℓ -gate is an *m*-gate if $\ell \mid m$.) It is easy to see that G computes $\bigvee_{i=1}^{\infty} x_i$.

Thus the most one can hope for here is that computing $\forall x_i$ in depth d with *m*-gates requires $\exp(\Omega(n^{f(d,m)}))$ gates for some $f(d, m) > 0$. In light of the above construction, our theorem is a (very) small step in this direction, but we are unable to go much further at this time.

Added in proof: Ravi Boppana has pointed out to us that a result equivalent to Theorem 1 (strictly speaking, only for $p = 3$) is proved in D. A. Barrington, Width 3 permutation branching programs, Technical Memorandum TM-291 (Dec. 1985), MIT Laboratory for CS, while a more general result for any two primes is given in D. A. Mix Barrington, H. Straubing and D. Thérien, Non-uniform automata over groups, Manuscript, August 1988.

References

- [1] D. BARRINGTON: Bounded-width polynomial-size branching programs recognize exactly those languages in NC, *Proc.* 18^{th} *ACM STOC*, 1986.
- [2] R. BOPPANA, and M. SIPSER: The complexity of finite function, preprint.
- [3] A.A. RAZBOROV: Lower bounds on the size of bounded depth networks over a complete basis with logical addition, *Matematischi Zametki* 41:4, 598-607 (in Russian). English translation in *Mathematical Notes of the Academy of Sciences of the USSR* 41:4, 333-338.
- [4] K.T. SMITH: The uncertainty principle on groups, *IMA Preprint Series* #402, 1988.

22 JEFF KAHN, ROY MESHULAM : ON mod p TRANSVERSALS

[5] R. SMOLENSKY: Algebraic methods in the theory of lower bounds for Boolean circuit complexity, *Proc. 19 th ACM STOC,* 1987.

Roy Meshulam

Center for Operations Research Rutgers University New Brunswick, NJ 08903 U.S.A.

Current address: *Department of Mathematics, Technion, Haifa 3~000 Israel*

Jeff Kahn

Department of Mathematics and Center for Operations Research Rutgers University New Brunswick, NJ 08908 U.S.A.