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A'n Uncertainty Inequality for Groups of Order pq 

R o Y  MESHULAM 

We are concerned with some  relations between the support  of  a function defined on a finite 
group and the support  of  its Fourier  t ransform. Let  Dp.q be the non-commuta t ive  group of 
order pq, where p, q are pr imes,  and p ] q - 1. We prove an uncertainty-type inequality for 
ONq = ((X1 . . . .  , XN): xi ~ Dp q) which has the following application: If H is a subgroup of 
D~,q and x l . . . x N  = 1 for all '(x I . . . . .  xN) ~ H, then (D~q: H) >~q½p(~-O/2. 

1. INTRODUCTION 

The classical uncertainty inequality and some of its extensions assert (roughly) that a 
function and its Fourier transform cannot both be concentrated on small sets (see [1] 
for the classical inequality, and [6] for a recent generalization). 

In this note we are concerned with discrete uncertainty type inequalities for finite 
groups. 

Let G be a finite group, and let Irr(G)= {pa . . . .  , Pt} denote the complex 
irreducible representations of G, where Pi: G---~ GL(V~) and deg Pi = dim Vii = hi. 

For a function f:G---~C and a representation p:G---~GL(V), let )~(p)= 
~x~6f(x)p(x) ~ End(V) denote the Fourier transform o f f  at p. This definition may be 
extended to functions g:G---~End(U), where U is a complex vector space, by 
g(P) = E x , c f ( x )  @ p(x) ~ End(U @ V). 

Let Suppf = {x: f(x)4: 0} and Suppf = {p ~ Irr(G): f(p)4: 0}. We shall use/~(f)  = 
Z~=ldimV~.rankf(pi) and / ~ ( f ) = E { d i m V ~ : f ( p i ) 4 : 0 )  as measures of Suppl. 
Clearly, p(f)  <<- t~(f) ~ t2(f) 2, and when G is abelian, t~(f) = /~( f )  = [Suppf[. 

An alternative definition of # ( f )  in terms of the group algebra C[G] is as follows. 
Let u = ~x~cf(x)x c C[G] and define a linear transformation Ts: C[G]---~ C[G] by 
~(v) = uv. 

PROPOSITION 1. # ( f )  = rank T r. 

PROOV. Define qg: C[G]---~ I]~=l End(V,) by 

\ x E G  / 

and S: I/~=1 End(V3~  17~=1 End(V,) by 

S(A1 . . . .  , A t )  = q ( P l ) Z l ,  - - -  , f (pt)A,). 

q~ is an isomorphism (Proposition 10 in [5]), and it is easy to check that Sq~ = q0Tt; 
therefore rank T I = rank S = ~=1 dim V/- rank f (pi ). [] 

In Section 2 we prove the following simple uncertainty-type inequality. For abelian 
groups, part (a) of Theorem 1 was observed in [3], and with a simpler proof in [7]. 

For a subset A c G, denote by 1A(X ) the indicator function of A. 
401 

0195-6698/92/050401 + 07 $02.00/0 © 1992 Academic Press Limited 



402 R. Meshulam 

THEOREM 1. Let  0 ~ f : G ---~ C. Then: 
(a) ISupp f l  I~(f) >I IGI. 
(b) Suppose f (1 )  = 1. Then ISupp f l  # ( f )  -- IGI iff n = Supp f is a subgroup of  G, and 
f (x)  = 1H(x)x(x), where X is a 1-dimensional character of  H. 

The bound in Theo rem  1 may sometimes be improved when more  is known on 
Suppf. An example of this with an application to abelian groups is described in [4]. 

Here  we consider another  example,  as follows. Let  G N be the direct product  
G × • • - x G (N times),  and for c e G let AN(G, c) = ((Xl, . . . , XN): Xl" • " X N  = C } .  

Define: 

Z(G, N)  = min{/~(f):  0 ~ f :  G---~ C, Supp f =AN(G , c) for some c E G }. 

;~(G, N) is similarly defined using fi; as before,  £(G,  N) 2 >~ Z(G, N) >I ).(G, N). 
If  G is abelian then K = AN(G, c) is a coset of the subgroup H = An(G, 1) ~ G N. 

Theorem 1 now implies t h a t / ~ ( l r )  =/~(1n)  = (GN: H )  = IGI and ~.(G, N)  = Ial .  
The situation is rather  different when G is non-abelian. In Section 3 we consider the 

case G = Dp.q = 7/p ~< Zq, where p,  q are primes and p I q - 1. 

T H E O R E M  2. q½p(N-1)/2 < ~(Dp,q, N) ~ Z(Dp.q, N) <~ qpN. 

As an application we have: 

COROLLARY 1. If  H c AN(Dp.q, 1 )  is a subgroup of  Dp,q,N then 

N . (Dp,q. H )  = ~ ( 1 , )  ~ ]t(Dp,q, N) >~ q½p(N-1)/2. 

We conclude in Section 4 with some bounds on Z(G, N) for general non-abelian 
groups. 

2. PROOF OF THEOREM l 

Let  A = Suppf. To prove  (a) it suffices, by Proposit ion 1, to show that  rank T~ 
IGI/IAI. 

Let t denote the maximal  cardinality of  a sequence g l , - - - ,  gt ~ G which satisfies 
Agi dy Uj<iAgj for all 2 ~< i ~< t. (Here  Ax = {ax: a ~ A}). Clearly if g l ,  - • • , g t  is such a 
sequence then T ~ ( g l ) , - . . ,  Ti(g,) are linearly independent  in C[G] and so / l ( f ) =  
rank Tf>~t. Now the maximali ty of t implies that U~=lAgi=G; thus i~(f)>~t>~ 
IGI/IAI, which proves (a). 

Proof  of (b): suppose f (x )  = 1/-/(x)x(x), where X is a 1-dimensional character  of H. 
Let  g l , . . . ,  gt be a set of l = (G: H )  representatives for the right cosets of H in G. It  is 
easy to check that {Ti(gi): 1 ~< i~  < l} forms a basis for the image of T i in C[G] and so 
I~(f) = rank T i = (G: H).  

Conversely,  suppose f (1 )  = 1 a n d / ~ ( f )  = [GI/IAI. The proof  of part  (a) implies that 
t=IGI/IA I and that, for any g ~ G ,  either A g = A  or A g A A = • .  (Otherwise 
0 <  lAg AAI < IAI for some g c G. Now choose inductively a maximal sequence 

t g[, - • • , g'r ~ G such that g~ = 1, g~ = g and Ag[ d/: Uj<iAgj for 2 ~< i ~< r. By maximali ty 
Uf=lAg~ = G, and so t>~ r > IGI/IAI, a contradiction.) 

It follows that A is a subgroup of G: if a, b c A ,  then a ~ A b - i a  NA ,  so Ab- la  =A,  
and b-la ~ A. 

Now let 1 = g ~ , . . . ,  gt be representatives for the right cosets of A. The  subspaces 
U/= C[A] .g i  are all invariant under  Ty, and ~ I=1 Ui = C [ G ] -  Hence  rank Ty = 



An uncertainty inequality for groups 403 

(G: A) = 1 implies that rank TtI ~ = 1 for all 1 ~< i ~< l. Taking i = 1 it follows that for 
any y c A ,  T~(y) = h(y)Ti(1  ) for some h ( y )  • C. Thus Z x ~ a f ( x ) x y  = ~xeA h ( y ) f ( x ) x ,  
which easily implies f ( x y )  = f ( x ) f ( y )  for all x, y • A. [] 

3. A N  U N C E R T A I N T Y  I N E Q U A L I T Y  ON DpNq 

Let p, q be primes with p ]q - 1, and let )~ be a (multiplicative) generator of 
7q = 71q - (0}. Write r = (q - 1)/p and ae = )r. 

Cp = (a ) ,  the cyclic group of order p, acts on Cq = (b ) ,  the cyclic group of order  q, 
by b a = b % The semi-direct product  C e D< Cq with respect to this action is denoted by 
Dp,q, and has the following presentation: 

Dp,q  = (a, b: a p = b q = l a- lba  = b ~). 

For x = akb I • Dp,q, let st(x) = a k. 
The complex irreducible representations of Dp,q are as follows: (see p. 94 in [2] for 

the more general case of Frobenius groups): 
( 1 )  Dp,q has p 1-dimensional representations {q0i}~-01 defined by e&(akb *) = ep(jk) ,  
where ep(X) = e 2~ri~/p. 
(2) Let  {~pi}q_- -1 be the (1-dimensional) representations of Cq, 7,j(b t) =eq(f l ) .  The 
induced representations pj = ind Wj may be described as follows. Let  W be the 
p-dimensional complex vector space spanned by {w,: t • Zp}. Define &: Dp.q-+ G L ( W )  
by 

&(akb')(w,)  = eq(jhxt)wt+k. (1) 

All Pi, J•~-q are irreducible and & = & ,  i f f j ' =  o~j for some u. Thus A =  (p j : j  = Z" 
0 ~< m < (q - 1)/p} constitutes all irreducible p-dimensional representations of Dp,q. 

We now prove Theorem 2. For the upper bound note that 

H =  ( b ~ ' , . . . , b ' N ) : ~ , l ~ = - O ( m o d q )  CAN(Dp.q,  1 ) 
i=1 

N is a subgroup of D p ,  q. Thus 

~.(Op q, N)  <~ t ~ ( 1 . )  = N . , (Dp.q. H )  = pqN. 

For the lower bound we first e s t i m a t e / i ( f )  on two restricted classes of functions. 

PROPOSITION 2. Suppose 0 ~ f : N Dp,q--+C satisfies S u p p f  c A N ( D p q ,  1), and 
f (a<bl l ,  . . . , akNb ~) = f ( a  < . . . .  , a kN) whenever IIN=I a~'b ~' = 1. Then # ( f )  >>- (q - 1)p N 
and f~(f) >i (q - 1)p N-I. 

PROOF. For k = ( k l , . . .  , kN) E ~N, | = ( l l , - - - ,  lN) e Z N, we abbreviate akbl= 
[I u ak, bti i=1 

By repeated applications of the defining relations of Dp,q we obtain: 

N N 

akb j = aAb B where A ~2 ki, B ~2 u = = /~o~ x .... ' ". (2) 
i=1 i=1 

For a fixed k • K = {(k, . . . . .  ku)  • ~ ; :  27=1 ki ~-- 0 (modp)} ,  let L(k) = {! • Z~v: akb '= 
1}. By (2), 

N--1 

I • L (k)  iff lu -= - ~ ]  l,o~ -E~=' ks (mod q).  (3) 
i=1 
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Keeping with previous notation, let pj be an irreducible p-dimensional representation 
of Dp, q and denote 

N 

F/(k) = ~ @ pj(b") e End(W®U). 
leL(k)  i=1  

Let @/N=I w~, e W ®n. Using (1) and (3) we obtain 

w,,)= N 

E i~=1 e q(jli°rt')wti 
l~L(k) "= 

= ( ~ ,  eq(j ~ lioct') )W,l @ " " " ® wtN 
\ l e L ( k )  \ i=1  

/N--1 q--1 ) 

=(H E eq(]li(°(t'-a'tN-E~='k~)) w t l @ ' ' ' @ w t N .  
i = l  li=O 

Thus Fj(k)(@/u=l wt,) = qN- ,  @ iU=l wt, if 
i 

t~ ~ tN - ~2 k, (modp) for all 1 <~ i ~< N (4) 
s = l  

and k i - t i _ l - t i ( m o d p )  for 2~<i ~N.  (5) 

and is 0 otherwise. 
We rewrite (4) as 

kl -= tu -- tl (mod p) 

Now, by the assumptions on f :  

f ( p j ® . . . ® p j ) =  ~" f ( a k , , . . . , a  kN) ~ .  @ Pj(ak'b t') 
k~K IE L(k) i=1 

N 
= ~ f ( a k ' , . . . ,  a k') @ pj(a*') .Fj(k) .  (6) 

k~K i=1 

Combining (5) and (6), we obtain 

N 

= qN-i f (a tu- t l ,  . . . , a tu '-'~)pj(a '~-t') ~ . . -  ® pj(a ~N-'-'N w,~ 

= qU-lf(atU-~', a t l - t 2  . . . .  , a t'` ~-tN)wt,, ® wt. ® ' ' "  ~ wt,,_,. (7) 

Now, by assumption, f ( a  k', . . . , a kN) 4= 0 for some k c K, so (7) implies that f ( p j  ® 
•--®pj) i s l - l o n  

Span{i~_i w;~-i,,- .... k , : k e Z p ) C  W ®N. 

Therefore rank f (pj ® .  - . ® pj) >~ p,  and so 

/~(f) >~ ~2 (deg pj)N rank f (pi @ . . .  ® pj) ~ (q _ 1)pN. 
p j e A  

Similarly, f i ( f )  >! (q - 1)p N-1. [] 

For a function f :  D~q--~C and x, y 6Dp.q, let f~.y: D~2--~C be defined by 
f x , y ( X l  . . . .  , xu-2) = f ( x l  . . . . .  XN__2, x, y). 
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PROPOSITION 3. Let  f :  u O p,q -'--> C satisfy Supp f C A N( Op,q, c ), and suppose there exist 

ul, Uz, Vl, v2 ~ Dp.q such that: 
(1) ulu2 = v w 2  = c' and ~(ui)  = :r(vi) for  i = 1, 2. 

N - - 2  
(2) f~ .... (x, . . . . .  Xu-2) -:~fv .... (Xl, . . .  , XN_2) on Op.q . 
Then f i ( f )  >~ p~.(Dp.q, N - 2). 

N-2 PROOF. Define g: Dp,q ---~C by 

g ( x , ,  . . . , X N _ 2 )  = f u l . u 2 ( X 1  . . . .  , X N - - 2 )  - -  f v  . . . .  ( X l , " " " '  X N - - : ) . I  

and let E = Supp g = { ~1 ~ Irr(D~,q2): g ( f / ) ~  0}. 
Clearly S u p p g  ~AN_2(Op,q, C(C') -1) and g ~ 0 ,  so: 

~', deg f /=  f i(g) >i 3,(Dp.q, U - 2). 
fTeE 

Now fix a representation fl:DD~NqZ--*GL(U), 
h: D~.q---~ E n d ( U )  by h(x,  y)  =f~.y(f/). 

For any tiu-1 ® tin ~ Irr(DZ,q), we have 

f(ti~ ® "  ® tiN) 

(8) 

f] -- ti~ ® " " " ® tiN-: c E, and define 

= E E fx,Y( x l ' ' ' ' '  XN--2)tiI(X1) ~ ' ' "  ~ tiN--2(XN-2) @ tiN--l(X) @ tiN(Y) 
x , y  XI , . . . ,XN 2 

= ~] f~'.y(f/) ® t i u - , ( x )  ® t iu(Y)  = ft(tiU--1 (~ tiN)" (9) 
x,y 

CLAIM. There exists t iu-i  ® tin ~ Irr(D2.q) such that deg(tiN_j ® tiN) ~>P, and 
/~(tiN--1 (~ tiN) @ O. 

PROOF. Otherwise Supp f~ c { % ® q)j e lrr( D2.q): O <~ i, j <~ p - 1} (where (qoi}f-d 
= ~ i . j = O  cpi(x)q)j(y)Aii for are the 1-dimensional representations of Dp,q), and so h(x,  y )  p- i  

some Aq's  in E n d ( U ) .  
Now Jr(ui)= ~r(vi) implies that 99(ue)= cP(vi) for any 1-dimensional representation 

q~, and so 

fu .... (9)  = h(Ul, u2) = h(Vl, v2) =fm,,z(O), 

contradicting the choice of 9- [] 

The claim, together with (8) and (9), imply 

/ / ( f )  = ~ (deg(ti1 @ " "  @ ON): ti, C Irr (Dp.q) f ( t i  I ( ~ - ' .  (~ ON) :/=0} 

i> ~] (deg fl)P ~p~,(Dp,q, N -- 2). [] 

We now prove Theorem 2 by induction on N. First note that by theorem 1 
Z(Dp,q, N )  >I ]DNqI/IAN(Dp q, c)l = pq. In particular, ~(Dp.q, 1)/> V ~  and 
~(Op.q, 2) >~ Q-p--~p~' " 

Now suppose that N>~3 and f :DNq--->C satisfies S u p p f c A N ( D e . q ,  c). Clearly 
g(xD . . . , Xlv) = f (xa, . . . , XN-1, XNC) satisfies Supp g c AN(Dp,q, 1), and f i ( f )  = fi(g). 
We may thus assume that f itself satisfies S u p p f  ~ mN(Dp,q, 1). 

We consider two possibilities. 
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Case 1. 
:r(ui) = :r(vi),  i = 1, 2, then 

f ( x l  . . . .  , x , -1 ,  Ul, u2, xj+2, . . . ,  XN) = f ( x l ,  . . . ,  X j _ l ,  U1, V2, X1+2, . . -  , XN) 

for all x l  . . . . .  x j -1 ,  xj+2, . . . , xN ~ Dr. q. 
In case 1 we repeatedly apply (a~'br)(aki+'b ti+') = a~'(ak'+lb r~ki÷~+l'+') to obtain: 

f (ag 'b" ,  . . . , akNb 'N) = f (ag' ,  . . . , agNbe), (10) 
N k VlN l 0{ Es=i+' s where e = Lai=l i 

Equation (10) implies that f (ak lb~ ' ,  . . . , ak~b t~) = f ( a  k', . . . .  a ~ )  whenever 
I ~Ni:I ak~bt' -- 1. Therefore ,  by Proposition 2, fit(f)/> (q - 1)p u-1 > q~2p (N-1)/2. 

Case 2. There  exist 1 ~<j ~< N - 1 and Ul, u2, Vl, v2 e Dp,q, which satisfy u lu2  ~- 

v l v 2  and ~r(u~) = ~r(v~), i = 1, 2, and such that 

f ( X l  . . . .  , Xj--1, U l ,  U2, Xj+2,  . . . , X N )  ~]~ f ( x 1  . . . . .  X j - 1 ,  IJl ,  02 ,  Xj+2 . . . .  , XN) .  

In this case define g(z~, . . . ,  ZN) = f ( z N  j, - - . ,  ZN, Z~ . . . . .  ZN--j--1). Clearly, S u p p  g 

AN(Dp,q, 1) and g ( z l ,  . • . ,  zN-2,  Ul, u2) ~ g ( z l  . . . .  , zN-2 ,  Vl,  v2), so by Proposition 3 
and the induction hypothesis 

f i t ( f )  : fit(g) >I p~.(Op,q, N - 2) ~> q½p(N-1)/2. [] 

For any I < ~ j < ~ N - 1  and ul ,  u2, v l ,  u2EOp,q, if UlU2=~Jl~32 and 

4. ON )~(G, N) FOR GENERAL NON-ABELIAN GROUPS 

We first note the following upper bounds on ; t(G, N): 
(1) If A is an abelian subgroup of G, then H = {(xl, • . .  , xN) e AN :  Xl ,  • . .  , XN = 1} is 
a subgroup of G u, and so 

X(G, N) < t t ( ln )  = (G: H)  = IA[ (G: A )  N. 

(2) Let  f ( x )  denote the indicator function of A N ( G ,  1). A simple computation using 
the orthogonality relations yields: 

PROPOSITION 4. X(G, N) ~< i t ( f )  = F~=I n2i N, where  n l ,  • . • , n, are the degrees o f  the 

irreducible representat ions  o f  G. 

Note that both bounds exceed b ( G )  N, where b ( G ) =  max{ni: 1 < i ~< t}. For a lower 
bound we have the following: 

THEOREM 3. For  any  n o n -a b e l i a n  g r o u p  G, there exists c ( G )  > 1 such  that  A(G,  N )  >i 
c ( G )  n. 

The proof uses the approach of Theorem 2, but the c ( G )  obtained is usually very 
small. For some classes of groups we have a uniform bound; i.e. if G is non-solvable 
then ~t(G, N)/> V~ N. We defer the details to a subsequent paper. 
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