On the Homological Dimension of Lattices

Roy Meshulam^{*}

August 2, 2008

Abstract

Let L be a finite lattice and let $\hat{L} = L - \{\hat{0}, \hat{1}\}$. It is shown that if the order complex $\Delta(\hat{L})$ satisfies $\tilde{H}_{k-2}(\Delta(\hat{L})) \neq 0$ then $|L| \geq 2^k$. Equality $|L| = 2^k$ holds iff L is isomorphic to the Boolean lattice $\{0, 1\}^k$.

1 Introduction

The order complex $\Delta(P)$ of a finite poset (P, \leq) is the simplicial complex on the vertex set P whose simplices are the increasing chains $x_0 < \cdots < x_k$ (see [1] for a thorough discussion). A result of Kozlov ([2]) implies that if the integral homology group $\tilde{H}_k(\Delta(P))$ is non-trivial then $|P| \geq 2(k+1)$, with equality |P| = 2(k+1) iff P is isomorphic to the ordinal sum of k+1 antichains of size 2. In this note we consider a similar question for lattices. For a lattice L with minimal element $\hat{0}$ and maximal element $\hat{1}$, let $\hat{L} = L - \{\hat{0}, \hat{1}\}$.

Example: Let B_k denote the Boolean lattice $\{0,1\}^k$. The order complex $\Delta(\widehat{B}_k)$ coincides with the barycentric subdivision of the boundary of the (k-1)-simplex, hence $\widetilde{H}_{k-2}(\Delta(\widehat{B}_k)) \neq 0$. Here we show that B_k is the unique smallest lattice with non-trivial (k-2)-dimensional homology.

Theorem 1.1. If a lattice L satisfies $\tilde{H}_{k-2}(\Delta(\hat{L})) \neq 0$, then $|L| \geq 2^k$. Equality $|L| = 2^k$ holds iff $L \cong B_k$.

^{*}Department of Mathematics, Technion, Haifa 32000, Israel. e-mail: meshulam@math.technion.ac.il . Research supported by the Israel Science Foundation.

Let $\tilde{\beta}_i(\Delta(\widehat{L}))$ denote the *i*-th reduced Betti number of $\Delta(\widehat{L})$. Then $\mu(L)$, the Möbius function of L, is equal to the reduced Euler characteristic $\tilde{\chi}(\Delta(\widehat{L})) = \sum_i (-1)^i \tilde{\beta}_i(\Delta(\widehat{L}))$. It is conjectured that if |L| = n then $\mu(L) = o(n^2)$. Edelman and Kahn have shown (see [5]) that $\mu(L) \leq n^{\log_2 n}$. Theorem 1.1 implies the following slightly stronger result.

Corollary 1.2. If L is a lattice on n elements then

$$\sum_i \tilde{\beta}_i \left(\Delta(\widehat{L}) \right) \le n^{\log_2 n}$$

In Section 2 we establish Theorem 1.1 and Corollary 1.2 using an idea from the Edelman-Kahn proof of the upper bound on $\mu(L)$.

We conclude the introduction with a conjecture concerning the relation between the reduced Betti numbers of $\Delta(\hat{L})$ and the cardinality of L. For a prime power q, let $L_k(q)$ denote the lattice of linear subspaces of the kdimensional vector space \mathbb{F}_q^k over the field \mathbb{F}_q . Then $\tilde{\beta}_{k-2}(\Delta(\widehat{L_k(q)})) =$ $q^{\binom{k}{2}}$ and $|L_k(q)| = \sum_{i=0}^k {k \brack i}_q$ where ${k \brack i}_q = \prod_{j=0}^{i-1} \frac{q^k - q^j}{q^i - q^j}$ is the number of idimensional subspaces of \mathbb{F}_q^k (see e.g. [4]).

Conjecture 1.3. If a lattice L satisfies $\tilde{\beta}_{k-2}(\Delta(\hat{L})) \geq q^{\binom{k}{2}}$ then $|L| \geq \sum_{i=0}^{k} {k \brack i}_{q}$.

Note that $\lim_{q\to 1} {k \brack i}_q = {k \choose i}$. Hence Theorem 1.1 may be viewed as the q = 1 case of Conjecture 1.3.

2 Homological Dimension of Lattices

We prove Theorem 1.1 by induction on k. The case k = 1 is clear. Suppose $k \ge 2$ and let L be a lattice of minimal cardinality such that $\tilde{H}_{k-2}(\Delta(\hat{L})) \ne 0$. Let x be an arbitrary atom of L. The following observation is due to Quillen ([3]). For completeness we include the proof.

Claim 2.1. If $x \leq y$ for all coatoms $y \in L$, then $\Delta(\widehat{L})$ is contractible.

Proof: Let P, Q be two posets. Recall (see [1]) that if $f, g : P \to Q$ are two order-preserving maps such that $f(p) \leq g(p)$ for all $p \in P$, then the induced

simplicial maps $f, g : \Delta(P) \to \Delta(Q)$ are homotopic. Now let $P = Q = \widehat{L}$ and for $p \in P$ let f(p) = x, $g(p) = p \lor x$ and h(p) = p. Then $f(p) \le g(p) \ge h(p)$ for all p and thus

constant map
$$= f \simeq g \simeq h =$$
 identity map.

Therefore $\Delta(\widehat{L})$ is contractible.

By Claim 2.1 there exists a coatom y such that $x \not\leq y$. Consider the lattices $L' = [\hat{0}, y]$ and $L'' = [x, \hat{1}]$. Then $L' \cap L'' = \emptyset$, hence either $|L'| \leq \frac{|L|}{2}$ or $|L''| \leq \frac{|L|}{2}$. By reversing the order if necessary, we may assume that $|L''| \leq \frac{|L|}{2}$. Let M be the lattice $L - \{x\}$. Write $A = \Delta(\hat{L}), B = \Delta([x, \hat{1})), C = \Delta(\widehat{M})$ and $D = \Delta(\widehat{L''})$. Then $A = B \cup C$ and $B \cap C = D$. Note that $\widetilde{H}_{k-2}(B) = 0$ since B is a cone on x, and $\widetilde{H}_{k-2}(C) = 0$ by the minimality assumption on L. It thus follows from the Mayer-Vietoris sequence

$$0 = \widetilde{\mathrm{H}}_{k-2}(B) \oplus \widetilde{\mathrm{H}}_{k-2}(C) \to \widetilde{\mathrm{H}}_{k-2}(A) \to \widetilde{\mathrm{H}}_{k-3}(D)$$

that $\tilde{H}_{k-3}(D) \neq 0$. Therefore by induction $|[x, \hat{1}]| = |L''| \geq 2^{k-1}$, hence $|L| \geq 2|L''| \geq 2^k$.

Suppose now that $|L| = 2^k$. The argument above implies that $|L'| = |L''| = 2^{k-1}$ and that both $\tilde{H}_{k-3}(\Delta(\widehat{L'}))$ and $\tilde{H}_{k-3}(\Delta(\widehat{L''}))$ are non-trivial. Therefore by the induction hypothesis $L' \cong B_{k-1} \cong L''$.

Let x_1, \ldots, x_m denote the atoms of L, and for each $1 \leq i \leq m$ let y_i be a coatom of L such that $x_i \not\leq y_i$. Let $L'_i = [\hat{0}, y_i]$ and $L''_i = [x_i, \hat{1}]$. By the above it follows that $L'_i \cup L''_i = L$ and $L'_i \cong B_{k-1} \cong L''_i$. Note that the first statement implies that $x_i \leq y_j$ for $i \neq j$.

For a vector $u = (u_1, \ldots, u_{k-1}) \in \{0, 1\}^{k-1} = B_{k-1}$ and an $\epsilon \in \{0, 1\}$ let $S_{\epsilon}(u) = \{1 \leq i \leq k-1 : u_i = \epsilon\}$. Since x_1, \ldots, x_{m-1} are the atoms of $L'_m \cong B_{k-1}$, it follows that m = k and that the map $\phi_0 : B_{k-1} \to L'_k$ given by $\phi_0(u) = \bigvee_{i \in S_1(u)} x_i$ is an isomorphism. Similarly, the map $\phi_1 : B_{k-1} \to L''_k$ given by $\phi_1(u) = \bigwedge_{i \in S_0(u)} y_i$ is an isomorphism. We now claim that the map $\phi : B_k \to L$ given on $(u, \epsilon) \in \{0, 1\}^{k-1} \times \{0, 1\}$ by $\phi(u, \epsilon) = \phi_{\epsilon}(u)$ is an isomorphism. ϕ is clearly bijective. It remains to show that ϕ is a lattice map. We will check that ϕ preserves the meet, i.e. $\phi_{\epsilon \wedge \epsilon'}(u \wedge v) = \phi_{\epsilon}(u) \wedge \phi_{\epsilon'}(v)$. If $\epsilon = \epsilon'$ then this follows from the corresponding property of ϕ_{ϵ} . For $\epsilon = 0, \epsilon' = 1$ we have to show that

$$\bigvee_{i \in S_1(u \wedge v)} x_i = \bigvee_{i \in S_1(u)} x_i \wedge \bigwedge_{j \in S_0(v)} y_j .$$
(1)

The righthand side of (1) belongs to L'_m hence

$$\bigvee_{i \in S_1(u)} x_i \land \bigwedge_{j \in S_0(v)} y_j = \bigvee_{i \in S_1(w)} x_i$$

for some $w \in \{0,1\}^{k-1}$. Since $x_i \not\leq y_i$ for all *i* it follows that $w \leq u \wedge v$. The reverse inequality $u \wedge v \leq w$ is a consequence of the fact that $x_i \leq y_j$ for all $i \neq j$. Therefore $w = u \wedge v$ and thus (1) holds. The proof that ϕ preserves the join is similar.

	-	-	-	

Proof of Corollary 1.2: Let |L| = n. Since $\Delta(\widehat{L})$ is a complex on n-2 vertices its Betti numbers satisfy $\tilde{\beta}_i(\Delta(\widehat{L})) \leq \binom{n-3}{i+1}$ for all *i*. Theorem 1.1 on the other hand implies that $\tilde{\beta}_i(\Delta(\widehat{L})) = 0$ for $i > \log_2 n - 2$. Hence

$$\sum_{i} \tilde{\beta}_{i} \left(\Delta(\widehat{L}) \right) \leq \sum_{i \leq \log_{2} n-2} \binom{n-3}{i+1} < n^{\log_{2} n} .$$

References

- A. Björner, Topological methods, in *Handbook of Combinatorics* (R. Graham, M. Grötschel, and L. Lovász, Eds.), 1819–1872, North-Holland, Amsterdam, 1995.
- [2] D. Kozlov, Convex hulls of f- and β -vectors. Discrete Comput. Geom. **18**(1997) 421–431.
- [3] D. Quillen, Homotopy properties of the poset of nontrivial *p*-subgroups of a group. Adv. in Math. 28(1978) 101–128.

- [4] R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, 1997.
- [5] G. Ziegler, Posets with maximal Möbius function, J. Combin. Theory Ser. A 56(1991) 203–222.