Sum Complexes - a New Family of Hypertrees

N. Linial ${ }^{*} \quad$ R. Meshulam ${ }^{\dagger} \quad$ M. Rosenthal

March 7, 2009

Abstract

A k-dimensional hypertree X is a k-dimensional complex on n vertices with a full $(k-1)$-dimensional skeleton and $\binom{n-1}{k}$ facets such that $H_{k}(X ; \mathbb{Q})=0$. Here we introduce the following family of simplicial complexes. Let n, k be integers with $k+1$ and n relatively prime, and let A be a $(k+1)$-element subset of the cyclic group \mathbb{Z}_{n}. The sum complex X_{A} is the pure k-dimensional complex on the vertex set \mathbb{Z}_{n} whose facets are $\sigma \subset \mathbb{Z}_{n}$ such that $|\sigma|=k+1$ and $\sum_{x \in \sigma} x \in A$. It is shown that if n is prime then the complex X_{A} is a k-hypertree for every choice of A. On the other hand, for n prime X_{A} is k-collapsible iff A is an arithmetic progression in \mathbb{Z}_{n}.

1 Introduction

What is the high-dimensional analogue of a tree? Several approaches to this question can be found in the literature. Here we follow the lead of Kalai [1]. We start with some standard notations. All simplicial complexes we consider X have n vertices, and we always identify the vertex set of X with the cyclic group \mathbb{Z}_{n}. The number of i-dimensional faces of X is denoted by $f_{i}(X)$. We denote by Δ_{n-1} the ($n-1$)-simplex on the vertex set \mathbb{Z}_{n} and by $\Delta_{n-1}^{(i)}$ the i-dimensional skeleton of Δ_{n-1}. A k-hypertree is a simplicial complex $\Delta_{n-1}^{(k-1)} \subset X \subset \Delta_{n-1}^{(k)}$ such that $f_{k}(X)=\binom{n-1}{k}$ and with a vanishing

[^0]

Figure 1
k-th rational homology $H_{k}(X ; \mathbb{Q})=0$. Throughout the paper we assume that $k+1$ is coprime to n. For $a \in \mathbb{Z}_{n}$, let X_{a} be the following collection of subsets of \mathbb{Z}_{n} :

$$
X_{a}=\left\{\sigma \subset \mathbb{Z}_{n}:|\sigma|=k+1, \quad \sum_{x \in \sigma} x=a\right\}
$$

For a subset $A \subset \mathbb{Z}_{n}$ of cardinality $k+1$, define the Sum Complex X_{A} by

$$
X_{A}=\Delta_{n-1}^{(k-1)} \cup\left(\cup_{a \in A} X_{a}\right)
$$

Example: Let $n=7, k=2$ and $A=\{0,1,3\} \subset \mathbb{Z}_{7}$. The 2-dimensional complex X_{A} (figure 1b) is obtained from the standard 6-point triangulation of the real projective plane $\mathbb{R P}^{2}$ on the vertices $\{0,1,3,4,5,6\}$ (figure 1a) by replacing the face $\{0,1,5\}$ with the three faces $\{0,1,2\},\{0,2,5\},\{1,2,5\}$, and adding the faces $\{2,3,5\},\{0,2,6\}$ and $\{1,2,4\} . X_{A}$ is clearly homotopy equivalent to $\mathbb{R P}^{2}$.

In this paper we are concerned with topological and combinatorial properties of X_{A}. Let \mathbb{F} be a field and let $h_{i}\left(X_{A} ; \mathbb{F}\right)=\operatorname{dim}_{\mathbb{F}} H_{i}\left(X_{A} ; \mathbb{F}\right)$. Since $X_{A} \supset \Delta_{n-1}^{(k-1)}$ it follows that $h_{0}\left(X_{A} ; \mathbb{F}\right)=1$ and $h_{i}\left(X_{A} ; \mathbb{F}\right)=0$ for $1 \leq$ $i \leq k-2$. Since $k+1$ is coprime to n, it follows that for any $y \in \mathbb{Z}_{n}$,
the number of $\sigma \subset \mathbb{Z}_{n}$ of cardinality $k+1$ that satisfy $\sum_{x \in \sigma} x=y$ is $\frac{1}{n}\binom{n}{k+1}$. Therefore $f_{k}\left(X_{A}\right)=\frac{k+1}{n}\binom{n}{k+1}=\binom{n-1}{k}$. The Euler-Poincaré relation $\sum_{i \geq 0}(-1)^{i} f_{i}\left(X_{A}\right)=\sum_{i \geq 0}(-1)^{i} h_{i}\left(X_{A} ; \mathbb{F}\right)$ then implies that $h_{k-1}\left(X_{A} ; \mathbb{F}\right)=$ $h_{k}\left(X_{A} ; \mathbb{F}\right)$. In the sequel we assume that the characteristic of \mathbb{F} does not divide n.

Let ω be a fixed primitive n-th root of unity in the algebraic closure $\overline{\mathbb{F}}$. For $x \in \mathbb{Z}_{n}$ let $e(x)=\omega^{x}$. The $n \times n$ Fourier matrix M over $\overline{\mathbb{F}}$ is given by $M(u, v)=e(-u v)$ for $u, v \in \mathbb{Z}_{n}$. For a subset $B \subset \mathbb{Z}_{n}$ of cardinality $k+1$ let $M_{A, B}$ denote the $(k+1) \times(k+1)$ submatrix of M determined by A and B. Let $\mathcal{B}_{n, k}$ denote the family of all $(k+1)$-element subsets of \mathbb{Z}_{n} that contain 0.

Theorem 1.1.

$$
\begin{equation*}
h_{k-1}\left(X_{A} ; \mathbb{F}\right)=h_{k}\left(X_{A} ; \mathbb{F}\right)=\frac{1}{k+1} \sum_{B \in \mathcal{B}_{n, k}} \operatorname{dim} \operatorname{ker} M_{A, B} \tag{1}
\end{equation*}
$$

The Fourier transform matrix $M=\left(M_{u v}\right)$ of \mathbb{Z}_{n} over $\overline{\mathbb{Q}}=\mathbb{C}$ is given by $M_{u v}=\exp (-2 \pi i u v / n)$. A classical result of Chebotarëv (see e.g. [3]) asserts that if n is prime then any square submatrix of M is nonsingular. Theorem 1.1 therefore implies

Corollary 1.2. If n is prime then X_{A} is a k-hypertree.
If A is an arithmetic progression in \mathbb{Z}_{n} then $M_{A, B}$ is a Vandermonde matrix for all $B \in \mathcal{B}_{n, k}$. Hence, by Theorem 1.1, X_{A} is \mathbb{F}-acyclic for any \mathbb{F} whose characteristic is coprime to n. More is in fact true. Let σ be a face of dimension at most $k-1$ of a simplicial complex X which is contained in a unique maximal face τ of X, and let $[\sigma, \tau]=\{\eta: \sigma \subset \eta \subset \tau\}$. The operation $X \rightarrow Y=X-[\sigma, \tau]$ is called an elementary k-collapse. X is k-collapsible if there exists a sequence of elementary k-collapses

$$
X=X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{m}=\{\emptyset\} .
$$

Note that if $\Delta_{n-1}^{(k-1)} \subset X \subset \Delta_{n-1}^{(k)}$ is k-collapsible and $f_{k}(X)=\binom{n-1}{k}$, then X is \mathbb{Z}-acyclic.

Theorem 1.3. Let n be a prime and let A be a subset of \mathbb{Z}_{n} of cardinality $k+1$. Then X_{A} is k-collapsible iff A is an arithmetic progression in \mathbb{Z}_{n}.

Theorems 1.1 and 1.3 are proved in Sections 2 and 3. In Section 4 we compute the homology of X_{A} for $A=\{0,1,3\}$. We conclude in Section 5 with some remarks concerning possible extensions and open problems.

2 Homology of X_{A}

We first recall some topological terminology (see e.g. [2]). Let X be a finite simplicial complex on the vertex set V. For a set S and a field \mathbb{K}, let $\mathcal{L}(S, \mathbb{K})$ denote the \mathbb{K}-linear space of all \mathbb{K}-valued functions on S. The space $C^{m}(X ; \mathbb{K})$ of \mathbb{K}-valued m-cochains of X consists of all functions $\phi \in \mathcal{L}\left(V^{m+1}, \mathbb{K}\right)$ such that $\phi\left(v_{0}, \ldots, v_{m}\right)=\operatorname{sgn}(\pi) \phi\left(v_{\pi(0)}, \ldots, v_{\pi(m)}\right)$ for any permutation π on $\{0, \ldots, m\}$, and such that $\phi\left(v_{0}, \ldots, v_{m}\right)=0$ if $\left\{v_{0}, \ldots, v_{m}\right\}$ is not an m-dimensional simplex of X. (In particular, $\phi\left(v_{0}, \ldots, v_{m}\right)=0$ if $v_{i}=v_{j}$ for some $i \neq j$.) The coboundary operator $d_{m}: C^{m}(X ; \mathbb{K}) \rightarrow$ $C^{m+1}(X ; \mathbb{K})$ is given by

$$
d_{m} \phi\left(v_{0}, \ldots, v_{m+1}\right)=\sum_{i=0}^{m+1}(-1)^{i} \phi\left(v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{m+1}\right)
$$

Let $Z^{m}(X ; \mathbb{K})=\operatorname{ker} d_{m}$ denote the space of m-cocycles of X over \mathbb{K} and let $B^{m}(X ; \mathbb{K})=\operatorname{Im} d_{m-1}$ denote the space of m-coboundaries of X over \mathbb{K}. The m-dimensional cohomology space of X with coefficients in \mathbb{K} is

$$
H^{m}(X ; \mathbb{K})=\frac{Z^{m}(X ; \mathbb{K})}{B^{m}(X ; \mathbb{K})}
$$

Let $h^{m}(X, \mathbb{K})=\operatorname{dim}_{\mathbb{K}} H^{m}(X ; \mathbb{K})$. Then $h^{m}(X, \mathbb{K})=h^{m}(X, \mathbb{F})=h_{m}(X ; \mathbb{F})$ for any algebraic extension \mathbb{K} of \mathbb{F}. In order to establish Theorem 1.1 we may therefore assume that \mathbb{F} already contains a primitive n-th root of unity ω.

The Fourier transform of a function $\phi \in \mathcal{L}\left(\mathbb{Z}_{n}^{k} ; \mathbb{F}\right)$ is the function $\mathcal{F}(\phi)=$ $\widehat{\phi} \in \mathcal{L}\left(\mathbb{Z}_{n}^{k} ; \mathbb{F}\right)$ given by

$$
\widehat{\phi}\left(u_{1}, \ldots, u_{k}\right)=\sum_{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}_{n}^{k}} \phi\left(x_{1}, \ldots, x_{k}\right) e\left(-\sum_{j=1}^{k} u_{j} x_{j}\right) .
$$

The Fourier transform is an automorphism of $\mathcal{L}\left(\mathbb{Z}_{n}^{k} ; \mathbb{F}\right)$.
The proof of Theorem 1.1 involves computing the image of $H^{k-1}(X ; \mathbb{F})$ under the Fourier transform. We first consider the Fourier image of the ($k-1$)-coboundaries.

Claim 2.1.

$$
\mathcal{F}\left(B^{k-1}\left(X_{A} ; \mathbb{F}\right)\right)=\left\{g \in C^{k-1}\left(X_{A} ; \mathbb{F}\right): \operatorname{support}(g) \subset \mathbb{Z}_{n}^{k}-\left(\mathbb{Z}_{n}-\{0\}\right)^{k}\right\}
$$

Proof: Let $\psi \in C^{k-2}\left(X_{A} ; \mathbb{F}\right)$. Then

$$
\begin{gathered}
\widehat{d_{k-2} \psi}\left(u_{1}, \ldots, u_{k}\right)=\sum_{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}_{n}^{k}} d_{k-2} \psi\left(x_{1}, \ldots, x_{k}\right) e\left(-\sum_{j=1}^{k} u_{j} x_{j}\right)= \\
\sum_{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}_{n}^{k}}\left(\sum_{i=1}^{k}(-1)^{i+1} \psi\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{k}\right)\right) e\left(-\sum_{j=1}^{k} u_{j} x_{j}\right)= \\
\sum_{i=1}^{k}(-1)^{i+1} \sum_{x_{i}} e\left(-u_{i} x_{i}\right) \sum_{x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{k}} \psi\left(x_{1}, \ldots, \hat{x_{i}}, \ldots, x_{k}\right) e\left(-\sum_{j \neq i} u_{j} x_{j}\right)= \\
n \sum_{i=1}^{k}(-1)^{i+1} \delta\left(0, u_{i}\right) \sum_{x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{k}} \psi\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{k}\right) e\left(-\sum_{j \neq i} u_{j} x_{j}\right)
\end{gathered}
$$

where $\delta\left(0, u_{i}\right)=1$ if $u_{i}=0$ and is zero otherwise. Therefore

$$
\mathcal{F}\left(B^{k-1}\left(X_{A} ; \mathbb{F}\right)\right) \subset\left\{g \in C^{k-1}\left(X_{A} ; \mathbb{F}\right): \text { support }(g) \subset \mathbb{Z}_{n}^{k}-\left(\mathbb{Z}_{n}-\{0\}\right)^{k}\right\}
$$

Equality follows since both spaces have dimension $\binom{n-1}{k-1}$ over \mathbb{F}.

We next study the Fourier image of the $(k-1)$-cocycles of X_{A}. Fix a $\phi \in C^{k-1}\left(X_{A} ; \mathbb{F}\right)$. For $a \in \mathbb{Z}_{n}$ define a function $f_{a} \in \mathcal{L}\left(\mathbb{Z}_{n}^{k} ; \mathbb{F}\right)$ by

$$
\begin{gathered}
f_{a}\left(x_{1}, \ldots, x_{k}\right)=d_{k-1} \phi\left(a-\sum_{i=1}^{k} x_{i}, x_{1}, \ldots, x_{k}\right)= \\
\phi\left(x_{1}, \ldots, x_{k}\right)+\sum_{i=1}^{k}(-1)^{i} \phi\left(a-\sum_{j=1}^{k} x_{j}, x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{k}\right) .
\end{gathered}
$$

Let T be the automorphism of \mathbb{Z}_{n}^{k} given by

$$
T\left(u_{1}, \ldots, u_{k}\right)=\left(u_{2}-u_{1}, \ldots, u_{k}-u_{1},-u_{1}\right)
$$

Then $T^{k+1}=I$ and for $1 \leq i \leq k$

$$
T^{i}\left(u_{1}, \ldots, u_{k}\right)=\left(u_{i+1}-u_{i}, \ldots, u_{k}-u_{i},-u_{i}, u_{1}-u_{i}, \ldots, u_{i-1}-u_{i}\right)
$$

Claim 2.2. Let $u=\left(u_{1}, \ldots, u_{k}\right) \in \mathbb{Z}_{n}^{k}$. Then

$$
\begin{equation*}
\widehat{f}_{a}(u)=\widehat{\phi}(u)+\sum_{i=1}^{k}(-1)^{k i} e\left(-u_{i} a\right) \widehat{\phi}\left(T^{i} u\right) \tag{2}
\end{equation*}
$$

Proof: For $1 \leq i \leq k$ let $\psi_{i} \in \mathcal{L}\left(\mathbb{Z}_{n}^{k}, \mathbb{F}\right)$ be given by

$$
\psi_{i}\left(x_{1}, \ldots, x_{k}\right)=\phi\left(a-\sum_{j=1}^{k} x_{j}, x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{k}\right)
$$

Then

$$
\widehat{\psi}_{i}(u)=\sum_{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}_{n}^{k}} \phi\left(a-\sum_{j=1}^{k} x_{j}, x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{k}\right) e\left(-\sum_{j=1}^{k} u_{j} x_{j}\right) .
$$

Substituting

$$
y_{j}= \begin{cases}a-\sum_{\ell=1}^{k} x_{\ell} & j=1 \\ x_{j-1} & 2 \leq j \leq i \\ x_{j} & i+1 \leq j \leq k\end{cases}
$$

it follows that

$$
\sum_{j=1}^{k} u_{j} x_{j}=\left(a-y_{1}\right) u_{i}+\sum_{j=2}^{i}\left(u_{j-1}-u_{i}\right) y_{j}+\sum_{j=i+1}^{k}\left(u_{j}-u_{i}\right) y_{j}
$$

Therefore

$$
\begin{gather*}
\widehat{\psi}_{i}(u)=e\left(-u_{i} a\right) \sum_{y=\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{Z}_{n}^{k}} \phi(y) e\left(u_{i} y_{1}-\sum_{j=2}^{i}\left(u_{j-1}-u_{i}\right) y_{j}-\sum_{j=i+1}^{k}\left(u_{j}-u_{i}\right) y_{j}\right)= \\
e\left(-u_{i} a\right) \widehat{\phi}\left(-u_{i}, u_{1}-u_{i}, \ldots, u_{i-1}-u_{i}, u_{i+1}-u_{i}, \ldots, u_{k}-u_{i}\right)= \\
e\left(-u_{i} a\right)(-1)^{i(k-i)} \widehat{\phi}\left(T^{i} u\right) \tag{3}
\end{gather*}
$$

Now (2) follows from (3) since $f_{a}=\phi+\sum_{i=1}^{k}(-1)^{i} \psi_{i}$.

For $u \in \mathbb{Z}_{n}^{k}$ let $E_{u}=\left\{T^{i} u: 0 \leq i \leq k\right\}$ and let

$$
\begin{equation*}
L_{u}=\bigcap_{a \in A}\left\{g \in \mathcal{L}\left(E_{u}, \mathbb{F}\right): g(u)+\sum_{i=1}^{k}(-1)^{k i} e\left(-u_{i} a\right) g\left(T^{i} u\right)=0\right\} \tag{4}
\end{equation*}
$$

Let $\phi \in Z^{k-1}\left(X_{A} ; \mathbb{F}\right)$. Then for all $a \in A$ and $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}_{n}^{k}$

$$
f_{a}\left(x_{1}, \ldots, x_{k}\right)=d_{k-1} \phi\left(a-\sum_{i=1}^{k} x_{i}, x_{1}, \ldots, x_{k}\right)=0 .
$$

Eqn. (2) then implies that for all $a \in A$ and $u \in \mathbb{Z}_{n}^{k}$

$$
\widehat{\phi}(u)+\sum_{i=1}^{k}(-1)^{k i} e\left(-u_{i} a\right) \widehat{\phi}\left(T^{i} u\right)=0
$$

Writing $\widehat{\phi}_{\mid E_{u}}$ for the restriction of $\widehat{\phi}$ to E_{u} we obtain
Corollary 2.3. Let $\phi \in C^{k-1}\left(X_{A} ; \mathbb{F}\right)$. Then $\phi \in Z^{k-1}\left(X_{A} ; \mathbb{F}\right)$ iff $\widehat{\phi}_{\mid E_{u}} \in L_{u}$ for all $u \in \mathbb{Z}_{n}^{k}$.

Let the symmetric group S_{k} act on \mathbb{Z}_{n}^{k} by

$$
\sigma\left(\left(u_{1}, \ldots, u_{k}\right)\right)=\left(u_{\sigma^{-1}(1)}, \ldots, u_{\sigma^{-1}(k)}\right)
$$

and let $G_{n, k}$ denote the subgroup of $\operatorname{Aut}\left(\mathbb{Z}_{n}^{k}\right)$ generated by T and S_{k}. The subset

$$
D_{n, k}=\left\{\left(u_{1}, \ldots, u_{k}\right) \in\left(\mathbb{Z}_{n}-\{0\}\right)^{k}: u_{i} \neq u_{j} \text { for } i \neq j\right\}
$$

is clearly invariant under $G_{n, k}$.
Claim 2.4.
(i) Let $\sigma \in S_{k}$ and $1 \leq i \leq k$. Then $\eta=T^{i} \sigma T^{-\sigma^{-1}(i)} \in S_{k}$ and $\operatorname{sgn}(\eta)=$ $(-1)^{k\left(i+\sigma^{-1}(i)\right)} \operatorname{sgn}(\sigma)$.
(ii) Any element of $G_{n, k}$ can be written uniquely as σT^{i} where $\sigma \in S_{k}$ and $0 \leq i \leq k . G_{n, k}$ acts freely on $D_{n, k}$.
(iii) $L_{u}=L_{T^{j} u}$ for all $u \in D_{n, k}$ and $0 \leq j \leq k$.

Proof: (i) For $1 \leq \ell \leq k$ let $\tau_{\ell} \in S_{k}$ be given by

$$
\tau_{\ell}(i)= \begin{cases}k-\ell+1+i & 1 \leq i \leq \ell-1 \\ k-\ell+1 & i=\ell \\ i-\ell & \ell+1 \leq i \leq k\end{cases}
$$

It can be checked that

$$
\eta=T^{i} \sigma T^{-\sigma^{-1}(i)}=\tau_{k-i+1}^{-1} \sigma \tau_{k-\sigma^{-1}(i)+1}
$$

Noting that $\operatorname{sgn}\left(\tau_{\ell}\right)=(-1)^{k \ell+1}$ it thus follows that

$$
\operatorname{sgn}(\eta)=\operatorname{sgn}(\sigma) \operatorname{sgn}\left(\tau_{k-i+1}\right) \operatorname{sgn}\left(\tau_{k-\sigma^{-1}(i)+1}\right)=(-1)^{k\left(i+\sigma^{-1}(i)\right)} \operatorname{sgn}(\sigma)
$$

(ii) It follows from (i) that

$$
G_{n, k}=\left\{\sigma T^{i}: \sigma \in S_{k}, 0 \leq i \leq k\right\}
$$

Let $u=\left(u_{1}, \ldots, u_{k}\right) \in D_{n, k}$ and let $v=\left(v_{1}, \ldots, v_{k}\right)=\sigma T^{i} u$. If $i \neq 0$ then

$$
\sum_{j=1}^{k} v_{j}=\sum_{j=1}^{k} u_{j}-(k+1) u_{i} \neq \sum_{j=1}^{k} u_{j}
$$

and therefore $\sigma T^{i} u \neq u$. It follows that $G_{n, k}$ acts freely on $D_{n, k}$ and that the representation of an element of $G_{n, k}$ as σT^{i} is unique.
(iii) Let $g \in L_{u}$ and $a \in A$. Then

$$
\begin{gather*}
g\left(T^{j} u\right)+\sum_{i=1}^{k}(-1)^{i k} e\left(-\left(T^{j} u\right)_{i} a\right) g\left(T^{i+j} u\right)= \\
g\left(T^{j} u\right)+\sum_{i=1}^{k-j}(-1)^{i k} e\left(-\left(u_{i+j}-u_{j}\right) a\right) g\left(T^{i+j} u\right)+ \\
(-1)^{(k-j+1) k} e\left(u_{j} a\right) g(u)+\sum_{i=k-j+2}^{k}(-1)^{i k} e\left(-\left(u_{i-k+j-1}-u_{j}\right) a\right) g\left(T^{i+j} u\right)= \\
(-1)^{j k} e\left(u_{j} a\right)\left(g(u)+\sum_{i=1}^{k}(-1)^{i k} e\left(-u_{i} a\right) g\left(T^{i} u\right)\right)=0 . \tag{5}
\end{gather*}
$$

Hence $g \in L_{T^{j} u}$.

Proof of Theorem 1.1: Let $R \subset D_{n, k}$ be a fixed set of representatives of the orbits of $G_{n, k}$ on $D_{n, k}$. Then $|R|=\frac{\left|D_{n, k}\right|}{\left|G_{n, k}\right|}=\frac{1}{k+1}\binom{n-1}{k}$. Consider the mapping

$$
\Theta: Z^{k-1}\left(X_{A} ; \mathbb{F}\right) \rightarrow \bigoplus_{u \in R} L_{u}
$$

given by

$$
\Theta(\phi)=\left(\widehat{\phi}_{\mid E_{u}}: u \in R\right) .
$$

Claim 2.5.

$$
\operatorname{ker} \Theta=B^{k-1}\left(X_{A} ; \mathbb{F}\right)
$$

Proof:

$$
\begin{gathered}
\operatorname{ker} \Theta=\left\{\phi \in Z^{k-1}\left(X_{A} ; \mathbb{F}\right): \widehat{\phi}_{\mid E_{u}}=0 \text { for all } u \in R\right\}= \\
\left\{\phi \in Z^{k-1}\left(X_{A} ; \mathbb{F}\right): \widehat{\phi}(u)=0 \text { for all } u \in D_{n, k}\right\}=B^{k-1}\left(X_{A} ; \mathbb{F}\right)
\end{gathered}
$$

by Claim 2.1.

Claim 2.6. Θ is surjective.
Proof: Let $\left(g_{u}: u \in R\right) \in \bigoplus_{u \in R} L_{u}$. Define $g \in C^{k-1}\left(X_{A} ; \mathbb{F}\right)$ by

$$
g(v)= \begin{cases}0 & v \notin D_{n, k} \\ \operatorname{sgn}(\sigma) g_{u}\left(T^{j} u\right) & v=\sigma T^{j} u \text { where } u \in R .\end{cases}
$$

Clearly $\Theta\left(\mathcal{F}^{-1}(g)\right)=\left(g_{u}: u \in R\right)$. To show that $\mathcal{F}^{-1}(g) \in Z^{k-1}\left(X_{A} ; \mathbb{F}\right)$ it suffices by Corollary 2.3 to check that $g \in L_{v}$ for all $v \in \mathbb{Z}_{n}^{k}$. If $v \notin D_{n, k}$ then $g_{\mid E_{v}}=0$. Suppose then that $v=\sigma T^{j} u \in D_{n, k}$ where $u \in R$ and $0 \leq j \leq k$. Combining Claim 2.4(i) and Eq. (5) it follows that

$$
\begin{gathered}
g(v)+\sum_{i=1}^{k}(-1)^{i k} e\left(-v_{i} a\right) g\left(T^{i} v\right)= \\
g\left(\sigma T^{j} u\right)+\sum_{i=1}^{k}(-1)^{i k} e\left(-\left(\sigma T^{j} u\right)_{i} a\right) g\left(T^{i} \sigma T^{j} u\right)=
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{sgn}(\sigma) g_{u}\left(T^{j} u\right)+\sum_{i=1}^{k}(-1)^{i k} e\left(-\left(T^{j} u\right)_{\sigma^{-1}(i)} a\right)(-1)^{k\left(i+\sigma^{-1}(i)\right)} \operatorname{sgn}(\sigma) g_{u}\left(T^{\sigma^{-1}(i)+j} u\right)= \\
\operatorname{sgn}(\sigma)\left(g_{u}\left(T^{j} u\right)+\sum_{i=1}^{k}(-1)^{i k} e\left(-\left(T^{j} u\right)_{i} a\right) g_{u}\left(T^{i+j} u\right)\right)= \\
=(-1)^{j k} \operatorname{sgn}(\sigma) e\left(u_{j} a\right)\left(g_{u}(u)+\sum_{i=1}^{k}(-1)^{i k} e\left(-u_{i} a\right) g_{u}\left(T^{i} u\right)\right)=0 .
\end{gathered}
$$

Claims 2.5 and 2.6 imply that

$$
\begin{equation*}
H^{k-1}\left(X_{A}, \mathbb{F}\right) \cong \bigoplus_{u \in R} L_{u} \tag{6}
\end{equation*}
$$

For $u=\left(u_{1}, \ldots, u_{k}\right) \in D_{n, k}$ let $B_{u}=\left\{0, u_{1}, \ldots, u_{k}\right\}$. Then $\operatorname{dim} L_{u}=$ $\operatorname{dim} \operatorname{ker} M_{A, B_{u}}$. Combining (6) with Claim 2.4(iii) it thus follows that

$$
\begin{gathered}
h^{k-1}\left(X_{A} ; \mathbb{F}\right)=\sum_{u \in R} \operatorname{dim} L_{u}= \\
\frac{1}{k+1} \sum_{u \in R} \sum_{j=0}^{k} \operatorname{dim} L_{T^{j} u}=\frac{1}{k+1} \sum_{B \in \mathcal{B}_{n, k}} \operatorname{dim} \operatorname{ker} M_{A, B} .
\end{gathered}
$$

3 When is X_{A} collapsible?

In this section we prove Theorem 1.3, so that in this section n is prime. We find it convenient to maintain the vertices in a face sorted according to the order induced from \mathbb{N}, and also refer to subsets of \mathbb{F}_{n} as sorted vectors and not only as sets.

3.1 Equivalence

Let $\phi: \mathbb{F}_{n} \rightarrow \mathbb{F}_{n}$ be the linear map $\phi(x)=\alpha x+\beta$. It is clear that the image of X_{a} under ϕ is X_{t} where $t=\alpha a+(k+1) \beta$. We say that the complexes $X_{a_{0}, \ldots, a_{k}}$ and $X_{b_{0}, \ldots, b_{k}}$ are equivalent iff there exist a permutation π on $\left\{b_{0}, \ldots, b_{k}\right\}$ and α, β s.t. $\pi\left(b_{i}\right)=\alpha a_{i}+(k+1) \beta$ for every $0 \leq i \leq k$. Equivalent complexes are clearly isomorphic.

It is an easy observation that a_{0}, \ldots, a_{k} is an arithmetic progression iff $X_{a_{0}, \ldots, a_{k}}$ is equivalent to the complex $X_{0, \ldots, k}$. We show that $X=X_{0, \ldots, k}$ is collapsible whence $X_{a_{0}, \ldots, a_{k}}$ is collapsible for a_{0}, \ldots, a_{k} an arithmetic progression.

3.2 Proof of sufficiency

To show that X is collapsible we introduce an order \prec_{R} by which we remove the k-faces from X. We need first some preliminary definitions. With every k face $u \in X$ we associate a vector $h(u)$ of dimension $\left\lceil\frac{k}{2}\right\rceil$. The i-th coordinate in h counts how many integers in the interval $\left[u_{i}, u_{k-i}\right]$ do not belong to $\left\{u_{i}, \ldots, u_{k-i}\right\}$. Namely, the i-th coordinate of $h(u)$ is:

$$
h_{i}(u):=u_{k-i}-u_{i}-(k-2 i)
$$

Clearly $h_{i}(u)$ is non-increasing in i. For every two k-faces $u, v \in X$ we say that $u \prec_{L} v$ if $h(u)$ is lexicographically smaller than $h(v)$. When $h(u)=h(v)$ we say that $u \equiv_{L} v$. It should be clear that h is invariant under set reversal i.e. $x \rightarrow n-x$. It is also invariant under shifts that "do not overflow" in the obvious sense, but we will not be using this fact. If $u \not 三_{L} v$ for some $u, v \in X$, we denote by $\delta_{L}(u, v)$ the first index for which $h(u)$ and $h(v)$ differ. Thus if $u \prec_{L} v$ and $\delta_{L}(u, v)=i$ then $h_{j}(u)=h_{j}(v)$ for all $j<i$ and $h_{i}(u)<h_{i}(v)$. For $i, j \in \mathbb{F}_{n}$ it is convenient to define $\rho(i, j)$ as $i-j$ if $i>j$ and as $j-i$ otherwise. This is extended as usual to: $\rho(i, A)=\min \{\rho(i, a) \mid a \in A\}$ and $\rho(A, B)=\min \{\rho(a, b) \mid a \in A, b \in B\}$.
If $u \in X_{i}$ and $v \in X_{j}$ we say that $u \prec_{I} v$ if i is closer than j to $\{0, k\}$, i.e., if $\rho(i,\{0, k\})<\rho(j,\{0, k\})$. We say that $u \equiv_{I} v$ when $\rho(i,\{0, k\})=\rho(j,\{0, k\})$, namely, $i=j$ or $i=k-j$. Letting $i^{\prime}=\rho(i,\{0, k\})$, it is clear that $u \prec_{I} v$ iff $i^{\prime}<j^{\prime}$. If $u \not \equiv_{I} v$, we denote by $\delta_{I}(u, v)=\min \left\{i^{\prime}, j^{\prime}\right\}=\rho(\{i, j\},\{0, k\})$.

We are now ready to define the relation \prec_{R}. This is done in terms of the relations \prec_{L} and \prec_{I}. To begin, $u \equiv_{R} v$ iff $u \equiv_{L} v$ and $u \equiv_{I} v$. If $u \preceq_{L} v$ and $u \preceq_{I} v$ and at least one inequality is proper, then $u \prec_{R} v$. Finally,
when $u \prec_{L} v$ and $u \succ_{I} v$, the order \prec_{R} is determined according to the smaller of $\delta_{I}(u, v), \delta_{L}(u, v)$. Namely, if $\delta_{I}(u, v)<\delta_{L}(u, v)$ then $u \succ_{R} v$ and if $\delta_{I}(u, v) \geq \delta_{L}(u, v)$ then $u \prec_{R} v$.
To sum up, for $u, v \in X$:

1. If $u \equiv_{I} v$ and $u \equiv_{L} v$ then $u \equiv_{R} v$.
2. If $u \equiv_{I} v$ and $u \prec_{L} v$ then $u \prec_{R} v$.
3. If $u \prec_{I} v$, then $u \prec_{R} v$ unless
(a) $u \succ_{L} v$ and
(b) $\delta_{L}(u, v) \leq \delta_{I}(u, v)$

In which case $u \succ_{R} v$.
To clarify this definitions a little bit more, we present an example from the complex $X_{0,1,2,3}$ over \mathbb{F}_{7}. Let $u=\{0,1,2,5\}, v=\{1,2,5,6\}$. The set u has two missing integers between 0 and 5 and no missing integers between 1 and 2 , hence $h(u)=h(\{0,1,2,5\})=(2,0)$. Similarly $h(v)=h(\{1,2,5,6\})=$ $(2,2)$. Also, $u \prec_{L} v$ because $(2,0)$ is lexicographically smaller than $(2,2)$. Furthermore, $\delta_{L}(u, v)=1$ because the first coordinate the vectors differ is the second coordinate (and we start indexing coordinates from zero). Now $u \in X_{1}$ since $0+1+2+5 \equiv 1 \bmod 7$. Similarly $v \in X_{0}$. We next calculate that $1^{\prime}=1=\rho(1,\{0,7\})$ and $0^{\prime}=0$. Hence $v \prec_{I} u$ because $0^{\prime}<1^{\prime}$, and $\delta_{I}(u, v)=\min \{0,1\}=0$. To recap, $u \prec_{L} v$ and $v \prec_{I} u$, so we turn to compare $0=\delta_{I}(u, v)<\delta_{L}(u, v)=1$, it follows that in this case the order R is determined by I, hence $\{0,1,2,5\}=u \succ_{R} v=\{1,2,5,6\}$. A full description of the order R on $X_{0,1,2,3}$ over \mathbb{F}_{7} is shown in Figure 2 and Figure 3:

A few words are in order about Figure 2. The rows are sorted by the lexicographic order of $h(\cdot)$. The columns on the right include all facets of X sorted by value of i^{\prime}. Note that for each value of h and each i^{\prime} there are two facets that attain this pair of values. The leftmost column gives the value of $\delta_{L}(x, y)$ for every two consecutive lines in the table.

We now turn to show that X can indeed be collapsed in the order \prec_{R}. That is, for every $x \in X$ it is possible to apply an elementary collapse step to x if all the \prec_{R}-predecessors of x have already been collapsed. In order to show this, we need to point out an free $(k-1)$-face that is contained in x. What we will show is that for $x \in X_{a}$, the face $\hat{x}:=x \backslash\left\{x_{a}\right\}$ is free. (Note

Figure 2: $X_{0,1,2,3}$ parameters over \mathbb{F}_{7}

$\delta_{L}(x, y)$	$h(x)$	$i^{\prime}=0$	$i^{\prime}=1$
0	$(0,0)$	$\{2,3,4,5\},\{1,2,3,4\}$	
1	$(1,0)$	$\{0,1,2,4\},\{2,4,5,6\}$	$\{2,3,4,6\},\{0,2,3,4\}$
0	$(1,1)$		$\{0,1,3,4\},\{2,3,5,6\}$
1	$(2,0)$	$\{1,3,4,6\},\{0,2,3,5\}$	$\{0,1,2,5\},\{1,4,5,6\}$
1	$(2,1)$		$\{1,3,5,6\},\{0,1,3,5\}$
0	$(2,2)$	$\{1,2,5,6\},\{0,1,4,5\}$	
1	$(3,0)$		$\{0,4,5,6\},\{0,1,2,6\}$
	$(3,1)$	$\{0,3,5,6\},\{0,1,3,6\}$	

that since $x \in X=X_{0, \ldots, k}$, there indeed must exist some $a \in\{0, \ldots, k\}$ s.t. $x \in X_{a}$). It may be helpful to mention that a plays a double role here. It is an index in the vector x as well as the sum of the elements of x. Being free means that all the k-faces containing \hat{x}, precede x in the order \prec_{R}. A k-face that contains \hat{x} has the form $y^{(b)}:=\hat{x} \cup\left\{x_{a}+(b-a)\right\}$ with $0 \leq b \leq k$ and $b \neq a$. Clearly, $y^{(b)}$ is a k-face in X iff $x_{a}+(b-a) \notin \hat{x}$. Also, in this case $y^{(b)} \in X_{b}$, as we assume below.

The proof that $y^{(b)} \prec_{R} x$ has two cases:

1. We first consider the case where $y^{(b)} \succeq_{I} x$. Since $y^{(b)} \in X_{b}$ and $x \in X_{a}$, the meaning of $y^{(b)} \succeq_{I} x$ is that $b^{\prime} \geq a^{\prime}$. Therefore $\delta_{I}\left(y^{(b)}, x\right)$ which is the smaller of a^{\prime} and b^{\prime} equals a^{\prime}. This means that b lies between a and $k-a$ (whether a or $k-a$ is bigger is immaterial here).

- Consequently, $x_{a}+(b-a)$ is in the interval $\left[x_{a^{\prime}}, x_{k-a^{\prime}}\right]$. It follows that the first and last $a^{\prime}-1$ elements of x and $y^{(b)}$ are identical. In particular, $h_{i}\left(y^{(b)}\right)=h_{i}(x)$ for $i<a^{\prime}$.
- We recall that $y^{(b)}$ is created by removing x_{a} from x and replacing it by the term $x_{a}+(b-a)$. Thus the interval $\left[y_{a^{\prime}}^{(b)}, y_{k-a^{\prime}}^{(b)}\right]$ is shorter than $\left[x_{a^{\prime}}, x_{k-a^{\prime}}\right]$. It follows that the first coordinate where $h\left(y^{(b)}\right)$

Figure 3: The order of collapse determined by \prec_{R}

and $h(x)$ differ is the a^{\prime}-th coordinate, where $h_{a^{\prime}}\left(y^{(b)}\right)<h_{a^{\prime}}(x)$. Consequently, $y^{(b)} \prec_{L} x$ and $a^{\prime}=\delta_{L}\left(y^{(b)}, x\right)$.

- If $y^{(b)} \equiv_{I} x$ then we are done, because we already know that $y^{(b)} \prec_{L} x$. By definition of \prec_{R} this yields the desired conclusion $y^{(b)} \prec_{R} x$.
- If $y^{(b)} \succ_{I} x$ then from the previous points we conclude that $a^{\prime}=$ $\delta_{L}\left(y^{(b)}, x\right)=\delta_{I}\left(y^{(b)}, x\right)$. To sum up, $y^{(b)} \prec_{L} x$ and $\delta_{L}\left(y^{(b)}, x\right)=$ $\delta_{I}\left(y^{(b)}, x\right)$, which yields by definition, $y^{(b)} \prec_{R} x$, as claimed.

2. Now consider the case $y^{(b)} \prec_{I} x$. This means that $b^{\prime}<a^{\prime}$. Therefore $b^{\prime}=\delta_{I}\left(y^{(b)}, x\right)$. Consequently b does not lie between a and $k-a$.

- It follows that $x_{a}+(b-a) \in\left[x_{b^{\prime}}, x_{k-b^{\prime}}\right]$. Consequently, the first and last $b^{\prime}+1$ elements of x and $y^{(b)}$ are identical. In particular, $h_{i}\left(y^{(b)}\right)=h_{i}(x)$ for $i \leq b^{\prime}$. Thus $\delta_{L}\left(y^{(b)}, x\right)>b^{\prime}$.
- If $y^{(b)} \preceq_{L} x$ then $y^{(b)} \prec_{R} x$ and we are done.
- If $y^{(b)} \succ_{L} x$ then from the previous points we conclude that $b^{\prime}=\delta_{I}\left(y^{(b)}, x\right)<\delta_{L}\left(y^{(b)}, x\right)$. Hence $y^{(b)} \succ_{I} x$ and $\delta_{I}\left(y^{(b)}, x\right)<$ $\delta_{L}\left(y^{(b)}, x\right)$. Again, by definition, $y^{(b)} \prec_{R} x$, as claimed.

This completes the proof that $X_{0, \ldots, k}$ is collapsible and hence that $X=$ $X_{a_{0}, \ldots, a_{k}}$ is collapsible whenever a_{0}, \ldots, a_{k} is an arithmetic progression.

3.3 Proof of necessity

We now turn to show that if a_{0}, \ldots, a_{k} is not arithmetic, then $X_{a_{0}, \ldots, a_{k}}$ is not collapsible. In fact we show that in this case exactly $k+1$ elementary collapse steps can be carried out.
For $X \subseteq \mathbb{F}_{n}$ we denote as usual by $X+a$ the a-shift of X, namely, the set $\{x+a \mid x \in X\}$. We start with the following simple observation.

Observation 3.1. Let n be a prime. A subset $X \subsetneq \mathbb{F}_{n}$ is an arithmetic progression iff there is an element l for which $|(X+l) \backslash X|=1$.

When is the $(k-1)$-face x_{1}, \ldots, x_{k} free a free face? This is the case iff, for each $k \geq i \geq 1$ the element $x_{i}+\sum_{j=1}^{k} x_{j}$ belongs to the set $\left\{a_{0}, \ldots, a_{k}\right\}$. If $x_{i}+\sum x_{j}=a_{l}$ it means that x_{1}, \ldots, x_{k} cannot be extended to a k-face in $X_{a_{l}}$. This translates into a linear system of equations in x_{1}, \ldots, x_{k} whose
matrix has 2's along the main diagonal and 1's elsewhere. Such a matrix is nonsingular, so the solution is unique. Also, all the k terms $x_{i}+\sum x_{j}$ are distinct, so the only choice we have in constructing this linear system is which of the $k+1$ elements in $\left\{a_{0}, \ldots, a_{k}\right\}$ to omit. There are $k+1$ such choices which yields $k+1$ distinct collapse steps that can be carried out.

We now explicitly describe the $k+1$ collapse steps that can be carried out. Each of these collapsible faces has the form $x^{(t)}:=\left\{a_{0}+l_{t}, \ldots, a_{k}+l_{t}\right\} \in X_{a_{t}}$ for some $l_{0}, \ldots l_{k}$

The condition $x^{(t)} \in X_{a_{t}}$ determines l_{t} via $l_{t}=\frac{a_{t}-\sum_{i=0}^{k} a_{i}}{k+1}$. We claim that the face $y:=x^{(t)} \backslash\left\{a_{t}+l_{t}\right\}$ is free. The sum of y 's elements is $-l_{t}$, so that for every $i \neq t$ we need to add the term $\left\{a_{i}+l_{t}\right\}$ to y in order to attain the sum a_{i}. This is, however, impossible since $\left\{a_{i}+l_{t}\right\}$ is a member of y.

We turn to show that after these first $k+1$ collapse steps are carried out, there remain no free $(k-1)$-faces in X. In order for a $(k-1)$-face y to be free following the above collapses, y has to be contained in exactly one of these $k+1$ collapsed faces. Since $\left\{a_{0}, \ldots, a_{k}\right\}$ is not an arithmetic progression, by Observation 3.1, the intersection of any two of the $x^{(t)}$ contains at most $k-1$ elements. In particular there is no $(k-1)$-face that they both contain. Thus we have to consider only $(k-1)$-faces y which are contained in one of the $x^{(t)}$ and exactly one more k-face.

It follows that y must be of the form $x^{(t)} \backslash\left\{a_{j}+l_{t}\right\}$ for some j and t. The sum of y 's elements is $a_{t}-a_{j}-l_{t}$. If y is contained as well in a k-face $z \in X_{a_{i}}$, then necessarily $z_{i}=z=y \cup\left\{a_{i}-a_{t}+a_{j}+l_{t}\right\}$. We are assuming that y becomes free with the collapse of $x^{(t)}$, so there must be exactly one index i for which z_{i} is a legal k-face different from $x^{(t)}$. It follows that $x^{(t)}$ and $x^{(t)}+\left(a_{j}-a_{t}\right)$ must have k elements in common. Again by Observation 3.1 this means that the elements in $x^{(t)}$ form an arithmetic progression, a contradiction. The proof of Theorem 1.3 is now complete.

4 Example: Homology of $X_{\{0,1,3\}}$

For a prime p and an integer n indivisible by p, let $U_{p, n}$ be the group of n-th roots of unity in $\overline{\mathbb{F}_{p}}$.

Proposition 4.1. Let $k=2, A=\{0,1,3\}$. Let p be a prime and suppose n
is coprime to $3 p$. Then

$$
\left.\left.h_{1}\left(X_{A} ; \mathbb{F}_{p}\right)=\frac{1}{3} \right\rvert\,\left\{\{u, v\} \subset U_{p, n}-\{1\}: u \neq v \text { and } 1+u+v=0\right\} \right\rvert\, .
$$

Proof: Let $B=\{0, k, \ell\}$ with $0<k<\ell<n$ and let $u=\omega^{-k}, v=\omega^{-\ell}$. Then

$$
\begin{gathered}
\operatorname{det} M_{A, B}=\operatorname{det}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & u & v \\
1 & u^{3} & v^{3}
\end{array}\right]= \\
u v^{3}-v u^{3}+u^{3}-u-v^{3}+v=(u-1)(v-1)(v-u)(u+v+1) .
\end{gathered}
$$

It follows that

$$
\operatorname{rk} M_{A, B}= \begin{cases}2 & 1+u+v=0 \\ 3 & \text { otherwise }\end{cases}
$$

Thus the Proposition follows directly from Theorem 1.

Corollary 4.2. Let $k=2, A=\{0,1,3\}$. Let p be a prime and suppose $n=p^{m}-1$ is coprime to 3. Then

$$
h_{1}\left(X_{A} ; \mathbb{F}_{p}\right)=\left\{\begin{array}{cc}
\frac{n-1}{6} & p=2 \\
\frac{n-2}{6} & p=3 \\
\frac{n-4}{6} & p>3
\end{array}\right.
$$

Proof: Clearly $\mathbb{F}_{p^{m}}^{*}=U_{p, n}$. Therefore, by Proposition 4.1

$$
h_{1}\left(X_{A} ; \mathbb{F}_{p}\right)=\frac{1}{6}\left|\left\{u \in \mathbb{F}_{p^{m}}^{*}-\{1\}:-(1+u) \notin\{0,1, u\}\right\}\right| .
$$

The Corollary now follows since

$$
\left\{u \in \mathbb{F}_{p^{m}}^{*}-\{1\}:-(1+u) \notin\{0,1, u\}\right\}= \begin{cases}\mathbb{F}_{2^{m}}^{*}-\{1\} & p=2 \\ \mathbb{F}_{3^{m}}^{*}-\{ \pm 1\} & p=3 \\ \mathbb{F}_{p^{m}}^{*}-\left\{ \pm 1,-2,-\frac{1}{2}\right\} & p>3\end{cases}
$$

5 Concluding Remarks

Theorem 1.1 provides an explicit description of the homology of the sum complex X_{A} over fields of characteristic coprime to n. In particular, it follows via Chebotarëv's Theorem that if n is prime then X_{A} is \mathbb{Q}-acyclic, i.e. X_{A} is a k-hypertree. When A is an arithmetic progression, X_{A} was shown to be k collapsible, and in particular \mathbb{Z}-acyclic. One natural question is whether there exist other A 's for which X_{A} is \mathbb{Z}-acyclic. Kalai's k-dimensional Cayley's formula [1] suggests that most k-hypertrees are not \mathbb{Z}-acyclic. Likewise we conjecture that X_{A} is not \mathbb{Z}-acyclic for most $(k+1)$-subsets $A \subset \mathbb{Z}_{n}$. One possible approach to the question of \mathbb{F}_{p}-acyclicity of X_{A} for primes $p \nmid n$ is via the following reduction. Let $S_{\mathbb{F}}(A)$ be the \mathbb{F}-linear space of polynomials in $\mathbb{F}[x]$ spanned by the monomials $\left\{x^{a}: a \in A\right\}$. Theorem 1.1 then implies that X_{A} is \mathbb{F}_{p}-acyclic iff $\operatorname{deg} \operatorname{gcd}\left(f(x), x^{n}-1\right) \leq k$ for all $0 \neq f(x) \in S_{\overline{\mathbb{F}_{p}}}(A)$.

References

[1] G. Kalai, Enumeration of \mathbb{Q}-acyclic simplicial complexes, Israel J. Math. 45(1983) 337-351.
[2] J. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
[3] P. Stevenhagen and H. W. Lenstra, Chebotarëv and his density theorem, Math. Intelligencer 18(1996) 26-37.

[^0]: *Department of Computer Science, Hebrew University, Jerusalem 91904, Israel. e-mail: nati@cs.huji.ac.il. Supported by ISF and BSF grants.
 ${ }^{\dagger}$ Department of Mathematics, Technion, Haifa 32000, Israel. e-mail: meshulam@math.technion.ac.il . Supported by ISF and BSF grants.

