On the Homological Dimension of Lattices

Roy Meshulam*

August 2, 2008

Abstract

Let L be a finite lattice and let $\widehat{L}=L-\{\hat{0}, \hat{1}\}$. It is shown that if the order complex $\Delta(\widehat{L})$ satisfies $\tilde{\mathrm{H}}_{k-2}(\Delta(\widehat{L})) \neq 0$ then $|L| \geq 2^{k}$. Equality $|L|=2^{k}$ holds iff L is isomorphic to the Boolean lattice $\{0,1\}^{k}$.

1 Introduction

The order complex $\Delta(P)$ of a finite poset (P, \leq) is the simplicial complex on the vertex set P whose simplices are the increasing chains $x_{0}<\cdots<x_{k}$ (see [1] for a thorough discussion). A result of Kozlov ([2]) implies that if the integral homology group $\tilde{\mathrm{H}}_{k}(\Delta(P))$ is non-trivial then $|P| \geq 2(k+1)$, with equality $|P|=2(k+1)$ iff P is isomorphic to the ordinal sum of $k+1$ antichains of size 2. In this note we consider a similar question for lattices. For a lattice L with minimal element $\hat{0}$ and maximal element $\hat{1}$, let $\widehat{L}=L-\{\hat{0}, \hat{1}\}$.

Example: Let B_{k} denote the Boolean lattice $\{0,1\}^{k}$. The order complex $\Delta\left(\widehat{B_{k}}\right)$ coincides with the barycentric subdivision of the boundary of the $(k-1)$-simplex, hence $\tilde{\mathrm{H}}_{k-2}\left(\Delta\left(\widehat{B_{k}}\right)\right) \neq 0$. Here we show that B_{k} is the unique smallest lattice with non-trivial $(k-2)$-dimensional homology.

Theorem 1.1. If a lattice L satisfies $\tilde{\mathrm{H}}_{k-2}(\Delta(\widehat{L})) \neq 0$, then $|L| \geq 2^{k}$. Equality $|L|=2^{k}$ holds iff $L \cong B_{k}$.

[^0]Let $\tilde{\beta}_{i}(\Delta(\widehat{L}))$ denote the i-th reduced Betti number of $\Delta(\widehat{L})$. Then $\mu(L)$, the Möbius function of L, is equal to the reduced Euler characteristic $\tilde{\chi}(\Delta(\widehat{L}))=\sum_{i}(-1)^{i} \tilde{\beta}_{i}(\Delta(\widehat{L}))$. It is conjectured that if $|L|=n$ then $\mu(L)=o\left(n^{2}\right)$. Edelman and Kahn have shown (see [5]) that $\mu(L) \leq n^{\log _{2} n}$. Theorem 1.1 implies the following slightly stronger result.

Corollary 1.2. If L is a lattice on n elements then

$$
\sum_{i} \tilde{\beta}_{i}(\Delta(\widehat{L})) \leq n^{\log _{2} n}
$$

In Section 2 we establish Theorem 1.1 and Corollary 1.2 using an idea from the Edelman-Kahn proof of the upper bound on $\mu(L)$.

We conclude the introduction with a conjecture concerning the relation between the reduced Betti numbers of $\Delta(\widehat{L})$ and the cardinality of L. For a prime power q, let $L_{k}(q)$ denote the lattice of linear subspaces of the k dimensional vector space \mathbb{F}_{q}^{k} over the field \mathbb{F}_{q}. Then $\tilde{\beta}_{k-2}\left(\Delta\left(\widehat{L_{k}(q)}\right)\right)=$ $q^{\binom{k}{2}}$ and $\left|L_{k}(q)\right|=\sum_{i=0}^{k}\left[\begin{array}{c}k \\ i\end{array}\right]_{q}$ where $\left[\begin{array}{c}k \\ i\end{array}\right]_{q}=\prod_{j=0}^{i-1} \frac{q^{k}-q^{j}}{q^{i}-q^{j}}$ is the number of i dimensional subspaces of \mathbb{F}_{q}^{k} (see e.g. [4]).

Conjecture 1.3. If a lattice L satisfies $\tilde{\beta}_{k-2}(\Delta(\widehat{L})) \geq q^{\binom{k}{2}}$ then $|L| \geq$ $\sum_{i=0}^{k}\left[\begin{array}{c}k \\ i\end{array}\right]_{q}$.

Note that $\lim _{q \rightarrow 1}\left[\begin{array}{l}k \\ i\end{array}\right]_{q}=\binom{k}{i}$. Hence Theorem 1.1 may be viewed as the $q=1$ case of Conjecture 1.3.

2 Homological Dimension of Lattices

We prove Theorem 1.1 by induction on k. The case $k=1$ is clear. Suppose $k \geq 2$ and let L be a lattice of minimal cardinality such that $\tilde{\mathrm{H}}_{k-2}(\Delta(\widehat{L})) \neq 0$. Let x be an arbitrary atom of L. The following observation is due to Quillen ([3]). For completeness we include the proof.
Claim 2.1. If $x \leq y$ for all coatoms $y \in L$, then $\Delta(\widehat{L})$ is contractible.
Proof: Let P, Q be two posets. Recall (see [1]) that if $f, g: P \rightarrow Q$ are two order-preserving maps such that $f(p) \leq g(p)$ for all $p \in P$, then the induced
simplicial maps $f, g: \Delta(P) \rightarrow \Delta(Q)$ are homotopic. Now let $P=Q=\widehat{L}$ and for $p \in P$ let $f(p)=x, g(p)=p \vee x$ and $h(p)=p$. Then $f(p) \leq g(p) \geq h(p)$ for all p and thus

$$
\text { constant map }=f \simeq g \simeq h=\text { identity map. }
$$

Therefore $\Delta(\widehat{L})$ is contractible.

By Claim 2.1 there exists a coatom y such that $x \not \leq y$. Consider the lattices $L^{\prime}=[\hat{0}, y]$ and $L^{\prime \prime}=[x, \hat{1}]$. Then $L^{\prime} \cap L^{\prime \prime}=\emptyset$, hence either $\left|L^{\prime}\right| \leq \frac{|L|}{2}$ or $\left|L^{\prime \prime}\right| \leq \frac{|L|}{2}$. By reversing the order if necessary, we may assume that $\left|L^{\prime \prime}\right| \leq \frac{|L|}{2}$. Let M be the lattice $L-\{x\}$. Write $A=\Delta(\widehat{L}), B=\Delta([x, \hat{1}))$, $C=\Delta(\widehat{M})$ and $D=\Delta\left(\widehat{L^{\prime \prime}}\right)$. Then $A=B \cup C$ and $B \cap C=D$. Note that $\tilde{\mathrm{H}}_{k-2}(B)=0$ since B is a cone on x, and $\tilde{\mathrm{H}}_{k-2}(C)=0$ by the minimality assumption on L. It thus follows from the Mayer-Vietoris sequence

$$
0=\tilde{\mathrm{H}}_{k-2}(B) \oplus \tilde{\mathrm{H}}_{k-2}(C) \rightarrow \tilde{\mathrm{H}}_{k-2}(A) \rightarrow \tilde{\mathrm{H}}_{k-3}(D)
$$

that $\tilde{\mathrm{H}}_{k-3}(D) \neq 0$. Therefore by induction $|[x, \hat{1}]|=\left|L^{\prime \prime}\right| \geq 2^{k-1}$, hence $|L| \geq 2\left|L^{\prime \prime}\right| \geq 2^{k}$.

Suppose now that $|L|=2^{k}$. The argument above implies that $\left|L^{\prime}\right|=$ $\left|L^{\prime \prime}\right|=2^{k-1}$ and that both $\tilde{\mathrm{H}}_{k-3}\left(\Delta\left(\widehat{L^{\prime}}\right)\right)$ and $\tilde{\mathrm{H}}_{k-3}\left(\Delta\left(\widehat{L^{\prime \prime}}\right)\right)$ are non-trivial. Therefore by the induction hypothesis $L^{\prime} \cong B_{k-1} \cong L^{\prime \prime}$.

Let x_{1}, \ldots, x_{m} denote the atoms of L, and for each $1 \leq i \leq m$ let y_{i} be a coatom of L such that $x_{i} \not \leq y_{i}$. Let $L_{i}^{\prime}=\left[\hat{0}, y_{i}\right]$ and $L_{i}^{\prime \prime}=\left[x_{i}, \hat{1}\right]$. By the above it follows that $L_{i}^{\prime} \cup L_{i}^{\prime \prime}=L$ and $L_{i}^{\prime} \cong B_{k-1} \cong L_{i}^{\prime \prime}$. Note that the first statement implies that $x_{i} \leq y_{j}$ for $i \neq j$.

For a vector $u=\left(u_{1}, \ldots, u_{k-1}\right) \in\{0,1\}^{k-1}=B_{k-1}$ and an $\epsilon \in\{0,1\}$ let $S_{\epsilon}(u)=\left\{1 \leq i \leq k-1: u_{i}=\epsilon\right\}$. Since x_{1}, \ldots, x_{m-1} are the atoms of $L_{m}^{\prime} \cong B_{k-1}$, it follows that $m=k$ and that the map $\phi_{0}: B_{k-1} \rightarrow L_{k}^{\prime}$ given by $\phi_{0}(u)=\bigvee_{i \in S_{1}(u)} x_{i} \quad$ is an isomorphism. Similarly, the map $\phi_{1}: B_{k-1} \rightarrow L_{k}^{\prime \prime}$ given by $\phi_{1}(u)=\bigwedge_{i \in S_{0}(u)} y_{i} \quad$ is an isomorphism. We now claim that the map $\phi: B_{k} \rightarrow L$ given on $(u, \epsilon) \in\{0,1\}^{k-1} \times\{0,1\}$ by $\phi(u, \epsilon)=\phi_{\epsilon}(u)$ is an isomorphism. ϕ is clearly bijective. It remains to show that ϕ is a lattice map. We will check that ϕ preserves the meet, i.e. $\phi_{\epsilon \wedge \epsilon^{\prime}}(u \wedge v)=\phi_{\epsilon}(u) \wedge \phi_{\epsilon^{\prime}}(v)$.

If $\epsilon=\epsilon^{\prime}$ then this follows from the corresponding property of ϕ_{ϵ}. For $\epsilon=0, \epsilon^{\prime}=1$ we have to show that

$$
\begin{equation*}
\bigvee_{i \in S_{1}(u \wedge v)} x_{i}=\bigvee_{i \in S_{1}(u)} x_{i} \wedge \bigwedge_{j \in S_{0}(v)} y_{j} . \tag{1}
\end{equation*}
$$

The righthand side of (1) belongs to L_{m}^{\prime} hence

$$
\bigvee_{i \in S_{1}(u)} x_{i} \wedge \bigwedge_{j \in S_{0}(v)} y_{j}=\bigvee_{i \in S_{1}(w)} x_{i}
$$

for some $w \in\{0,1\}^{k-1}$. Since $x_{i} \not \leq y_{i}$ for all i it follows that $w \leq u \wedge v$. The reverse inequality $u \wedge v \leq w$ is a consequence of the fact that $x_{i} \leq y_{j}$ for all $i \neq j$. Therefore $w=u \wedge v$ and thus (1) holds. The proof that ϕ preserves the join is similar.

Proof of Corollary 1.2: Let $|L|=n$. Since $\Delta(\widehat{L})$ is a complex on $n-2$ vertices its Betti numbers satisfy $\tilde{\beta}_{i}(\Delta(\widehat{L})) \leq\binom{ n-3}{i+1}$ for all i. Theorem 1.1 on the other hand implies that $\tilde{\beta}_{i}(\Delta(\widehat{L}))=0$ for $i>\log _{2} n-2$. Hence

$$
\sum_{i} \tilde{\beta}_{i}(\Delta(\widehat{L})) \leq \sum_{i \leq \log _{2} n-2}\binom{n-3}{i+1}<n^{\log _{2} n}
$$

References

[1] A. Björner, Topological methods, in Handbook of Combinatorics (R. Graham, M. Grötschel, and L. Lovász, Eds.) , 1819-1872, NorthHolland, Amsterdam, 1995.
[2] D. Kozlov, Convex hulls of f - and β-vectors. Discrete Comput. Geom. 18(1997) 421-431.
[3] D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. in Math. 28(1978) 101-128.
[4] R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, 1997.
[5] G. Ziegler, Posets with maximal Möbius function, J. Combin. Theory Ser. A 56(1991) 203-222.

[^0]: ${ }^{*}$ Department of Mathematics, Technion, Haifa 32000, Israel. e-mail: meshulam@math.technion.ac.il . Research supported by the Israel Science Foundation.

