On the trace of incompatible vectors

Ron Aharoni
Technion, Haifa, Israel
Nati Linial
Hebrew University, Jerusalem, Israel
Roy Meshulam
Technion, Haifa, Israel

Abstract

Let $A=\left\{a_{1}, \ldots, a_{t}\right\} \subset\{0,1\}^{n}, F_{1}, \ldots, F_{t} \subset[n]=\{1, \ldots, n\}$. The ordered family of pairs $\left(\left(a_{1}, F_{1}\right), \ldots,\left(a_{t}, F_{t}\right)\right)$ is incompatible if for any $1 \leq k<l \leq t$ there exists a $j \in F_{k}$ such that $a_{k j} \neq a_{l j}$. It is shown that for any incompatible family $\left(\left(a_{1}, F_{1}\right), \ldots,\left(a_{t}, F_{t}\right)\right)$, there exists a $1-1$ mapping $\phi:[t] \rightarrow 2^{[n]}$ such that $\phi(i) \subset F_{i}$ and $\phi(i)$ is shattered by A.

1 On the trace of incompatible vectors

Let $a=\left(a_{1}, \ldots, a_{n}\right)$ be a vector in $\{0,1\}^{n}$, and S a subset of $[n]=\{1, \ldots, n\}$. The trace of a on S is $a_{\mid S}=\left(a_{j}: j \in S\right) \in\{0,1\}^{S}$.
A subset $S \subset[n]=\{1, \ldots, n\}$ is shattered by $A \subset\{0,1\}^{n}$ if for each $\epsilon=\left(\epsilon_{j}: j \in S\right) \in\{0,1\}^{S}$ there exists an $a \in A$ such that $a_{\mid S}=\epsilon$.
Let $\mathcal{S}(A)$ denote the family of all $S \subset[n]$ which are shattered by A.
The following basic result was proved by Sauer [5] and Perles and Shelah [6].
Theorem 1.1 ([5],[6]) If $|A|>\sum_{i=0}^{d}\binom{n}{i}$ then there exists an $S \in \mathcal{S}(A)$ such that $|S|>d$.

Different proofs and extensions of Theorem 1.1 were given by Alon [1], Frankl [2], Frankl and Pach [3] and others. See the recent survey by Füredi and Pach [4].
We first give a simple proof of the following extension of Theorem 1.1 which is also implicit in all previous proofs.

Theorem $1.2|A| \leq|\mathcal{S}(A)| \quad$ for any $A \subset\{0,1\}^{n}$
Proof: Let U denote the \mathbb{Z}_{2}-linear space of multilinear polynomials in $\mathbb{Z}_{2}\left[x_{1}, \ldots, x_{n}\right]$. With each $a=\left(a_{1}, \ldots, a_{n}\right) \in A$ we associate the polynomial $f_{a}(x)=\prod_{j=1}^{n}\left(x_{j}+a_{j}+1\right) \in U$. For each non-shattered subset $T \in 2^{[n]}-\mathcal{S}(A)$ we choose a vector $b_{T}=\left(b_{T, j}: j \in T\right) \in\{0,1\}^{T}$ such that $b_{T} \neq a_{\mid T}$ for all $a \in A$. Let $g_{T}(x)=\prod_{j \in T}\left(x_{j}+b_{j}+1\right) \in U$. Note that for $a, a^{\prime} \in A, f_{a}\left(a^{\prime}\right)=\delta\left(a, a^{\prime}\right)$, and $g_{T}(a)=0$ for all $T \notin \mathcal{S}(A)$.

Claim 1.3 The family

$$
\left\{f_{a}(x): a \in A\right\} \cup\left\{g_{T}(x): T \notin \mathcal{S}(A)\right\}
$$

is linearly independent in U.
Proof: Suppose

$$
\begin{equation*}
\sum_{a \in A} \alpha_{a} f_{a}(x)+\sum_{T \notin \mathcal{S}(A)} \beta_{T} g_{T}(x)=0 . \tag{1}
\end{equation*}
$$

Substituting $a^{\prime} \in A$ in Eq. (1) we obtain $\alpha_{a^{\prime}}=0$. It thus remains to show that $\left\{g_{T}(x): T \notin \mathcal{S}(A)\right\}$ is linearly independent. This follows from the fact that the unique highest degree monomials in the expansions of the g_{T} 's are all different.

Claim 1.3 implies $|A|+\left(2^{n}-|\mathcal{S}(A)|\right) \leq \operatorname{dim} U=2^{n}$, hence $|A| \leq|\mathcal{S}(A)|$.

Next we consider the following extension of Theorem 1.2. Let $A=\left\{a_{1}, \ldots, a_{t}\right\} \subset\{0,1\}^{n}$, where $a_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$, and let $F_{1}, \ldots, F_{t} \subset[n]$. The ordered family of pairs $\left(\left(a_{1}, F_{1}\right), \ldots,\left(a_{t}, F_{t}\right)\right)$ is incompatible if for any $1 \leq k<l \leq t$ there exists a $j \in F_{k}$ such that $a_{k j} \neq a_{l j}$.

Theorem 1.4 For any incompatible family $\left(\left(a_{1}, F_{1}\right), \ldots,\left(a_{t}, F_{t}\right)\right)$, there exists a 1-1 mapping $\phi:[t] \rightarrow 2^{[n]}$ such that $\phi(i) \subset F_{i}$ and $\phi(i)$ is shattered by A.

Proof: With each pair $\left(a_{i}, F_{i}\right)$ we associate the polynomial $f_{i}(x)=\prod_{j \in F_{i}}\left(x_{j}+a_{i j}+1\right) \in U$. Let $V=\left\{g(x) \in U: g\left(a_{i}\right)=0\right.$ for all $1 \leq$ $i \leq t\}$, and let $W=U / V$. For $f \in U$ let $\bar{f} \in W$ denote the image of f under the quotient map.

Claim $1.5 \overline{f_{1}}, \ldots, \overline{f_{t}}$ are linearly independent in W.
Proof: Suppose $\sum_{k=1}^{t} \lambda_{k} f_{k}(x) \in V$. The incompatibility condition implies that $f_{k}\left(a_{l}\right)=0$ whenever $k<l$. It follows that for all $1 \leq l \leq t$

$$
0=\sum_{k=1}^{t} \lambda_{k} f_{k}\left(a_{l}\right)=\lambda_{l}+\sum_{k=l+1}^{t} \lambda_{k} f_{k}\left(a_{l}\right)
$$

and so $\lambda_{1}=\cdots=\lambda_{t}=0$.

Claim 1.6 For any $F \subset[n]$

$$
\overline{\prod_{j \in F} x_{j}} \in \operatorname{Span}\left\{\overline{\prod_{j \in S} x_{j}}: S \in 2^{F} \cap \mathcal{S}(A)\right\}
$$

Proof: We apply induction on $|F|$. If $F \in \mathcal{S}(A)$ then we are done. Otherwise there exists an $\epsilon \in\{0,1\}^{F}$ such that $\epsilon \neq a_{i \mid F}$ for all $1 \leq i \leq t$. It follows that $g(x)=\prod_{j \in F}\left(x_{j}+\epsilon_{j}+1\right)$ satisfies $g\left(a_{i}\right)=0$ for all $1 \leq i \leq t$ and so $g(x) \in V$. Therefore

$$
\overline{\prod_{j \in F} x_{j}}=\overline{\prod_{j \in F} x_{j}-g(x)} \in \operatorname{Span}\left\{\overline{\prod_{j \in F^{\prime}} x_{j}}: F^{\prime} \varsubsetneqq F\right\}
$$

and the Claim follows from the induction hypothesis.

Claim 1.6 implies that for each $1 \leq i \leq t$ we may expand

$$
\overline{f_{i}(x)}=\sum_{S \in 2^{F_{i} \cap \mathcal{S}(A)}} \mu_{i, S} \overline{\prod_{j \in S} x_{j}} .
$$

Consider the $t \times 2^{n}$ matrix M indexed by $[t] \times 2^{[n]}$ and given by $M(i, S)=\mu_{i, S}$ if $S \in 2^{F_{i}} \cap \mathcal{S}(A)$, and zero otherwise.

Claim 1.5 implies that $\operatorname{rank}_{\mathbb{Z}_{2}} M=t$, so in particular there exists a $1-1$ mapping $\phi:[t] \rightarrow 2^{[n]}$ such that $M(i, \phi(i)) \neq 0$ for all $1 \leq i \leq t$. It follows that $\phi(i) \subset F_{i}$ and that $\phi(i)$ is shattered by A.

For a vector $a \in\{0,1\}^{n}$ let Supp $a=\left\{1 \leq i \leq n: a_{i}=1\right\}$.
Let $A \subset\{0,1\}^{n}$ and let a_{1}, \ldots, a_{t} be an ordering of A such that $\left|\operatorname{Supp} a_{k}\right| \geq\left|\operatorname{Supp} a_{l}\right|$ for all $k \leq l$.
The ordered family of pairs $\left(\left(a_{1}, \operatorname{Supp} a_{1}\right), \ldots,\left(a_{t}, \operatorname{Supp} a_{t}\right)\right)$ is clearly incompatible, hence Theorem 1.4 implies the following result implicit in Frankl and Pach [3]:

Corollary 1.7 ([3]) For any $A \subset\{0,1\}^{n}$ there exists a $1-1$ mapping $\phi: A \rightarrow \mathcal{S}(A)$ such that $\phi(a) \subset \operatorname{Supp}$ a for all $a \in A$.

Acknowledgement: The research of the first and third authors is supported by the Technion fund for the promotion of research.

References

[1] N. Alon, On the density of sets of vectors, Discrete Mathematics, 46(1983) 199-202.
[2] P. Frankl, On the traces of finite sets, Journal of Combinatorial Theory Ser. A, 34(1983) 41-45.
[3] P. Frankl and J. Pach, On the number of sets in a null t-design, European Journal of Combinatorics, 4(1983) 21-23.
[4] Z. Füredi and J. Pach, Traces of finite sets: Extremal problems and geometric applications, in: Extremal Problems for Finite Sets, Bolayi Society Mathematical Studies 3, 1991, Edited by: P. Frankl, Z. Füredi, G. Katona and D. Miklós, pp. 251-282.
[5] N. Sauer, On the density of families of sets, Journal of Combinatorial Theory Ser.A, 13(1972) 145-147.
[6] S. Shelah, A combinatorial problem: stability and order for models and theories in infinitary languages, Pacific J. Math., 41(1972) 247-261.

