On the trace of incompatible vectors

Ron Aharoni Technion, Haifa, Israel Nati Linial Hebrew University, Jerusalem, Israel

Roy Meshulam Technion, Haifa, Israel

Abstract

Let $A = \{a_1, \ldots, a_t\} \subset \{0, 1\}^n$, $F_1, \ldots, F_t \subset [n] = \{1, \ldots, n\}$. The ordered family of pairs $((a_1, F_1), \ldots, (a_t, F_t))$ is *incompatible* if for any $1 \leq k < l \leq t$ there exists a $j \in F_k$ such that $a_{kj} \neq a_{lj}$. It is shown that for any incompatible family $((a_1, F_1), \ldots, (a_t, F_t))$, there exists a 1 - 1 mapping $\phi : [t] \to 2^{[n]}$ such that $\phi(i) \subset F_i$ and $\phi(i)$ is shattered by A.

1 On the trace of incompatible vectors

Let $a = (a_1, \ldots, a_n)$ be a vector in $\{0, 1\}^n$, and S a subset of $[n] = \{1, \ldots, n\}$. The trace of a on S is $a_{|S} = (a_j : j \in S) \in \{0, 1\}^S$. A subset $S \subset [n] = \{1, \ldots, n\}$ is shattered by $A \subset \{0, 1\}^n$ if for each $\epsilon = (\epsilon_j : j \in S) \in \{0, 1\}^S$ there exists an $a \in A$ such that $a_{|S} = \epsilon$. Let $\mathcal{S}(A)$ denote the family of all $S \subset [n]$ which are shattered by A.

The following basic result was proved by Sauer [5] and Perles and Shelah [6].

Theorem 1.1 ([5],[6]) If $|A| > \sum_{i=0}^{d} {n \choose i}$ then there exists an $S \in \mathcal{S}(A)$ such that |S| > d.

Different proofs and extensions of Theorem 1.1 were given by Alon [1], Frankl [2], Frankl and Pach [3] and others. See the recent survey by Füredi and Pach [4].

We first give a simple proof of the following extension of Theorem 1.1 which is also implicit in all previous proofs. **Theorem 1.2** $|A| \leq |\mathcal{S}(A)|$ for any $A \subset \{0,1\}^n$

Proof: Let U denote the \mathbb{Z}_2 -linear space of multilinear polynomials in $\mathbb{Z}_2[x_1, \ldots, x_n]$. With each $a = (a_1, \ldots, a_n) \in A$ we associate the polynomial $f_a(x) = \prod_{j=1}^n (x_j + a_j + 1) \in U$. For each non-shattered subset $T \in 2^{[n]} - \mathcal{S}(A)$ we choose a vector $b_T = (b_{T,j} : j \in T) \in \{0, 1\}^T$ such that $b_T \neq a_{|T}$ for all $a \in A$. Let $g_T(x) = \prod_{j \in T} (x_j + b_j + 1) \in U$. Note that for $a, a' \in A, f_a(a') = \delta(a, a')$, and $g_T(a) = 0$ for all $T \notin \mathcal{S}(A)$.

Claim 1.3 The family

$$\{f_a(x) : a \in A\} \cup \{g_T(x) : T \notin \mathcal{S}(A)\}$$

is linearly independent in U.

Proof: Suppose

$$\sum_{a \in A} \alpha_a f_a(x) + \sum_{T \notin \mathcal{S}(A)} \beta_T g_T(x) = 0.$$
(1)

Substituting $a' \in A$ in Eq. (1) we obtain $\alpha_{a'} = 0$. It thus remains to show that $\{g_T(x) : T \notin \mathcal{S}(A)\}$ is linearly independent. This follows from the fact that the unique highest degree monomials in the expansions of the g_T 's are all different.

Claim 1.3 implies $|A| + (2^n - |\mathcal{S}(A)|) \le \dim U = 2^n$, hence $|A| \le |\mathcal{S}(A)|$.

Next we consider the following extension of Theorem 1.2. Let $A = \{a_1, \ldots, a_t\} \subset \{0, 1\}^n$, where $a_i = (a_{i1}, \ldots, a_{in})$, and let $F_1, \ldots, F_t \subset [n]$. The ordered family of pairs $((a_1, F_1), \ldots, (a_t, F_t))$ is *incompatible* if for any $1 \le k < l \le t$ there exists a $j \in F_k$ such that $a_{kj} \ne a_{lj}$.

Theorem 1.4 For any incompatible family $((a_1, F_1), \ldots, (a_t, F_t))$, there exists a 1-1 mapping $\phi : [t] \to 2^{[n]}$ such that $\phi(i) \subset F_i$ and $\phi(i)$ is shattened by A.

Proof: With each pair (a_i, F_i) we associate the polynomial

 $f_i(x) = \prod_{j \in F_i} (x_j + a_{ij} + 1) \in U$. Let $V = \{g(x) \in U : g(a_i) = 0 \text{ for all } 1 \leq i \leq t\}$, and let W = U/V. For $f \in U$ let $\overline{f} \in W$ denote the image of f under the quotient map.

Claim 1.5 $\overline{f_1}, \ldots, \overline{f_t}$ are linearly independent in W.

Proof: Suppose $\sum_{k=1}^{t} \lambda_k f_k(x) \in V$. The incompatibility condition implies that $f_k(a_l) = 0$ whenever k < l. It follows that for all $1 \le l \le t$

$$0 = \sum_{k=1}^{t} \lambda_k f_k(a_l) = \lambda_l + \sum_{k=l+1}^{t} \lambda_k f_k(a_l)$$

and so $\lambda_1 = \cdots = \lambda_t = 0$.

- Г		L	

Claim 1.6 For any $F \subset [n]$

$$\overline{\prod_{j\in F} x_j} \in \text{Span} \{ \overline{\prod_{j\in S} x_j} : S \in 2^F \cap \mathcal{S}(A) \}.$$

Proof: We apply induction on |F|. If $F \in \mathcal{S}(A)$ then we are done. Otherwise there exists an $\epsilon \in \{0,1\}^F$ such that $\epsilon \neq a_{i|F}$ for all $1 \leq i \leq t$. It follows that $g(x) = \prod_{j \in F} (x_j + \epsilon_j + 1)$ satisfies $g(a_i) = 0$ for all $1 \leq i \leq t$ and so $g(x) \in V$. Therefore

$$\overline{\prod_{j \in F} x_j} = \overline{\prod_{j \in F} x_j - g(x)} \in \text{Span} \left\{ \overline{\prod_{j \in F'} x_j} : F' \subsetneqq F \right\}$$

and the Claim follows from the induction hypothesis.

Claim 1.6 implies that for each $1 \le i \le t$ we may expand

$$\overline{f_i(x)} = \sum_{S \in 2^{F_i} \cap \mathcal{S}(A)} \mu_{i,S} \overline{\prod_{j \in S} x_j}.$$

Consider the $t \times 2^n$ matrix M indexed by $[t] \times 2^{[n]}$ and given by $M(i, S) = \mu_{i,S}$ if $S \in 2^{F_i} \cap \mathcal{S}(A)$, and zero otherwise.

Claim 1.5 implies that $\operatorname{rank}_{\mathbb{Z}_2} M = t$, so in particular there exists a 1-1 mapping $\phi : [t] \to 2^{[n]}$ such that $M(i, \phi(i)) \neq 0$ for all $1 \leq i \leq t$. It follows that $\phi(i) \subset F_i$ and that $\phi(i)$ is shattered by A.

For a vector $a \in \{0,1\}^n$ let Supp $a = \{1 \le i \le n : a_i = 1\}$. Let $A \subset \{0,1\}^n$ and let a_1, \ldots, a_t be an ordering of A such that $|\text{Supp } a_k| \ge |\text{Supp } a_l|$ for all $k \le l$.

The ordered family of pairs $((a_1, \text{Supp } a_1), \ldots, (a_t, \text{Supp } a_t))$ is clearly incompatible, hence Theorem 1.4 implies the following result implicit in Frankl and Pach [3]:

Corollary 1.7 ([3]) For any $A \subset \{0,1\}^n$ there exists a 1-1 mapping $\phi: A \to \mathcal{S}(A)$ such that $\phi(a) \subset \text{Supp } a$ for all $a \in A$.

Acknowledgement: The research of the first and third authors is supported by the Technion fund for the promotion of research.

References

- N. Alon, On the density of sets of vectors, Discrete Mathematics, 46(1983) 199-202.
- [2] P. Frankl, On the traces of finite sets, Journal of Combinatorial Theory Ser. A, 34(1983) 41-45.
- [3] P. Frankl and J. Pach, On the number of sets in a null t-design, European Journal of Combinatorics, 4(1983) 21-23.
- [4] Z. Füredi and J. Pach, Traces of finite sets: Extremal problems and geometric applications, in: *Extremal Problems for Finite Sets*, Bolayi Society Mathematical Studies 3, 1991, Edited by: P. Frankl, Z. Füredi, G. Katona and D. Miklós, pp. 251-282.

- [5] N. Sauer, On the density of families of sets, Journal of Combinatorial Theory Ser.A, 13(1972) 145-147.
- [6] S. Shelah, A combinatorial problem: stability and order for models and theories in infinitary languages, Pacific J. Math., 41(1972) 247-261.