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Abstract

Let p be a prime and let A be a nonempty subset of the cyclic group
Cp. For a field F and an element f in the group algebra F[Cp] let Tf

be the endomorphism of F[Cp] given by Tf (g) = fg. The uncertainty

number uF(A) is the minimal rank of Tf over all nonzero f ∈ F[Cp]
such that supp(f) ⊂ A.

The following topological characterization of uncertainty numbers
is established. For 1 ≤ k ≤ p define the sum complex XA,k as the
(k − 1)-dimensional complex on the vertex set Cp with a full (k − 2)-
skeleton whose (k − 1)-faces are all σ ⊂ Cp such that |σ| = k and∏

x∈σ x ∈ A. It is shown that if F is algebraically closed then

uF(A) = p − max{k : H̃k−1(XA,k; F) 6= 0}.

The main ingredient in the proof is the determination of the homology
groups of XA,k with field coefficients. In particular it is shown that if
|A| ≤ k then H̃k−1(XA,k; Fp) = 0.

1 Introduction

Uncertainty type inequalities reflect various quantitative aspects of the gen-
eral principle that a nonzero function and its Fourier transform cannot both
be sharply localized. The first such result is the Fourier theoretic version
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of the Heisenberg quantum-mechanical uncertainty principle: If f ∈ L2(R)
satisfies ||f ||2 = 1 then

‖xf‖2 ‖ξf̂‖2 ≥
1

4π
. (1)

This classical inequality and its numerous extensions (see e.g. [3]) have
major applications in diverse areas ranging from mathematical physics and
differential equations to signal recovery and number theory. Here we are
concerned with discrete versions of the uncertainty principle. Let G be a
finite abelian group and let F[G] be the group algebra of G over the field F.
For an element f ∈ F[G] let Tf : F[G] → F[G] be given by Tfg = fg. Let
A be a subset of G. Here and throughout the paper we assume that A 6= ∅.
The uncertainty number of A ⊂ G is defined by

uF(A) = min{rank Tf : ∅ 6= supp(f) ⊂ A}.

The motivation for this definition is as follows. Let m be the exponent of
G and suppose F contains a primitive m-th root of unity. Let Ĝ denote
the group of F-valued characters of G. Identifying F[G] with the space of
F-valued functions on G, the Fourier Transform of a function f ∈ F[G] is the

function f̂ ∈ F[Ĝ] given by f̂(χ) =
∑

x∈G χ(x−1)f(x). The characters χ ∈ Ĝ

are eigenfunctions of Tf with eigenvalues f̂(χ), hence rank Tf = |supp(f̂)|.
Therefore in the semisimple case

uF(A) = min{|supp(f̂)| : ∅ 6= supp(f) ⊂ A}.

The discrete counterpart of (1) (see e.g. [1]) asserts that for any F and A ⊂ G

uF(A) ≥ |G|
|A| . (2)

In the semisimple case (2) is equivalent to

|supp(f)| · |supp(f̂)| ≥ |G|

for all nonzero f ’s. While (2) is sharp when A is a coset of G, it can often
be improved for particular choices of G, A and F. One such result (see [9])
states that if p is prime and A is a nonempty subset of the cyclic group Cp

then uC(A) = p− |A|+ 1. See [7] for an extension to general abelian groups.
For a finite abelian group G let ∆G denote the (|G| − 1)-dimensional

simplex with vertex set G and let ∆
(j)
G be the j-dimensional skeleton of ∆G.
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Let A ⊂ G and let 1 ≤ k ≤ |G|. The Sum Complex XA,k was defined in [6]
by

XA,k = ∆
(k−2)
G ∪ {σ ⊂ G : |σ| = k ,

∏

x∈σ

x ∈ A}.

Here we obtain the following topological characterization of uncertainty num-
bers of subsets of Cp.

Theorem 1.1. Let A ⊂ Cp = G. If F is algebraically closed then

uF(A) = p − max{1 ≤ k ≤ p : H̃k−1(XA,k; F) 6= 0}. (3)

If H̃k−1(XA,k; F) = 0 for all 1 ≤ k ≤ p then the right-hand side of (3) is
defined as p.

Example: Let p = 7 and A = {1, z, z3} ⊂ C7 = 〈z〉. The sum com-
plex XA,3 is depicted in Figure 1b) where vertex label α corresponds to
the element zα. Note that XA,3 is obtained from a 7-point triangulation of
the real projective plane RP2 (Figure 1a) by adding the faces {z2, z3, z5},
{1, z2, z6} and {z, z2, z4}. XA,3 is clearly homotopy equivalent to RP2, hence
H2(XA,3; F2) 6= 0. Theorem 1.1 then implies that u

F2
(A) ≤ 4. Together with

the easy fact that uF(B) ≥ p − max B for any F and B ⊂ Cp it follows that
u

F2
(A) = 4. It can be checked that in fact uF2(A) = 4.
Let z be a fixed generator of Cp and let A = {a1, . . . , am} ⊂ Cp where

ai = zαi and αi is an element of the prime field Fp = {0, . . . , p − 1}. Let
α = (α1, . . . , αm) ∈ Fm

p . The main ingredient in the proof of Theorem 1.1
is the computation of the homology of XA,k with arbitrary field coefficients.
Let F be a field of characteristic ℓ. First suppose that ℓ 6= p and let ω be a
primitive p-th root of unity in the algebraic closure F. For β = (β1, . . . , βk) ∈
Fk

p let Mβ,α be the k × m matrix given by Mβ,α(i, j) = ωβiαj . Let

Bk = {β1, . . . , βk) : 0 ≤ β1 < · · · < βk ≤ p − 1}.

The case m = k of the following result is implicit in [6].

Theorem 1.2. Let A = {zα1 , . . . , zαm} ⊂ Cp and let α = (α1, . . . , αm). If
char F 6= p then for 1 ≤ k ≤ p

dim H̃k−1(XA,k; F) =
m

k

(
p − 1

k − 1

)
− 1

p

∑

β∈Bk

rank Mβ,α. (4)
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(b) XA,3 for A = {1, z, z3} ⊂ C7

Figure 1

Our main result concerns the homology of XA,k with Fp coefficients.

Theorem 1.3. Let A ⊂ Cp such that |A| = m. Then for 1 ≤ k ≤ p

dim H̃k−1(XA,k; Fp) =

{
0 if m ≤ k

(m
k
− 1)

(
p−1
k−1

)
if m > k.

(5)

Remarks:

1) The case k = p of both Theorems 1.2 and 1.3 is straightforward. On
one hand, since XA,p is a subcomplex of the (p − 1)-simplex it follows that
H̃p−1(XA,p; F) = 0 for any A and F. On the other hand, let β = (0, 1, . . . , p−
1) be the unique element of Bp. Then Mβ,α consists of m full columns of the
Fourier matrix and thus has full rank m. Hence the right hand side of (4) is
also zero. In the sequel we will therefore assume that 1 ≤ k < p.
2) The argument given in [6] for the case m = k of Theorem 1.2 does not
extend to the modular case. The approach here is different and is also utilized
in the proof of our main result Theorem 1.3.
3) The f -vector of XA,k satisfies fi(XA,k) =

(
p

i+1

)
for 0 ≤ i ≤ k − 2 and

fk−1(XA,k) = m
p

(
p

k

)
= m

k

(
p−1
k−1

)
. The reduced Euler characteristic of XA,k is
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therefore

χ̃(XA,k) = −1 +
k−2∑

i=0

(−1)i

(
p

i + 1

)
+ (−1)k−1m

p

(
p

k

)

= (−1)k−1(
m

k
− 1)

(
p − 1

k − 1

)
.

(6)

Since H̃i(XA,k; Fp) = 0 for 0 ≤ i < k − 2 it follows that

dim H̃k−2(XA,k; Fp) = dim H̃k−1(XA,k; Fp) − (
m

k
− 1)

(
p − 1

k − 1

)

=

{
(1 − m

k
)
(

p−1
k−1

)
if m ≤ k

0 if m > k.

(7)

4) A classical result of Chebotarëv (see e.g. [8]) asserts that for F = Q all
Mβ,α’s have full rank. Theorem 1.2 therefore implies that (5) and (7) remain
true for H̃∗(XA,k; Q).
5) Theorem 1.3 does not hold for all fields F and in fact H̃k−1(XA,k; F) may
be nontrivial even if k > |A| = m. For example, using Theorem 1.2 it can be
shown that if A = {1, z3, z4, z5, z8} ⊂ C17 then H̃7(XA,8; F2) 6= 0.

The paper is organized as follows. In Section 2 we consider XA,k where A
is a subset of an arbitrary abelian group G and identify H̃k−1(XA,k; F) with
a certain subspace H(A) of skew-symmetric elements of the group algebra
F[Gk]. In Section 3 we use this characterization in the special case G =
Cp to prove Theorem 1.2. The proof of Theorem 1.3 given in Section 4 is
more involved and depends additionally on some properties of generalized
Vandermonde determinants over the group algebra Fp[C

k
p ]. Theorem 1.1 is

derived in Section 5 as a direct consequence of Theorems 1.2 and 1.3. We
conclude in Section 6 with some comments and open problems.

2 A Characterization of Cycles

Let A be a nonempty subset of a finite abelian group G and let F be a field. In
this section we provide a characterization (Claim 2.1) of the homology group
H̃k−1(XA,k; F) in terms of the group algebra F [Gk]. A simplified version valid
under the assumption gcd(|G|, k) = 1 is given in Claim 2.2.

5



We first introduce some terminology. Fix 1 ≤ k ≤ |G|. For an element
g ∈ G and 1 ≤ i ≤ k let ei(g) = (1, . . . , 1, g, 1, . . . , 1) ∈ Gk with g appearing
in the i-th coordinate. An element

s =
∑

(g1,...,gk)∈Gk

s(g1, . . . , gk)(g1, . . . , gk) ∈ F[Gk]

is skew-symmetric if s(gσ−1(1), . . . , gσ−1(k)) = sgn(σ)s(g1, . . . , gk) for all (g1, . . . , gk) ∈
Gk and σ in the symmetric group Sk. If char F = 2 then s is additionally
required to satisfy s(g1, . . . , gk) = 0 if gi = gj for some i 6= j. Let S de-
note the space of skew-symmetric elements of F[Gk]. For h ∈ G let Wh =
{(g1, . . . , gk) ∈ Gk :

∏k
i=1 gi = h} and let Sh = {s ∈ S : supp(s) ⊂ Wh}.

Let ρh denote the projection from S onto Sh given by ρh(
∑

u∈Gk s(u)u) =∑
u∈Wh

s(u)u.
Let Y be a (k − 1)-dimensional simplicial complex on the vertex set V

and let Y (ℓ) denote the set of its (unordered) ℓ-simplices. Let Ck−1(Y ; F)
denote the space of F-valued (k−1)-chains of Y . Recall that φ ∈ Ck−1(Y ; F)
is a skew symmetric F-valued function on the ordered (k − 1)-simplices of
Y . A (k − 1)-chain φ ∈ Ck−1(Y ; F) is a reduced (k − 1)-cycle if for all
{v1, . . . , vk−1} ∈ Y (k − 2) it holds that

∑

{vk∈V :{v1,...,vk−1,vk}∈Y (k−1)}

φ(v1, . . . , vk−1, vk) = 0. (8)

Specializing to the case Y = XA,k it is clear that

Ck−1(XA,k, F) = {s ∈ S : supp(s) ⊂ ∪a∈AWa} =
⊕

a∈A

Sa.

By (8), s ∈ Ck−1(XA,k, F) is a reduced (k − 1)-cycle of XA,k if for all
(g1, . . . , gk−1) ∈ Gk−1

∑

a∈A

s(g1, . . . , gk−1, a
k−1∏

j=1

g−1
j ) = 0. (9)

Let

H(A) = {s ∈
⊕

a∈A

Sa :
∑

a∈A

ei(a
−1)ρa(s) = 0 for all 1 ≤ i ≤ k}.

The homology space H̃k−1(XA,k; F) is characterized by the following
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Claim 2.1.

H̃k−1(XA,k; F) = H(A).

Proof: First note that by skew symmetry

H(A) = {s ∈
⊕

a∈A

Sa :
∑

a∈A

ek(a
−1)ρa(s) = 0}. (10)

Now let s ∈ Ck−1(XA,k; F) =
⊕

a∈A Sa. Then

∑

a∈A

ek(a
−1)ρa(s)

=
∑

a∈A

ek(a
−1)

∑

(g1,...,gk−1)∈Gk−1

s(g1, . . . , gk−1, a

k−1∏

j=1

g−1
j )(g1, . . . , gk−1, a

k−1∏

j=1

g−1
j )

=
∑

(g1,...,gk−1)∈Gk−1

(∑

a∈A

s(g1, . . . , gk−1, a
k−1∏

j=1

g−1
j )

)
(g1, . . . , gk−1,

k−1∏

j=1

g−1
j ).

Therefore
∑

a∈A ek(a
−1)ρa(s) = 0 iff

∑

a∈A

s(g1, . . . , gk−1, a

k−1∏

j=1

g−1
j ) = 0 (11)

for all (g1, . . . , gk−1) ∈ Gk−1. Hence the Claim follows from (9) and (10).

�

Let SA = ⊕a∈AS = {(ra)a∈A : ra ∈ S} and let

R(A) = {(ra)a∈A ∈ SA :
∑

a∈A

ei(a
−1)ra = 0 for all 1 ≤ i ≤ k}.

For g ∈ G let e(g) =
∏k

i=1 ei(g) = (g, . . . , g) ∈ Gk. In Section 3 we shall need
the following

Claim 2.2. Assume that gcd(|G|, k) = 1. Then the mapping Ψ : F[G] ⊗F

H(A) → R(A) given by

Ψ(g ⊗ s) = (e(g) ρa(s))a∈A

is an isomorphism.
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Proof: We first show injectivity. Let w ∈ ker Ψ and write w =
∑

g∈G g ⊗ sg

where sg ∈ H(A). Then for all a ∈ A

∑

g∈G

e(g)ρa(sg) = 0.

Since e(g)ρa(sg) ∈ Sagk and agk 6= ahk for g 6= h (by the assumption
gcd(|G|, k) = 1), it follows that e(g)ρa(sg) = 0 and hence ρa(sg) = 0 for all
g ∈ G and a ∈ A. Therefore w = 0. To show surjectivity let (ra)a∈A ∈ R(A).
For g ∈ G let

sg = e(g−1)
∑

a∈A

ρagk(ra) ∈
⊕

a∈A

Sa.

We first show that sg ∈ H(A). For 1 ≤ i ≤ k and g ∈ G let

ti,g =
∑

a∈A

ei(a
−1)ρagk(ra) ∈ Sgk .

Then
∑

g∈G

ti,g =
∑

g∈G

∑

a∈A

ei(a
−1)ρagk(ra)

=
∑

a∈A

ei(a
−1)

(∑

g∈G

ρagk(ra)

)
=
∑

a∈A

ei(a
−1)ra = 0.

It follows that ti,g = 0 for all 1 ≤ i ≤ k and g ∈ G. Therefore for 1 ≤ i ≤ k
and g ∈ G

∑

a∈A

ei(a
−1)ρa(sg) =

∑

a∈A

ei(a
−1)ρa

(
e(g−1)

∑

a′∈A

ρa′gk(ra′)

)

=
∑

a∈A

ei(a
−1)e(g−1)ρagk(ra) = e(g−1)ti,g = 0.

Hence sg ∈ H(A) and thus w =
∑

g∈G g ⊗ sg ∈ F[G]
⊗

F
H(A). Finally, for

all a ∈ A
∑

g∈G

e(g)ρa(sg) =
∑

g∈G

e(g)
(
e(g−1)ρagk(ra)

)
=
∑

g∈G

ρagk(ra) = ra

and therefore Ψ(w) = (ra)a∈A.
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�

Corollary 2.3. If gcd(|G|, k) = 1 then

dim H̃k−1(XA,k; F) =
dimR(A)

|G| .

�

3 The Semisimple Case

Let G be the cyclic group of prime order Cp = 〈z〉 and let A = {a1, . . . , am} ⊂
Cp where aj = zαj . Let α = (α1, . . . , αk) ∈ Fk

p. In this section we compute

dim H̃k−1(XA,k; F) when char F 6= p. We may assume that F is algebraically
closed. Recall that ω is a primitive p-th root of unity in F = F. The character
group Ĉp consists of all characters ηu where u ∈ Fp and ηu(z) = ωu. Similarly,

Ĉk
p = {χβ : β = (β1, . . . , βk) ∈ Fk

p} where for γ = (γ1, . . . , γk) ∈ Fk
p

χβ(zγ1 , . . . , zγk) = (ηβ1 × . . . × ηβk
)(zγ1 , . . . , zγk) = ωβγ

and βγ =
∑k

i=1 βiγi is the standard inner product in Fk
p. The Fourier trans-

form of f ∈ F[Ck
p ] is thus f̂ ∈ F[Ĉk

p ] given by

f̂(χβ) =
∑

γ=(γ1,...,γk)∈Fk
p

f(zγ1 , . . . , zγk)ω−βγ.

As already remarked, in proving Theorem 1.2 we may assume that k < p.
Corollary 2.3 then implies that dim H̃k−1(XA,k; F) = dimR(A)

p
. Theorem 1.2

will thus follow from

Proposition 3.1.

dimR(A) = m

(
p

k

)
−
∑

β∈Bk

rank Mβ,α.

Proof: Define an F-linear mapping

Φ : SA →
⊕

β∈Bk

Fm
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as follows. For r = (raj
)m
j=1 ∈ SA let

Φ(r) =







r̂a1(χβ)
...

r̂am
(χβ)


 : β ∈ Bk


 .

Note that since raj
is a skew symmetric element of F[Ck

p ], it follows that r̂aj

is a skew symmetric element of F[Ĉk
p ] and hence is determined by its values

on Bk. Therefore Φ is an isomorphism.

Claim 3.2. Φ restricts to an isomorphism from R(A) onto ⊕β∈Bk
ker Mβ,α.

Proof: Note that if 1 ≤ i ≤ k and β = (β1, . . . , βk) ∈ Fk
p then

êi(a
−1
j )(χβ) = ̂ei(z−αj )(χβ) = ωβiαj .

Let r = (raj
)m
j=1 ∈ SA and fix 1 ≤ i ≤ k and β = (β1, . . . , βk) ∈ Fk

p. Evalu-

ating the Fourier transform of the element
∑m

j=1 ei(a
−1
j )raj

at the character
χβ we obtain

(

m∑

j=1

ei(a
−1
j )raj

)ˆ(χβ)

=

m∑

j=1

êi(a
−1
j )(χβ)r̂aj

(χβ)

=
m∑

j=1

ωβiαj r̂aj
(χβ).

It follows that r = (raj
)m
j=1 ∈ R(A) iff for all β = (β1, . . . , βk) ∈ Fk

p

Mβ,α




r̂a1(χβ)
...

r̂am
(χβ)


 =




ωβ1α1 · · · ωβ1αm

...
. . .

...
ωβkα1 · · · ωβkαm







r̂a1(χβ)
...

r̂am
(χβ)


 = 0.

Therefore r = (raj
)m
j=1 ∈ R(A) iff Φ(r) ∈ ⊕β∈Bk

ker Mβ,α. The Claim now
follows from the bijectivity of Φ.

�
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Proof of Proposition 3.1: By Claim 3.2

dimR(A) =
∑

β∈Bk

dim ker Mβ,α =
∑

β∈Bk

(m − rank Mβ,α)

= m

(
p

k

)
−
∑

β∈Bk

rank Mβ,α.

�

4 The Modular Case

In subsections 4.1 and 4.2 we study certain properties of determinants of
generalized Vandermonde matrices over the group algebra Fp[C

k
p ]. These

results are then used in subsection 4.3 to prove Theorem 1.3.

4.1 A Generalized Vandermonde

Recall that z is a fixed generator of Cp and let 1 ≤ k ≤ p. For 1 ≤ i ≤ k let
xi = ei(z). Then {x1, . . . , xk} is a generating set of Ck

p . Let x = (x1, . . . , xk).
For β = (β1, . . . , βk) ∈ Bk let

Nβ =




x−β1

1 · · · x−βk

1
...

. . .
...

x−β1

k · · · x−βk

k


 .

Proposition 4.1. Let 1 ≤ k ≤ p. Then

det Nβ = wβ

∏

1≤i<j≤k

(xi − xj) (12)

where wβ is a unit of Fp[C
k
p ].

Recall the definition of Schur polynomials (see e.g. [2]). Let ξ = (ξ1, . . . , ξk)
be a vector of variables. For a partition λ = (λ1 ≥ · · · ≥ λk) let

Dλ(ξ) = Dλ(ξ1, . . . , ξk) = det([ξ
λj+k−j

i ]ki,j=1) ∈ Z[ξ1, . . . , ξk].
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Note that for the zero partition 0 = (0, . . . , 0)

D0(ξ) = det




ξk−1
1 ξk−2

1 · · · 1
...

...
. . .

...
ξk−1
k ξk−2

k · · · 1


 =

∏

1≤i<j≤k

(ξi − ξj).

The Schur polynomial associated with λ is

Sλ(ξ) =
Dλ(ξ)

D0(ξ)
∈ Z[ξ1, . . . , ξk].

The dimension formula (see e.g. Proposition 5.21.2 in [2]) asserts that

Sλ(1, . . . , 1) =
∏

1≤i<j≤k

λi − λj + j − i

j − i
. (13)

Proof of Proposition 4.1: Let

λ = (λ1, . . . , λk) = (p − β1 − k + 1, p − β2 − k + 2, . . . , p − βk).

Note that β = (β1, · · · , βk) ∈ Bk implies that λ1 ≥ · · · ≥ λk. Then

det Nβ = Dλ(x) = Sλ(x)D0(x)

= Sλ(x)
∏

1≤i<j≤k

(xi − xj).

By (13) the image of Sλ(x) ∈ Fp[C
k
p ] under the augmentation map Fp[C

k
p ] →

Fp is

Sλ(1, . . . , 1) (modp) =
∏

1≤i<j≤k

βj − βi

j − i
(mod p) 6= 0 (mod p).

It follows that wβ = Sλ(x) is invertible in Fp[C
k
p ].

�
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4.2 Skew-Symmetric Annihilators of D0(x)

Recall that S is the space of skew symmetric elements of Fp[C
k
p ]. In this

subsection we show
Proposition 4.2. Assume that 1 ≤ k < p and let s ∈ S. If D0(x)s = 0 then
s = 0.

The proof of Proposition 4.2 depends on Proposition 4.3 below. Let N

denote the nonnegative integers and for a, b ∈ N let [a, b] = {a, . . . , b}. Let

Nk = {(µ1, . . . , µk) ∈ Nk : µi 6= µj if i 6= j}.

For µ = (µ1, . . . , µk) , ν = (ν1, . . . , νk) ∈ Nk write µ � ν if {µ1, . . . , µk}
precedes {ν1, . . . , νk} in the lexicographic order on k-subsets of N, i.e. if

k∑

i=1

2−µi ≥
k∑

i=1

2−νi.

Fix an µ = (µ1, . . . , µk) ∈ Nk such that µ1 < · · · < µk and let

L = {1 ≤ i ≤ k − 1 : µi + 1 < µi+1}.

Write L = {ℓ1 < . . . < ℓt−1} and let ℓ0 = 0 , ℓt = k. For 1 ≤ i ≤ t let
Ki = [ℓi−1 + 1, ℓi]. Let

G1(µ) = {(γ, σ) ∈ Nk × Sk : γ � µ and γj − σ(j) = µj − j for all j}.

We’ll need the following characterization of G1(µ). Let SK denote the sym-
metric group on a set K. Let T = SK1 × · · · × SKt

be the Young subgroup
of Sk corresponding to the partition [k] = ∪t

i=1Ki. Let

G2(µ) = {(γ, σ) ∈ Nk × T : γj = µσ(j) for all j}.

Proposition 4.3. G1(µ) = G2(µ)

Proof: We first show that G2(µ) ⊂ G1(µ). Let (γ, σ) ∈ G2(µ) and let
1 ≤ j ≤ k. If j ∈ Ki then σ(j) ∈ Ki and hence µσ(j) − µj = σ(j) − j.
Therefore

γj − σ(j) = µσ(j) − σ(j) = µj − j

and so (γ, σ) ∈ G1(µ). For the other direction let (γ, σ) ∈ G1(µ). Write
γ = (γ1, . . . , γk) and let π ∈ Sk such that γπ(1) < · · · < γπ(k).
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Claim 4.4. For 1 ≤ i ≤ t and j ∈ Ki

(a) σ(π(j)) = j.
(b) γπ(j) = µj.
(c) π(j) ∈ Ki.

Proof: We argue by induction on j. Suppose (a),(b) and (c) hold for all
j′ < j. (a) implies that {σ(π(j′)) : j′ < j} = [j − 1] and hence σ(π(j)) ≥ j.
Therefore

µj − j ≥ µj − σ(π(j)). (14)

Next note that by (b) γπ(j′) = µj′ for all j′ < j. As γ � µ it follows that
µj ≥ γπ(j) and therefore

µj − σ(π(j)) ≥ γπ(j) − σ(π(j)) = µπ(j) − π(j). (15)

Finally (c) implies that {π(j′) : 1 ≤ j′ ≤ ℓi−1} = [1, ℓi−1] and therefore
π(j) ≥ ℓi−1 + 1. Together with the assumption j ∈ Ki it follows that

µπ(j) − π(j) ≥ µℓi−1+1 − (ℓi−1 + 1) = µj − j. (16)

It follows that the three inequalities in (14),(15),(16) are in fact equalities.
Therefore σ(π(j)) = j, γπ(j) = µj and µπ(j) = µj + (π(j) − j) respectively
establishing (a),(b),(c) for j.

�

Claim 4.4 implies that σ = π−1 ∈ T and that γj = µσ(j) for all 1 ≤ j ≤ k.
Therefore (γ, σ) ∈ G2(µ).

�

Proof of Proposition 4.2: Let s ∈ S such that D0(x)s = 0. We have to
show that s = 0. For γ = (γ1, . . . , γk) ∈ Fk

p we abbreviate xγ =
∏k

j=1 x
γj

j =

(zγ1 , . . . , zγk) ∈ Ck
p . Note that this notation is unambiguous since xp

j = 1.
By assumption

0 = D0(x)s =
∑

σ∈Sk

sgn(σ)

k∏

j=1

x
k−σ(j)
j

∑

γ=(γ1,...,γk)∈Fk
p

s(xγ)

k∏

j=1

x
γj

j

=
∑

γ=(γ1,...,γk)∈Fk
p

∑

σ∈Sk

sgn(σ)s(xγ)

k∏

j=1

x
γj+k−σ(j)
j .

(17)
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Suppose for contradiction that s 6= 0 and let

µ = (µ1, . . . , µk) = max{γ ∈ Bk : s(xγ) 6= 0}
where the maximum is taken with respect to �. Let λ ∈ Fp denote the

coefficient of
∏k

j=1 x
µj+k−j

j in the expansion of D0(x)s in the standard basis

{xβ : β ∈ Fk
p} of Fp[C

k
p ]. Note that if

k∏

j=1

x
µj+k−j

j =
k∏

j=1

x
γj+k−σ(j)
j

then for all 1 ≤ j ≤ k

µj − j = γj − σ(j) (mod p).

Since
−1 ≤ µj − j ≤ p − 1 − k

and
−k ≤ γj − σ(j) ≤ p − 2

it follows that
µj − j = γj − σ(j).

Hence, Eq. (17) and Proposition 4.3 imply that

λ =
∑

(γ,σ)∈G1(µ)

sgn(σ)s(xγ) =
∑

(γ,σ)∈G2(µ)

sgn(σ)s(xγ)

=
∑

(γ,σ)∈G2(µ)

sgn(σ)s(zγ1 , . . . , zγk)

=
∑

σ∈SK1
×···×SKt

sgn(σ)s(zµσ(1) , . . . , zµσ(k))

= |SK1 × · · · × SKt
| s(zµ1 , . . . , zµk) =

t∏

i=1

(ℓi − ℓi−1)! s(x
µ).

Since ℓt = k < p it follows that
∏t

i=1(ℓi − ℓi−1)! 6= 0(mod p) and so λ 6= 0.
Therefore D0(x)s 6= 0, a contradiction.

�

Remark: Proposition 4.2 does not hold for k = p. Indeed, in this case
s = D0(x) =

∏
1≤i<j≤p(xi − xj) is a nonzero skew symmetric element of

Fp[C
p
p ] and it can be checked that D0(x)s = D0(x)2 = 0.
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4.3 Homology of XA,k over Fp

In this subsection we prove Theorem 1.3. We first consider the case m = k.
Theorem 4.5. If |A| = k then H̃k−1(XA,k; Fp) = 0.

Proof: As already noted the case k = p is trivial so we assume k < p.
Let A = {a1, . . . , ak} where ai = zαi and α = (α1, . . . , αk) ∈ Bk. Let
s ∈ H̃k−1(XA,k; Fp) then by Claim 2.1

Nα




ρa1(s)
...

ρak
(s)


 =




x−α1
1 · · · x−αk

1
...

. . .
...

x−α1
k · · · x−αk

k







ρa1(s)
...

ρak
(s)




=




e1(a
−1
1 ) · · · e1(a

−1
k )

...
. . .

...
ek(a

−1
1 ) · · · ek(a

−1
k )







ρa1(s)
...

ρak
(s)


 = 0.

Therefore det Nα · ρaj
(s) = 0 for all 1 ≤ j ≤ k. Proposition 4.1 then implies

that D0(x)ρaj
(s) = 0. Hence ρaj

(s) = 0 by Proposition 4.2. It follows that

s = 0 and so H̃k−1(XA,k; Fp) = 0.

�

Proof of Theorem 1.3: Let |A| = m ≥ k and let A′ be an arbitrary subset
of A of cardinality k. Theorem 4.5 and Eq. (6) imply that H̃∗(XA′,k; Fp) = 0.
Hence by the exact sequence

0 = H̃k−1(XA′,k; Fp) → H̃k−1(XA,k; Fp) →
→ H̃k−1(XA,k, XA′,k; Fp) → H̃k−2(XA′,k; Fp) = 0

it follows that

dim H̃k−1(XA,k; Fp) = dim H̃k−1(XA,k, XA′,k; Fp)

= fk−1(XA,k) − fk−1(XA′,k) = (
m

k
− 1)

(
p − 1

k − 1

)
.

�
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5 Uncertainty Numbers and Homology

Proof of Theorem 1.1: Recall that A = {zα1 , . . . , zαm} ⊂ Cp. Let F be an
algebraically closed field with char F = ℓ. We consider two cases:

(i) The semisimple case ℓ 6= p. Here it suffices to show that for any
fixed 1 ≤ k ≤ p the following three conditions are equivalent:

(C1) H̃k−1(XA,k; F) 6= 0.

(C2) There exists a β ∈ Bk such that rankMβ,α < m.

(C3) uF(A) ≤ p − k.

First note that Theorem 1.2 implies that H̃k−1(XA,k; F) 6= 0 iff

m

p

(
p

k

)
>

1

p

∑

β∈Bk

rank Mβ,α.

This proves the equivalence of (C1) and (C2). Next let λ = (λ1, . . . , λm) ∈
Fm and let fλ =

∑m
j=1 λjz

αj ∈ F[Cp]. Then supp(fλ) ⊂ A and for β =

(β1, . . . , βk) ∈ Fk
p

Mβ,αλ = (
m∑

j=1

λjω
βiαj )k

i=1 =
(
f̂λ(η−βi

)
)k

i=1
.

It follows that if β = (β1, . . . , βk) ∈ Bk then rank Mβ,α < m iff there exists a

nonzero f = fλ ∈ F[Cp] such that supp(f) ⊂ A and supp(f̂)∩{η−βi
}k

i=1 = ∅.
This proves the equivalence of (C2) and (C3).

(ii) The modular case ℓ = p. Let F be a field of characteristic p. By
Theorem 1.3

p − max{k : H̃k−1(XA,k; F) 6= 0} = p − m + 1.

It thus suffices to show that uF(A) = p − m + 1. Let 0 6= f =
∑m

j=1 λjz
αj ∈

F[Cp]. Regarding f = f(z) as an element of the polynomial ring F[z], the
rank of Tf is given by

rank Tf = p − deg gcd(f(z), zp − 1)

= p − deg gcd(f(z), (z − 1)p) = p − µ(f)
(18)
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where µ(f) is the multiplicity of 1 as a root of f(z). By a simple well known
result (see e.g. Lemma 2 in [4]), µ(f) ≤ m−1 and hence uF(A) ≥ p−m+1.
For the other direction note that the F-linear space

P = {f(z) ∈ F[Cp] : µ(f) ≥ m − 1}

satisfies dimF P = p−m+1 and hence must contain a nonzero f of the form
f(z) =

∑m
j=1 λjz

αj . It follows by (18) that f satisfies rank Tf ≤ p − m + 1.
Therefore uF(A) ≤ p − m + 1.

�

6 Concluding Remarks

We mention two problems related to the results of this paper.

1. Let k ≥ 2 and let X be a (k − 1)-dimensional complex X with N =
fk−1(X) facets. It was observed by G. Kalai, S. Weinberger and the
author that the torsion subgroup Hk−2(X)tor satisfies |Hk−2(X)tor| ≤√

k
N

. Kalai on the other hand showed [5] that there exist X’s with

|Hk−2(X)tor| ≥
√

k/e
N

. Computer experiments indicate that the Q-
acyclic sum complexes obtained by taking |A| = k often have large
torsion. For example, A = {1, z, z19} ⊂ C83 satisfies |H1(XA,3)| >
1.17N where N = f2(XA,3) =

(
82
2

)
. Note that the base of the exponent

1.17 is slightly bigger than the constant
√

3/e
.
= 1.05 in Kalai’s lower

bound. In view of this it would be interesting to determine (or estimate)
the maximum torsion of sum complexes.

2. Theorem 1.1 characterizes the uncertainty number uF(A) with A ⊂ G =
Cp and F algebraically closed, in terms of the homology of XA,k over F.
It would be useful to find appropriate extensions of this characterization
to general finite groups G and arbitrary fields F.
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