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1. I n t r o d u c t i o n  

Let Z ~ denote the n-dimensional affine space over Z 2. A multiset S = {Xl , . . . ,  Xs} 
is called a mod p transversal of Z ~ if any hyperplane H C Z ~ which does not contain 
0 satisfies I{i : xi E H}I ~ 0 (rood p). 

For a prime p > 2, let f(p, n) denote the minimal cardinality (counting multi- 
plicities) of such a mod-p transversal. 

Our interest in these quantities stems from a problems on Boolean circuit com- 
plexity which is described in section 4. The purpose of this note is to prove 

1)2rp-. i Theorem 1. e - l ( p -  1)P ---~ - ( p -  1) < f (p, n) < ( p -  - ( p -  1). 

The lower bound is proved in section 2, using a Fourier transform approach. 
In section 3, we prove a version of the uncertainty principle (Theorem 2) which 
may be used to obtain a defect form of Theorem 1. It follows, for instance, that if 
IS[ = 2 ~ then I S M HI = 0 (mod p) for at least 2 n(1-~ hyperplanes H. 

To show the upper bound of Theorem 1, we first note that  since f(p, n) < f(p, m) 
whenever n _< m, it suffices to show that f(p, ( p -  1)t) < ( p -  1)2 t - ( p -  1). To 
this end we partition {1 , . . . ,  ( p -  1)t} into p -  1 sets I 1 , . . . ,  Ip-1 of size t, and define 
V/ = {x E Z~ \ {0} : xj = 0 V j r  Ii}. It is clear that  for any hyperplane 

H not containing 0, I H N V/] is either 0 or 2 t - l ,  and that  the latter holds for 
p-1 

at least one i. This implies that  S = U V/ is a mod p transversal, and hence 
i=l 

I(p, n) < ISl - -  ( p -  1)(2 t - 1). 
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As far as we know this upper bound may be sharp when p - 1 I n. 

2.  M o d  p t r a n s v e r s a l s  a n d  t h e  F o u r i e r  t r a n s f o r m  

Let G be a finite abelian group and K a field containing a primitive m-th root 
of 1, where m = re(G) is the exponent of G (i.e. the 1.c.m. of the orders of the 
elements of G). A character of G is a homomorphism G --* K • . The characters 
under pointwise multiplication form a group G which is i~morphic  to G. The 
Fourier transform of a function f : G -~ K is the function 3 e : G --* K defined by 
f (X)  = ~ X ( - x ) f ( x ) .  The convolution of two functions f ,  g : G ~ R is given by 

xEG 
f ,  g(x) = ~ f (y )g(x- -  y), and its Fourier transform satisfies f ~ g ( x )  = f ( x ) .~ (x ) .  

yEG 
The unit element with respect to convolution is u(x) = 5O,x. We abbreviate f , . . .  �9 f 
(k factors) by f , k ,  and for A C_ G set kA = (a l  + ' "  + ak : ai E A}. 

For the rest of this section we take G Z ~ and K = Z p. The Fourier transform 

of a function f : Z~ --, Zp is f ( x )  = ~ f(y)(_l)y'~: (where x . y  denotes the 
Z n yE 2 

standard inner product on Z~). 
We turn now to the proof of the lower bound. Suppose S -- { x l , . . . , x s }  is a 

rood p transversal of Z~, and for convenience let 0 E S. Let f (x )  denote the indicator 
function of S, and if x ~ 0 denote by Hx the hyperplane (y : y .  x -- 1}. 

Set g = su - f .  Then ~(0) = 0, and for each x # 0 

$ 

~ ~(x)  = s - Z ( - 1 )  xi'x 
i=l 

8 

= [ : -  
i=1 

=21(i:  l < i < s ,  x i e H x } l  
0 (in Zp). 

Letting h = g.(p-1) we have h(x) = ~(x)p-1 = 1 - u. 

Thus h(x) = 2-nh(x)  = u(x) - 2 -n,  and in particular supp(h) _D Z~ \ (0}. 
On the other hand, 

supph = supp(su - f) . (p-1)  C_ (p - 1) supp(su - f )  = ( p -  1)IS I 

(note 0 e S). Thus (p - 1)S = Z~, and so finally 

n 

s >__ e - l ( p  - 1)P ---~ - (p - 2) 

follows from 

2n = I ( P -  1)SI _< I { ( a l , . - . , a s ) :  ai >_ O, Z a i  = p -  1}1-- ~, P -  1 
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< [e(p + - 
_ p'_-f j �9 I 

3. An uncertainty inequality for finite abelian groups 

We shall need the following inequality which in the case K = C is a well-known 
consequence of the uncertainty principle (e.g. [4]). 

Theorem 2. I f  f : G --* K is not identically O, then 

[supp f[ Isuppfl  > G. 

Proof. We argue by induction on the number of direct summands in G. As- 
rn - -1  

sume first that G = Zm, so that f (k )  = ~ f(g)~-tk where ~ is some (fixed) 
t=0 

primitive m-th root of 1. If t = Isuppfl,  then there exists a cyclic interval 
{a + 1 , . . . ,  a + Fm/t] - 1} c l m ,  which is disjoint from supp f .  Let b = a + Fm/t], 
and consider the polynomial 

We have 

m-1 
F(x) = Z f(g + b)xt E K[x]. 

t=O 

m-1 m-1 
F(~k) = Z f(e + b)~ kt = ~-kb Z f(• + b)~k(l+b) 

t=O t=O 
=c-kbT(--k ). 

On the other hand, f (a  + i) = 0 for 1 < i < [m/t] - 1 implies deg F < m - [m/t], 
whence F has at most m - Fm/t] roots in K, and in particular F((k) ~ 0 for at 
least Fm/t] values of k. Thus Isuppfl  > [m/t]. 

For the induction step, suppose that the theorem holds for G1 and G2, and let 
0 ~ f :  G1 (3 G2 --* K. For y E G2 define f# :  G1 ~ K by fy(x) =. f (x ,  y), and for 
X E G~'I define F x :  G2 -'-' K by Fx(y ) = fy(x). For (X, ~/) E G1 ~3 G2 c~ G1 �9 G2 we 
have 

Z Z Z 
xEG1 yEG2 

= Fx(,). 

So if F x ~ 0, then by induction 

1{~7 E G2:  f(X,~7) ~ 0}1 = IsuppFxl _> 

yEG2 

IG21 ]G2] 
IsuppFxl I{z:f, 0}l" 
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Therefore, for any fixed y E G2 

Isupp~l" IG21 

Summing over all y, and using induction, we obtain 

lsupp fl lsupp fl - 

{y:fy~O} 

{y:fy~0} 

lsupp f~l" Isupp fl 

lsupp fyl" Isuppfy11021 
I{z: k ~ 0}1 

> la~l. la~l. I 

Theorem 2 easily implies the following quantitative version of Theorem 1. 

Corollary 3. If S C Z~, IS] = 0(2 ('-v)p---~), then I H x n S I  - 0 (rood p) for f~(2 en) 
va/ues of X. 

Proof. With the notation of section 2, it is clear that  IHx n S I --- 0 (rood p) iff 
~(x) = 0 iff (u - g*(p-1))'(x) • 0, Hence 

I{x: IHz n S I -= 0 (mod p)}[ = Isupp(u - g,(p-1)~ 
2 n 2 n 

> [supp(u g,(p-1))[ > = ~(2sn)" | - - - I + ( I + s ) P  - 1  

4 .  S o m e t h i n g  l i k e  m o t i v a t i o n  

We assume some familiarity with Boolean (logical) circuits. (See e.g. [2]. Our 
circuits allow negated variables as inputs and place no restriction on fanin (=number 
of wires entering a gate).) For m E N a modm-gate in a circuit is a gate which outputs 
1 iff the rood m sum of its inputs is 1 (0 otherwise). More generally an m-gate is 
any gate whose output depends only on the rood m sum of its inputs. It is not hard 
to see that  any m gate may be (finitely) simulated by modm-gates. 

For p a prime power, a beautiful theorem of Smolensky [5] (following work of 
Razborov [3]) places a limits on the computational power of constant depth circuits 
which use A-, V- and modm-gates. In particular, such a circuit which computes 
the MAJORITY function of n variables (i.e. M A J ( x l , . . . ,  xn) = 1 iff ~ xi >_ n/2) 
has exp(~(nl/2d)) gates (where the implied constant depends on p). It has been 
conjectured by Barrington [1] that  a similar result (at least with a superpolynomial 
lower bound) should hold for general m, but at this time essentially nothing is known 
for any m not a prime power. This led us to consider the more restricted question 
of the power of constant depth circuits which use only m-gates, e.g. 
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rt 
Question. How large must  a depth d circuit be if it computes V x i using only m- 

i=1 
gates? 

It is not hard to see that  if m is a prime power then Vxi cannot be computed 
at all. (For m prime such a circuit computes a bounded degree polynomial in 
Ira[x 1 , . . . ,  Xn], while Vxi is a polynomial of degree n; the assertion for prime powers 
follows (see [5D. ) 

It is thus a little surprising that if m is not a prime power, there are depth 
2 circuits using only m-gates which compute Vxi (so also bounded depth circuits 
computing Vx i and using only modm-gates). We show this for m -- 2p. The 
general case is similar (although to maintain the depth at: 2, rather than 3, we 
must allow multiple wires from an input to a gate at level 1). Let, then, m = 2p, 
and let S = {Y l , . . . ,  Ys} b c a  rood p transversal of Z~, with Yi = {Yi l , . . .  ,Yin}. For 
i = 1 , . . .  ,s let Gi be the mod2-gate with input set {xj : yij = 1}, and let G be the 
p-gate with input set {G1,- . . ,  Gs} which outputs 0 iff the inputs sum to 0 mod p. 

(Note an g-gate is an m-gate if g I m.) It is easy to see that G computes V xi. 
i--1 

Thus the most one can hope for here is that computing Vxi in depth d with 
m-gates requires exp(~(nY(d,m))) gates for some f (d ,  m) > 0. In light of the above 
construction, our theorem is a (very) small step in this direction, but we are unable 
to go much further at this time. 

Added in proof: Ravi Boppana has pointed out to us that a result equivalent to 
Theorem 1 (strictly speaking, only for p = 3) is proved in D. A. Barrington, Width 
3 permutation branching programs, Technical Memorandum TM-291 (Dec. 1985), 
MIT Laboratory for CS, while a more general result for any two primes is given in 
D. A. Mix Barrington, H. Straubing and D. Thdrien, Non-uniform automata over 
groups, Manuscript, August 1988. 

References 

[1] D. BARRINGTON: Bounded-width polynomial-size branching programs recognize ex- 
actly those languages in NC, Proc. 18 th ACM STOC, 1986. 

[2] R. BOPPANA, and M. SIPSER: The complexity of finite function, preprint. 
[3] A.A. RAZBOROV: Lower bounds on the size of bounded depth networks over a com- 

plete basis with logical addition, Matematischi Zametki 41:4, 598-607 (in Russian). 
English translation in Mathematical Notes of the Academy of Sciences of the USSR 
41:4, 333-338. 

[4] K . T .  SMITH: The uncertainty principle on groups, IMA Preprint Series #402, 1988. 



22 JEFF KAHN, ROY MESHULAM : ON rood p TRANSVERSALS 

[5] R. SMOLENSKY: Algebraic methods in the theory of lower bounds for Boolean circuit 

complexity, Proc. 19 th ACM STOC, 1987. 

Roy Meshulam 

Center for Operations Research 
Rutgers University 
New Brunswick, NJ 08903 
U.S.A. 

Current address: 
Department of Mathematics, 
Technion, 
Haifa 3~000 
Israel 

Jeff Kahn 

Department of Mathematics and 
Center for Operations Research 
Rutgers University 
New Brunswick, NJ 08908 
U.S.A. 


