Sum Complexes - a New Family of Hypertrees

N. Linial* R. Meshulam † M. Rosenthal March 7, 2009

Abstract

A k-dimensional hypertree X is a k-dimensional complex on n vertices with a full (k-1)-dimensional skeleton and $\binom{n-1}{k}$ facets such that $H_k(X;\mathbb{Q})=0$. Here we introduce the following family of simplicial complexes. Let n,k be integers with k+1 and n relatively prime, and let A be a (k+1)-element subset of the cyclic group \mathbb{Z}_n . The sum complex X_A is the pure k-dimensional complex on the vertex set \mathbb{Z}_n whose facets are $\sigma \subset \mathbb{Z}_n$ such that $|\sigma|=k+1$ and $\sum_{x\in\sigma}x\in A$. It is shown that if n is prime then the complex X_A is a k-hypertree for every choice of A. On the other hand, for n prime X_A is k-collapsible iff A is an arithmetic progression in \mathbb{Z}_n .

1 Introduction

What is the high-dimensional analogue of a tree? Several approaches to this question can be found in the literature. Here we follow the lead of Kalai [1]. We start with some standard notations. All simplicial complexes we consider X have n vertices, and we always identify the vertex set of X with the cyclic group \mathbb{Z}_n . The number of i-dimensional faces of X is denoted by $f_i(X)$. We denote by Δ_{n-1} the (n-1)-simplex on the vertex set \mathbb{Z}_n and by $\Delta_{n-1}^{(i)}$ the i-dimensional skeleton of Δ_{n-1} . A k-hypertree is a simplicial complex $\Delta_{n-1}^{(k-1)} \subset X \subset \Delta_{n-1}^{(k)}$ such that $f_k(X) = \binom{n-1}{k}$ and with a vanishing

^{*}Department of Computer Science, Hebrew University, Jerusalem 91904, Israel. e-mail: nati@cs.huji.ac.il . Supported by ISF and BSF grants.

[†]Department of Mathematics, Technion, Haifa 32000, Israel. e-mail: meshu-lam@math.technion.ac.il. Supported by ISF and BSF grants.

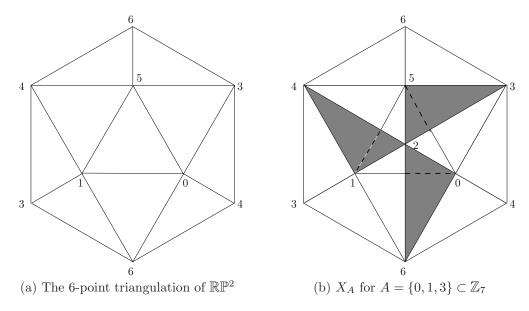


Figure 1

k-th rational homology $H_k(X; \mathbb{Q}) = 0$. Throughout the paper we assume that k+1 is coprime to n. For $a \in \mathbb{Z}_n$, let X_a be the following collection of subsets of \mathbb{Z}_n :

$$X_a = \{ \sigma \subset \mathbb{Z}_n : |\sigma| = k+1 , \sum_{x \in \sigma} x = a \}.$$

For a subset $A \subset \mathbb{Z}_n$ of cardinality k+1, define the Sum Complex X_A by

$$X_A = \Delta_{n-1}^{(k-1)} \cup (\cup_{a \in A} X_a) .$$

Example: Let n = 7, k = 2 and $A = \{0, 1, 3\} \subset \mathbb{Z}_7$. The 2-dimensional complex X_A (figure 1b) is obtained from the standard 6-point triangulation of the real projective plane \mathbb{RP}^2 on the vertices $\{0, 1, 3, 4, 5, 6\}$ (figure 1a) by replacing the face $\{0, 1, 5\}$ with the three faces $\{0, 1, 2\}$, $\{0, 2, 5\}$, $\{1, 2, 5\}$, and adding the faces $\{2, 3, 5\}$, $\{0, 2, 6\}$ and $\{1, 2, 4\}$. X_A is clearly homotopy equivalent to \mathbb{RP}^2 .

In this paper we are concerned with topological and combinatorial properties of X_A . Let \mathbb{F} be a field and let $h_i(X_A; \mathbb{F}) = \dim_{\mathbb{F}} H_i(X_A; \mathbb{F})$. Since $X_A \supset \Delta_{n-1}^{(k-1)}$ it follows that $h_0(X_A; \mathbb{F}) = 1$ and $h_i(X_A; \mathbb{F}) = 0$ for $1 \le i \le k-2$. Since k+1 is coprime to n, it follows that for any $y \in \mathbb{Z}_n$,

the number of $\sigma \subset \mathbb{Z}_n$ of cardinality k+1 that satisfy $\sum_{x \in \sigma} x = y$ is $\frac{1}{n} \binom{n}{k+1}$. Therefore $f_k(X_A) = \frac{k+1}{n} \binom{n}{k+1} = \binom{n-1}{k}$. The Euler-Poincaré relation $\sum_{i \geq 0} (-1)^i f_i(X_A) = \sum_{i \geq 0} (-1)^i h_i(X_A; \mathbb{F})$ then implies that $h_{k-1}(X_A; \mathbb{F}) = h_k(X_A; \mathbb{F})$. In the sequel we assume that the characteristic of \mathbb{F} does not divide n.

Let ω be a fixed primitive n-th root of unity in the algebraic closure $\overline{\mathbb{F}}$. For $x \in \mathbb{Z}_n$ let $e(x) = \omega^x$. The $n \times n$ Fourier matrix M over $\overline{\mathbb{F}}$ is given by M(u,v) = e(-uv) for $u,v \in \mathbb{Z}_n$. For a subset $B \subset \mathbb{Z}_n$ of cardinality k+1 let $M_{A,B}$ denote the $(k+1) \times (k+1)$ submatrix of M determined by A and B. Let $\mathcal{B}_{n,k}$ denote the family of all (k+1)-element subsets of \mathbb{Z}_n that contain 0.

Theorem 1.1.

$$h_{k-1}(X_A; \mathbb{F}) = h_k(X_A; \mathbb{F}) = \frac{1}{k+1} \sum_{B \in \mathcal{B}_{n,k}} \dim \ker M_{A,B} . \tag{1}$$

The Fourier transform matrix $M = (M_{uv})$ of \mathbb{Z}_n over $\overline{\mathbb{Q}} = \mathbb{C}$ is given by $M_{uv} = \exp(-2\pi i u v/n)$. A classical result of Chebotarëv (see e.g. [3]) asserts that if n is prime then any square submatrix of M is nonsingular. Theorem 1.1 therefore implies

Corollary 1.2. If n is prime then X_A is a k-hypertree.

If A is an arithmetic progression in \mathbb{Z}_n then $M_{A,B}$ is a Vandermonde matrix for all $B \in \mathcal{B}_{n,k}$. Hence, by Theorem 1.1, X_A is \mathbb{F} -acyclic for any \mathbb{F} whose characteristic is coprime to n. More is in fact true. Let σ be a face of dimension at most k-1 of a simplicial complex X which is contained in a unique maximal face τ of X, and let $[\sigma, \tau] = \{\eta : \sigma \subset \eta \subset \tau\}$. The operation $X \to Y = X - [\sigma, \tau]$ is called an elementary k-collapse. X is k-collapsible if there exists a sequence of elementary k-collapses

$$X = X_1 \to X_2 \to \cdots \to X_m = \{\emptyset\}$$
.

Note that if $\Delta_{n-1}^{(k-1)} \subset X \subset \Delta_{n-1}^{(k)}$ is k-collapsible and $f_k(X) = \binom{n-1}{k}$, then X is \mathbb{Z} -acyclic.

Theorem 1.3. Let n be a prime and let A be a subset of \mathbb{Z}_n of cardinality k+1. Then X_A is k-collapsible iff A is an arithmetic progression in \mathbb{Z}_n .

Theorems 1.1 and 1.3 are proved in Sections 2 and 3. In Section 4 we compute the homology of X_A for $A = \{0, 1, 3\}$. We conclude in Section 5 with some remarks concerning possible extensions and open problems.

2 Homology of X_A

We first recall some topological terminology (see e.g. [2]). Let X be a finite simplicial complex on the vertex set V. For a set S and a field \mathbb{K} , let $\mathcal{L}(S,\mathbb{K})$ denote the \mathbb{K} -linear space of all \mathbb{K} -valued functions on S. The space $C^m(X;\mathbb{K})$ of \mathbb{K} -valued m-cochains of X consists of all functions $\phi \in \mathcal{L}(V^{m+1},\mathbb{K})$ such that $\phi(v_0,\ldots,v_m)=\mathrm{sgn}(\pi)\phi(v_{\pi(0)},\ldots,v_{\pi(m)})$ for any permutation π on $\{0,\ldots,m\}$, and such that $\phi(v_0,\ldots,v_m)=0$ if $\{v_0,\ldots,v_m\}$ is not an m-dimensional simplex of X. (In particular, $\phi(v_0,\ldots,v_m)=0$ if $v_i=v_j$ for some $i\neq j$.) The coboundary operator $d_m:C^m(X;\mathbb{K})\to C^{m+1}(X;\mathbb{K})$ is given by

$$d_m \phi(v_0, \dots, v_{m+1}) = \sum_{i=0}^{m+1} (-1)^i \phi(v_0, \dots, \hat{v_i}, \dots, v_{m+1}) .$$

Let $Z^m(X; \mathbb{K}) = \ker d_m$ denote the space of m-cocycles of X over \mathbb{K} and let $B^m(X; \mathbb{K}) = \operatorname{Im} d_{m-1}$ denote the space of m-coboundaries of X over \mathbb{K} . The m-dimensional cohomology space of X with coefficients in \mathbb{K} is

$$H^{m}(X; \mathbb{K}) = \frac{Z^{m}(X; \mathbb{K})}{B^{m}(X; \mathbb{K})} .$$

Let $h^m(X, \mathbb{K}) = \dim_{\mathbb{K}} H^m(X; \mathbb{K})$. Then $h^m(X, \mathbb{K}) = h^m(X, \mathbb{F}) = h_m(X; \mathbb{F})$ for any algebraic extension \mathbb{K} of \mathbb{F} . In order to establish Theorem 1.1 we may therefore assume that \mathbb{F} already contains a primitive n-th root of unity ω .

The Fourier transform of a function $\phi \in \mathcal{L}(\mathbb{Z}_n^k; \mathbb{F})$ is the function $\mathcal{F}(\phi) = \widehat{\phi} \in \mathcal{L}(\mathbb{Z}_n^k; \mathbb{F})$ given by

$$\widehat{\phi}(u_1,\ldots,u_k) = \sum_{(x_1,\ldots,x_k)\in\mathbb{Z}_n^k} \phi(x_1,\ldots,x_k)e(-\sum_{j=1}^k u_j x_j) .$$

The Fourier transform is an automorphism of $\mathcal{L}(\mathbb{Z}_n^k; \mathbb{F})$.

The proof of Theorem 1.1 involves computing the image of $H^{k-1}(X; \mathbb{F})$ under the Fourier transform. We first consider the Fourier image of the (k-1)-coboundaries.

Claim 2.1.

$$\mathcal{F}(B^{k-1}(X_A; \mathbb{F})) = \{ g \in C^{k-1}(X_A; \mathbb{F}) : support(g) \subset \mathbb{Z}_n^k - (\mathbb{Z}_n - \{0\})^k \} .$$

Proof: Let $\psi \in C^{k-2}(X_A; \mathbb{F})$. Then

$$\widehat{d_{k-2}\psi}(u_1,\dots,u_k) = \sum_{(x_1,\dots,x_k)\in\mathbb{Z}_n^k} d_{k-2}\psi(x_1,\dots,x_k)e(-\sum_{j=1}^k u_j x_j) =$$

$$\sum_{(x_1,\dots,x_k)\in\mathbb{Z}_n^k} \left(\sum_{i=1}^k (-1)^{i+1} \psi(x_1,\dots,\hat{x_i},\dots,x_k)\right) e(-\sum_{j=1}^k u_j x_j) =$$

$$\sum_{i=1}^{k} (-1)^{i+1} \sum_{x_i} e(-u_i x_i) \sum_{x_1, \dots, \hat{x_i}, \dots, x_k} \psi(x_1, \dots, \hat{x_i}, \dots, x_k) e(-\sum_{j \neq i} u_j x_j) =$$

$$n \sum_{i=1}^{k} (-1)^{i+1} \delta(0, u_i) \sum_{x_1, \dots, \hat{x_i}, \dots, x_k} \psi(x_1, \dots, \hat{x_i}, \dots, x_k) e(-\sum_{j \neq i} u_j x_j)$$

where $\delta(0, u_i) = 1$ if $u_i = 0$ and is zero otherwise. Therefore

$$\mathcal{F}(B^{k-1}(X_A; \mathbb{F})) \subset \{g \in C^{k-1}(X_A; \mathbb{F}) : \operatorname{support}(g) \subset \mathbb{Z}_n^k - (\mathbb{Z}_n - \{0\})^k \}$$
.

Equality follows since both spaces have dimension $\binom{n-1}{k-1}$ over \mathbb{F} .

We next study the Fourier image of the (k-1)-cocycles of X_A . Fix a $\phi \in C^{k-1}(X_A; \mathbb{F})$. For $a \in \mathbb{Z}_n$ define a function $f_a \in \mathcal{L}(\mathbb{Z}_n^k; \mathbb{F})$ by

$$f_a(x_1,\ldots,x_k) = d_{k-1}\phi(a - \sum_{i=1}^k x_i, x_1,\ldots,x_k) =$$

$$\phi(x_1,\ldots,x_k) + \sum_{j=1}^k (-1)^i \phi(a-\sum_{j=1}^k x_j,x_1,\ldots,\hat{x_i},\ldots,x_k)$$
.

Let T be the automorphism of \mathbb{Z}_n^k given by

$$T(u_1,\ldots,u_k)=(u_2-u_1,\ldots,u_k-u_1,-u_1)$$
.

Then $T^{k+1} = I$ and for $1 \le i \le k$

$$T^{i}(u_{1},...,u_{k})=(u_{i+1}-u_{i},...,u_{k}-u_{i},-u_{i},u_{1}-u_{i},...,u_{i-1}-u_{i}).$$

Claim 2.2. Let $u = (u_1, \ldots, u_k) \in \mathbb{Z}_n^k$. Then

$$\widehat{f}_a(u) = \widehat{\phi}(u) + \sum_{i=1}^k (-1)^{ki} e(-u_i a) \widehat{\phi}(T^i u) \quad . \tag{2}$$

Proof: For $1 \leq i \leq k$ let $\psi_i \in \mathcal{L}(\mathbb{Z}_n^k, \mathbb{F})$ be given by

$$\psi_i(x_1, \dots, x_k) = \phi(a - \sum_{j=1}^k x_j, x_1, \dots, \hat{x_i}, \dots, x_k)$$
.

Then

$$\widehat{\psi}_i(u) = \sum_{(x_1, \dots, x_k) \in \mathbb{Z}_n^k} \phi(a - \sum_{j=1}^k x_j, x_1, \dots, \hat{x_i}, \dots, x_k) e(-\sum_{j=1}^k u_j x_j) .$$

Substituting

$$y_{j} = \begin{cases} a - \sum_{\ell=1}^{k} x_{\ell} & j = 1\\ x_{j-1} & 2 \le j \le i\\ x_{j} & i+1 \le j \le k \end{cases}$$

it follows that

$$\sum_{j=1}^{k} u_j x_j = (a - y_1) u_i + \sum_{j=2}^{i} (u_{j-1} - u_i) y_j + \sum_{j=i+1}^{k} (u_j - u_i) y_j.$$

Therefore

$$\widehat{\psi}_i(u) = e(-u_i a) \sum_{y = (y_1, \dots, y_k) \in \mathbb{Z}_n^k} \phi(y) e(u_i y_1 - \sum_{j=2}^i (u_{j-1} - u_i) y_j - \sum_{j=i+1}^k (u_j - u_i) y_j) = e(-u_i a) \sum_{y = (y_1, \dots, y_k) \in \mathbb{Z}_n^k} \phi(y) e(u_i y_1 - \sum_{j=2}^i (u_{j-1} - u_i) y_j - \sum_{j=i+1}^k (u_j - u_i) y_j) = e(-u_i a) \sum_{y = (y_1, \dots, y_k) \in \mathbb{Z}_n^k} \phi(y) e(u_i y_1 - \sum_{j=2}^i (u_{j-1} - u_i) y_j - \sum_{j=i+1}^k (u_j - u_i) y_j) = e(-u_i a) \sum_{y = (y_1, \dots, y_k) \in \mathbb{Z}_n^k} \phi(y) e(u_i y_1 - \sum_{j=2}^i (u_{j-1} - u_i) y_j - \sum_{j=i+1}^k (u_j - u_i) y_j) = e(-u_i a) \sum_{y = (y_1, \dots, y_k) \in \mathbb{Z}_n^k} \phi(y) e(u_i y_1 - \sum_{j=2}^i (u_{j-1} - u_i) y_j - \sum_{j=i+1}^k (u_j - u_i) y_j - \sum_{j=i+1$$

$$e(-u_{i}a)\widehat{\phi}(-u_{i}, u_{1} - u_{i}, \dots, u_{i-1} - u_{i}, u_{i+1} - u_{i}, \dots, u_{k} - u_{i}) =$$

$$e(-u_{i}a)(-1)^{i(k-i)}\widehat{\phi}(T^{i}u).$$
(3)

Now (2) follows from (3) since $f_a = \phi + \sum_{i=1}^k (-1)^i \psi_i$.

For $u \in \mathbb{Z}_n^k$ let $E_u = \{T^i u : 0 \le i \le k\}$ and let

$$L_u = \bigcap_{a \in A} \{ g \in \mathcal{L}(E_u, \mathbb{F}) : g(u) + \sum_{i=1}^k (-1)^{ki} e(-u_i a) g(T^i u) = 0 \}.$$
 (4)

Let $\phi \in \mathbb{Z}^{k-1}(X_A; \mathbb{F})$. Then for all $a \in A$ and $(x_1, \dots, x_k) \in \mathbb{Z}_n^k$

$$f_a(x_1,\ldots,x_k) = d_{k-1}\phi(a-\sum_{i=1}^k x_i,x_1,\ldots,x_k) = 0.$$

Eqn. (2) then implies that for all $a \in A$ and $u \in \mathbb{Z}_n^k$

$$\widehat{\phi}(u) + \sum_{i=1}^{k} (-1)^{ki} e(-u_i a) \widehat{\phi}(T^i u) = 0$$
.

Writing $\widehat{\phi}_{|E_u}$ for the restriction of $\widehat{\phi}$ to E_u we obtain

Corollary 2.3. Let $\phi \in C^{k-1}(X_A; \mathbb{F})$. Then $\phi \in Z^{k-1}(X_A; \mathbb{F})$ iff $\widehat{\phi}_{|E_n} \in L_n$ for all $u \in \mathbb{Z}_n^k$.

Let the symmetric group S_k act on \mathbb{Z}_n^k by

$$\sigma((u_1,\ldots,u_k)) = (u_{\sigma^{-1}(1)},\ldots,u_{\sigma^{-1}(k)})$$

and let $G_{n,k}$ denote the subgroup of $\operatorname{Aut}(\mathbb{Z}_n^k)$ generated by T and S_k . The subset

$$D_{n,k} = \{(u_1, \dots, u_k) \in (\mathbb{Z}_n - \{0\})^k : u_i \neq u_j \text{ for } i \neq j\}$$

is clearly invariant under $G_{n,k}$.

Claim 2.4.

- (i) Let $\sigma \in S_k$ and $1 \le i \le k$. Then $\eta = T^i \sigma T^{-\sigma^{-1}(i)} \in S_k$ and $\operatorname{sgn}(\eta) = (-1)^{k(i+\sigma^{-1}(i))} \operatorname{sgn}(\sigma)$.
- (ii) Any element of $G_{n,k}$ can be written uniquely as σT^i where $\sigma \in S_k$ and $0 \le i \le k$. $G_{n,k}$ acts freely on $D_{n,k}$.
- (iii) $L_u = L_{T^j u}$ for all $u \in D_{n,k}$ and $0 \le j \le k$.

Proof: (i) For $1 \le \ell \le k$ let $\tau_{\ell} \in S_k$ be given by

$$\tau_{\ell}(i) = \begin{cases} k - \ell + 1 + i & 1 \le i \le \ell - 1 \\ k - \ell + 1 & i = \ell \\ i - \ell & \ell + 1 \le i \le k \end{cases}.$$

It can be checked that

$$\eta = T^i \sigma T^{-\sigma^{-1}(i)} = \tau_{k-i+1}^{-1} \sigma \tau_{k-\sigma^{-1}(i)+1}$$
.

Noting that $\operatorname{sgn}(\tau_{\ell}) = (-1)^{k\ell+1}$ it thus follows that

$$\operatorname{sgn}(\eta) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau_{k-i+1})\operatorname{sgn}(\tau_{k-\sigma^{-1}(i)+1}) = (-1)^{k(i+\sigma^{-1}(i))}\operatorname{sgn}(\sigma) .$$

(ii) It follows from (i) that

$$G_{n,k} = \{ \sigma T^i : \sigma \in S_k , 0 \le i \le k \}$$
.

Let $u = (u_1, \ldots, u_k) \in D_{n,k}$ and let $v = (v_1, \ldots, v_k) = \sigma T^i u$. If $i \neq 0$ then

$$\sum_{j=1}^{k} v_j = \sum_{j=1}^{k} u_j - (k+1)u_i \neq \sum_{j=1}^{k} u_j$$

and therefore $\sigma T^i u \neq u$. It follows that $G_{n,k}$ acts freely on $D_{n,k}$ and that the representation of an element of $G_{n,k}$ as σT^i is unique.

(iii) Let $g \in L_u$ and $a \in A$. Then

$$g(T^{j}u) + \sum_{i=1}^{k} (-1)^{ik} e(-(T^{j}u)_{i}a) g(T^{i+j}u) =$$

$$g(T^{j}u) + \sum_{i=1}^{k-j} (-1)^{ik} e(-(u_{i+j} - u_{j})a) g(T^{i+j}u) +$$

$$(-1)^{(k-j+1)k} e(u_{j}a) g(u) + \sum_{i=k-j+2}^{k} (-1)^{ik} e(-(u_{i-k+j-1} - u_{j})a) g(T^{i+j}u) =$$

$$(-1)^{jk} e(u_{j}a) (g(u) + \sum_{i=1}^{k} (-1)^{ik} e(-u_{i}a) g(T^{i}u)) = 0.$$
(5)

Hence $g \in L_{T^{j}u}$.

Proof of Theorem 1.1: Let $R \subset D_{n,k}$ be a fixed set of representatives of the orbits of $G_{n,k}$ on $D_{n,k}$. Then $|R| = \frac{|D_{n,k}|}{|G_{n,k}|} = \frac{1}{k+1} {n-1 \choose k}$. Consider the mapping

$$\Theta: Z^{k-1}(X_A; \mathbb{F}) \to \bigoplus_{u \in R} L_u$$

given by

$$\Theta(\phi) = \left(\widehat{\phi}_{|E_u} : u \in R\right) .$$

Claim 2.5.

$$\ker \Theta = B^{k-1}(X_A; \mathbb{F})$$
.

Proof:

$$\ker \Theta = \{ \phi \in \mathbb{Z}^{k-1}(X_A; \mathbb{F}) : \widehat{\phi}_{|E_u} = 0 \text{ for all } u \in \mathbb{R} \} = 0$$

$$\{\phi \in Z^{k-1}(X_A; \mathbb{F}) : \widehat{\phi}(u) = 0 \text{ for all } u \in D_{n,k}\} = B^{k-1}(X_A; \mathbb{F})$$

by Claim 2.1.

Claim 2.6. Θ is surjective.

Proof: Let $(g_u : u \in R) \in \bigoplus_{u \in R} L_u$. Define $g \in C^{k-1}(X_A; \mathbb{F})$ by

$$g(v) = \begin{cases} 0 & v \notin D_{n,k} \\ \operatorname{sgn}(\sigma)g_u(T^j u) & v = \sigma T^j u \text{ where } u \in R. \end{cases}$$

Clearly $\Theta(\mathcal{F}^{-1}(g)) = (g_u : u \in R)$. To show that $\mathcal{F}^{-1}(g) \in Z^{k-1}(X_A; \mathbb{F})$ it suffices by Corollary 2.3 to check that $g \in L_v$ for all $v \in \mathbb{Z}_n^k$. If $v \notin D_{n,k}$ then $g_{|E_v} = 0$. Suppose then that $v = \sigma T^j u \in D_{n,k}$ where $u \in R$ and $0 \le j \le k$. Combining Claim 2.4(i) and Eq. (5) it follows that

$$g(v) + \sum_{i=1}^{k} (-1)^{ik} e(-v_i a) g(T^i v) =$$

$$g(\sigma T^{j}u) + \sum_{i=1}^{k} (-1)^{ik} e(-(\sigma T^{j}u)_{i}a)g(T^{i}\sigma T^{j}u) =$$

$$\operatorname{sgn}(\sigma)g_{u}(T^{j}u) + \sum_{i=1}^{k} (-1)^{ik} e(-(T^{j}u)_{\sigma^{-1}(i)}a)(-1)^{k(i+\sigma^{-1}(i))} \operatorname{sgn}(\sigma)g_{u}(T^{\sigma^{-1}(i)+j}u) =$$

$$\operatorname{sgn}(\sigma) \left(g_{u}(T^{j}u) + \sum_{i=1}^{k} (-1)^{ik} e(-(T^{j}u)_{i}a)g_{u}(T^{i+j}u)\right) =$$

$$= (-1)^{jk} \operatorname{sgn}(\sigma)e(u_{j}a) \left(g_{u}(u) + \sum_{i=1}^{k} (-1)^{ik} e(-u_{i}a)g_{u}(T^{i}u)\right) = 0.$$

Claims 2.5 and 2.6 imply that

$$H^{k-1}(X_A, \mathbb{F}) \cong \bigoplus_{u \in R} L_u$$
 (6)

For $u=(u_1,\ldots,u_k)\in D_{n,k}$ let $B_u=\{0,u_1,\ldots,u_k\}$. Then $\dim L_u=\dim\ker M_{A,B_u}$. Combining (6) with Claim 2.4(iii) it thus follows that

$$h^{k-1}(X_A; \mathbb{F}) = \sum_{u \in R} \dim L_u = \frac{1}{k+1} \sum_{u \in R} \sum_{j=0}^{k} \dim L_{T^j u} = \frac{1}{k+1} \sum_{B \in \mathcal{B}_{n,k}} \dim \ker M_{A,B} .$$

3 When is X_A collapsible?

In this section we prove Theorem 1.3, so that in this section n is prime. We find it convenient to maintain the vertices in a face sorted according to the order induced from \mathbb{N} , and also refer to subsets of \mathbb{F}_n as sorted vectors and not only as sets.

3.1 Equivalence

Let $\phi : \mathbb{F}_n \to \mathbb{F}_n$ be the linear map $\phi(x) = \alpha x + \beta$. It is clear that the image of X_a under ϕ is X_t where $t = \alpha a + (k+1)\beta$. We say that the complexes X_{a_0,\dots,a_k} and X_{b_0,\dots,b_k} are equivalent iff there exist a permutation π on $\{b_0,\dots,b_k\}$ and α,β s.t. $\pi(b_i) = \alpha a_i + (k+1)\beta$ for every $0 \le i \le k$. Equivalent complexes are clearly isomorphic.

It is an easy observation that a_0, \ldots, a_k is an arithmetic progression iff X_{a_0,\ldots,a_k} is equivalent to the complex $X_{0,\ldots,k}$. We show that $X=X_{0,\ldots,k}$ is collapsible whence X_{a_0,\ldots,a_k} is collapsible for a_0,\ldots,a_k an arithmetic progression.

3.2 Proof of sufficiency

To show that X is collapsible we introduce an order \prec_R by which we remove the k-faces from X. We need first some preliminary definitions. With every k-face $u \in X$ we associate a vector h(u) of dimension $\lceil \frac{k}{2} \rceil$. The i-th coordinate in k counts how many integers in the interval $[u_i, u_{k-i}]$ do not belong to $\{u_i, \ldots, u_{k-i}\}$. Namely, the i-th coordinate of h(u) is:

$$h_i(u) := u_{k-i} - u_i - (k-2i)$$

Clearly $h_i(u)$ is non-increasing in i. For every two k-faces $u, v \in X$ we say that $u \prec_L v$ if h(u) is lexicographically smaller than h(v). When h(u) = h(v) we say that $u \equiv_L v$. It should be clear that h is invariant under set reversal i.e. $x \to n - x$. It is also invariant under shifts that "do not overflow" in the obvious sense, but we will not be using this fact. If $u \not\equiv_L v$ for some $u, v \in X$, we denote by $\delta_L(u, v)$ the first index for which h(u) and h(v) differ. Thus if $u \prec_L v$ and $\delta_L(u, v) = i$ then $h_j(u) = h_j(v)$ for all j < i and $h_i(u) < h_i(v)$. For $i, j \in \mathbb{F}_n$ it is convenient to define $\rho(i, j)$ as i - j if i > j and as j - i otherwise. This is extended as usual to: $\rho(i, A) = \min\{\rho(i, a) \mid a \in A\}$ and $\rho(A, B) = \min\{\rho(a, b) \mid a \in A, b \in B\}$.

If $u \in X_i$ and $v \in X_j$ we say that $u \prec_I v$ if i is closer than j to $\{0, k\}$, i.e., if $\rho(i, \{0, k\}) < \rho(j, \{0, k\})$. We say that $u \equiv_I v$ when $\rho(i, \{0, k\}) = \rho(j, \{0, k\})$, namely, i = j or i = k - j. Letting $i' = \rho(i, \{0, k\})$, it is clear that $u \prec_I v$ iff i' < j'. If $u \not\equiv_I v$, we denote by $\delta_I(u, v) = \min\{i', j'\} = \rho(\{i, j\}, \{0, k\})$.

We are now ready to define the relation \prec_R . This is done in terms of the relations \prec_L and \prec_I . To begin, $u \equiv_R v$ iff $u \equiv_L v$ and $u \equiv_I v$. If $u \preceq_L v$ and $u \preceq_I v$ and at least one inequality is proper, then $u \prec_R v$. Finally,

when $u \prec_L v$ and $u \succ_I v$, the order \prec_R is determined according to the smaller of $\delta_I(u,v), \delta_L(u,v)$. Namely, if $\delta_I(u,v) < \delta_L(u,v)$ then $u \succ_R v$ and if $\delta_I(u,v) \ge \delta_L(u,v)$ then $u \prec_R v$. To sum up, for $u,v \in X$:

- 1. If $u \equiv_I v$ and $u \equiv_L v$ then $u \equiv_R v$.
- 2. If $u \equiv_I v$ and $u \prec_L v$ then $u \prec_R v$.
- 3. If $u \prec_I v$, then $u \prec_R v$ unless
 - (a) $u \succ_L v$ and
 - (b) $\delta_L(u,v) \leq \delta_I(u,v)$

In which case $u \succ_R v$.

To clarify this definitions a little bit more, we present an example from the complex $X_{0,1,2,3}$ over \mathbb{F}_7 . Let $u=\{0,1,2,5\}$, $v=\{1,2,5,6\}$. The set u has two missing integers between 0 and 5 and no missing integers between 1 and 2, hence $h(u) = h(\{0,1,2,5\}) = (2,0)$. Similarly $h(v) = h(\{1,2,5,6\}) = (2,2)$. Also, $u \prec_L v$ because (2,0) is lexicographically smaller than (2,2). Furthermore, $\delta_L(u,v)=1$ because the first coordinate the vectors differ is the second coordinate (and we start indexing coordinates from zero). Now $u \in X_1$ since $0+1+2+5\equiv 1 \mod 7$. Similarly $v \in X_0$. We next calculate that $1'=1=\rho(1,\{0,7\})$ and 0'=0. Hence $v \prec_I u$ because 0'<1', and $\delta_I(u,v)=\min\{0,1\}=0$. To recap, $u \prec_L v$ and $v \prec_I u$, so we turn to compare $0=\delta_I(u,v)<\delta_L(u,v)=1$, it follows that in this case the order R is determined by I, hence $\{0,1,2,5\}=u \succ_R v=\{1,2,5,6\}$. A full description of the order R on $X_{0,1,2,3}$ over \mathbb{F}_7 is shown in Figure 2 and Figure 3:

A few words are in order about Figure 2. The rows are sorted by the lexicographic order of $h(\cdot)$. The columns on the right include all facets of X sorted by value of i'. Note that for each value of h and each i' there are two facets that attain this pair of values. The leftmost column gives the value of $\delta_L(x,y)$ for every two consecutive lines in the table.

We now turn to show that X can indeed be collapsed in the order \prec_R . That is, for every $x \in X$ it is possible to apply an elementary collapse step to x if all the \prec_R -predecessors of x have already been collapsed. In order to show this, we need to point out an free(k-1)-face that is contained in x. What we will show is that for $x \in X_a$, the face $\hat{x} := x \setminus \{x_a\}$ is free. (Note

Figure 2: $X_{0,1,2,3}$ parameters over \mathbb{F}_7

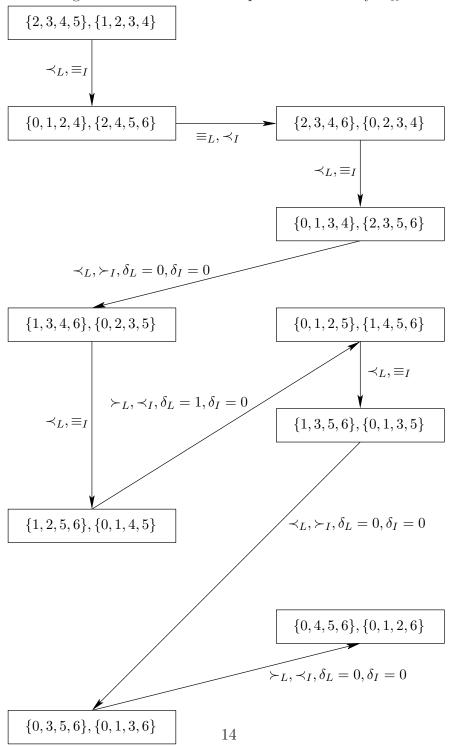
$\delta_L(x,y)$	h(x)	i' = 0	i'=1
0	(0,0)	$\{2,3,4,5\},\{1,2,3,4\}$ $\{0,1,2,4\},\{2,4,5,6\}$	
1	(1,0)	$\{0, 1, 2, 4\}, \{2, 4, 5, 6\}$	${2,3,4,6},{0,2,3,4}$
1	(1, 1)		$\{0, 1, 3, 4\}, \{2, 3, 5, 6\}$
0	(2,0)	$\{1, 3, 4, 6\}, \{0, 2, 3, 5\}$	$\{0, 1, 2, 5\}, \{1, 4, 5, 6\}$
1	(2, 1)		$\{1, 3, 5, 6\}, \{0, 1, 3, 5\}$
1	(2, 2)	$\{1, 2, 5, 6\}, \{0, 1, 4, 5\}$	
0	(3,0)		$\{0,4,5,6\},\{0,1,2,6\}$
1	(3, 1)	$\{0, 3, 5, 6\}, \{0, 1, 3, 6\}$	

that since $x \in X = X_{0,\dots,k}$, there indeed must exist some $a \in \{0,\dots,k\}$ s.t. $x \in X_a$). It may be helpful to mention that a plays a double role here. It is an index in the vector x as well as the sum of the elements of x. Being free means that all the k-faces containing \hat{x} , precede x in the order \prec_R . A k-face that contains \hat{x} has the form $y^{(b)} := \hat{x} \cup \{x_a + (b-a)\}$ with $0 \le b \le k$ and $b \ne a$. Clearly, $y^{(b)}$ is a k-face in X iff $x_a + (b-a) \not\in \hat{x}$. Also, in this case $y^{(b)} \in X_b$, as we assume below.

The proof that $y^{(b)} \prec_R x$ has two cases:

- 1. We first consider the case where $y^{(b)} \succeq_I x$. Since $y^{(b)} \in X_b$ and $x \in X_a$, the meaning of $y^{(b)} \succeq_I x$ is that $b' \geq a'$. Therefore $\delta_I(y^{(b)}, x)$ which is the smaller of a' and b' equals a'. This means that b lies between a and k-a (whether a or k-a is bigger is immaterial here).
 - Consequently, $x_a + (b a)$ is in the interval $[x_{a'}, x_{k-a'}]$. It follows that the first and last a' 1 elements of x and $y^{(b)}$ are identical. In particular, $h_i(y^{(b)}) = h_i(x)$ for i < a'.
 - We recall that $y^{(b)}$ is created by removing x_a from x and replacing it by the term $x_a + (b-a)$. Thus the interval $[y_{a'}^{(b)}, y_{k-a'}^{(b)}]$ is shorter than $[x_{a'}, x_{k-a'}]$. It follows that the first coordinate where $h(y^{(b)})$

Figure 3: The order of collapse determined by \prec_R



and h(x) differ is the a'-th coordinate, where $h_{a'}(y^{(b)}) < h_{a'}(x)$. Consequently, $y^{(b)} \prec_L x$ and $a' = \delta_L(y^{(b)}, x)$.

- If $y^{(b)} \equiv_I x$ then we are done, because we already know that $y^{(b)} \prec_L x$. By definition of \prec_R this yields the desired conclusion $y^{(b)} \prec_R x$.
- If $y^{(b)} \succ_I x$ then from the previous points we conclude that $a' = \delta_L(y^{(b)}, x) = \delta_I(y^{(b)}, x)$. To sum up, $y^{(b)} \prec_L x$ and $\delta_L(y^{(b)}, x) = \delta_I(y^{(b)}, x)$, which yields by definition, $y^{(b)} \prec_R x$, as claimed.
- 2. Now consider the case $y^{(b)} \prec_I x$. This means that b' < a'. Therefore $b' = \delta_I(y^{(b)}, x)$. Consequently b does not lie between a and k a.
 - It follows that $x_a + (b a) \in [x_{b'}, x_{k-b'}]$. Consequently, the first and last b' + 1 elements of x and $y^{(b)}$ are identical. In particular, $h_i(y^{(b)}) = h_i(x)$ for $i \leq b'$. Thus $\delta_L(y^{(b)}, x) > b'$.
 - If $y^{(b)} \leq_L x$ then $y^{(b)} \prec_R x$ and we are done.
 - If $y^{(b)} \succ_L x$ then from the previous points we conclude that $b' = \delta_I(y^{(b)}, x) < \delta_L(y^{(b)}, x)$. Hence $y^{(b)} \succ_I x$ and $\delta_I(y^{(b)}, x) < \delta_L(y^{(b)}, x)$. Again, by definition, $y^{(b)} \prec_R x$, as claimed.

This completes the proof that $X_{0,...,k}$ is collapsible and hence that $X = X_{a_0,...,a_k}$ is collapsible whenever $a_0,...,a_k$ is an arithmetic progression.

3.3 Proof of necessity

We now turn to show that if a_0, \ldots, a_k is not arithmetic, then X_{a_0, \ldots, a_k} is not collapsible. In fact we show that in this case exactly k+1 elementary collapse steps can be carried out.

For $X \subseteq \mathbb{F}_n$ we denote as usual by X + a the a-shift of X, namely, the set $\{x + a | x \in X\}$. We start with the following simple observation.

Observation 3.1. Let n be a prime. A subset $X \subseteq \mathbb{F}_n$ is an arithmetic progression iff there is an element l for which $|(X+l)\setminus X|=1$.

When is the (k-1)-face x_1, \ldots, x_k free a free face? This is the case iff, for each $k \geq i \geq 1$ the element $x_i + \sum_{j=1}^k x_j$ belongs to the set $\{a_0, \ldots, a_k\}$. If $x_i + \sum x_j = a_l$ it means that x_1, \ldots, x_k cannot be extended to a k-face in X_{a_l} . This translates into a linear system of equations in x_1, \ldots, x_k whose

matrix has 2's along the main diagonal and 1's elsewhere. Such a matrix is nonsingular, so the solution is unique. Also, all the k terms $x_i + \sum x_j$ are distinct, so the only choice we have in constructing this linear system is which of the k+1 elements in $\{a_0, \ldots, a_k\}$ to omit. There are k+1 such choices which yields k+1 distinct collapse steps that can be carried out.

We now explicitly describe the k+1 collapse steps that can be carried out. Each of these collapsible faces has the form $x^{(t)} := \{a_0 + l_t, \dots, a_k + l_t\} \in X_{a_t}$ for some $l_0, \dots l_k$

The condition $x^{(t)} \in X_{a_t}$ determines l_t via $l_t = \frac{a_t - \sum_{i=0}^k a_i}{k+1}$. We claim that the face $y := x^{(t)} \setminus \{a_t + l_t\}$ is free. The sum of y's elements is $-l_t$, so that for every $i \neq t$ we need to add the term $\{a_i + l_t\}$ to y in order to attain the sum a_i . This is, however, impossible since $\{a_i + l_t\}$ is a member of y.

We turn to show that after these first k+1 collapse steps are carried out, there remain no free (k-1)-faces in X. In order for a (k-1)-face y to be free following the above collapses, y has to be contained in exactly one of these k+1 collapsed faces. Since $\{a_0, \ldots, a_k\}$ is not an arithmetic progression, by Observation 3.1, the intersection of any two of the $x^{(t)}$ contains at most k-1 elements. In particular there is no (k-1)-face that they both contain. Thus we have to consider only (k-1)-faces y which are contained in one of the $x^{(t)}$ and exactly one more k-face.

It follows that y must be of the form $x^{(t)} \setminus \{a_j + l_t\}$ for some j and t. The sum of y's elements is $a_t - a_j - l_t$. If y is contained as well in a k-face $z \in X_{a_i}$, then necessarily $z_i = z = y \cup \{a_i - a_t + a_j + l_t\}$. We are assuming that y becomes free with the collapse of $x^{(t)}$, so there must be exactly one index i for which z_i is a legal k-face different from $x^{(t)}$. It follows that $x^{(t)}$ and $x^{(t)} + (a_j - a_t)$ must have k elements in common. Again by Observation 3.1 this means that the elements in $x^{(t)}$ form an arithmetic progression, a contradiction. The proof of Theorem 1.3 is now complete.

4 Example: Homology of $X_{\{0,1,3\}}$

For a prime p and an integer n indivisible by p, let $U_{p,n}$ be the group of n-th roots of unity in $\overline{\mathbb{F}_p}$.

Proposition 4.1. Let k = 2, $A = \{0, 1, 3\}$. Let p be a prime and suppose n

is coprime to 3p. Then

$$h_1(X_A; \mathbb{F}_p) = \frac{1}{3} |\{\{u, v\} \subset U_{p,n} - \{1\} : u \neq v \text{ and } 1 + u + v = 0\}| .$$

Proof: Let $B = \{0, k, \ell\}$ with $0 < k < \ell < n$ and let $u = \omega^{-k}, v = \omega^{-\ell}$. Then

$$\det M_{A,B} = \det \begin{bmatrix} 1 & 1 & 1 \\ 1 & u & v \\ 1 & u^3 & v^3 \end{bmatrix} =$$

$$uv^{3} - vu^{3} + u^{3} - u - v^{3} + v = (u - 1)(v - 1)(v - u)(u + v + 1) .$$

It follows that

$$\operatorname{rk} M_{A,B} = \begin{cases} 2 & 1 + u + v = 0 \\ 3 & \text{otherwise.} \end{cases}$$

Thus the Proposition follows directly from Theorem 1.

Corollary 4.2. Let k = 2, $A = \{0, 1, 3\}$. Let p be a prime and suppose $n = p^m - 1$ is coprime to 3. Then

$$h_1(X_A; \mathbb{F}_p) = \begin{cases} \frac{n-1}{6} & p = 2\\ \frac{n-2}{6} & p = 3\\ \frac{n-4}{6} & p > 3. \end{cases}$$

Proof: Clearly $\mathbb{F}_{p^m}^* = U_{p,n}$. Therefore, by Proposition 4.1

$$h_1(X_A; \mathbb{F}_p) = \frac{1}{6} |\{u \in \mathbb{F}_{p^m}^* - \{1\} : -(1+u) \notin \{0, 1, u\}\}|.$$

The Corollary now follows since

$$\left\{u \in \mathbb{F}_{p^m}^* - \{1\} : -(1+u) \not\in \{0,1,u\}\right\} = \left\{\begin{array}{ll} \mathbb{F}_{2^m}^* - \{1\} & p = 2 \\ \mathbb{F}_{3^m}^* - \{\pm 1\} & p = 3 \\ \mathbb{F}_{p^m}^* - \{\pm 1, -2, -\frac{1}{2}\} & p > 3. \end{array}\right.$$

5 Concluding Remarks

Theorem 1.1 provides an explicit description of the homology of the sum complex X_A over fields of characteristic coprime to n. In particular, it follows via Chebotarëv's Theorem that if n is prime then X_A is \mathbb{Q} -acyclic, i.e. X_A is a k-hypertree. When A is an arithmetic progression, X_A was shown to be k-collapsible, and in particular \mathbb{Z} -acyclic. One natural question is whether there exist other A's for which X_A is \mathbb{Z} -acyclic. Kalai's k-dimensional Cayley's formula [1] suggests that most k-hypertrees are not \mathbb{Z} -acyclic. Likewise we conjecture that X_A is not \mathbb{Z} -acyclic for most (k+1)-subsets $A \subset \mathbb{Z}_n$. One possible approach to the question of \mathbb{F}_p -acyclicity of X_A for primes $p \nmid n$ is via the following reduction. Let $S_{\mathbb{F}}(A)$ be the \mathbb{F} -linear space of polynomials in $\mathbb{F}[x]$ spanned by the monomials $\{x^a: a \in A\}$. Theorem 1.1 then implies that X_A is \mathbb{F}_p -acyclic iff deg $\gcd(f(x), x^n - 1) \leq k$ for all $0 \neq f(x) \in S_{\mathbb{F}_p}(A)$.

References

- [1] G. Kalai, Enumeration of \mathbb{Q} -acyclic simplicial complexes, *Israel J. Math.* 45(1983) 337–351.
- [2] J. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
- [3] P. Stevenhagen and H. W. Lenstra, Chebotarëv and his density theorem, *Math. Intelligencer* **18**(1996) 26–37.