An Uncertainty Inequality for Groups of Order pq

ROY MESHULAM

We are concerned with some relations between the support of a function defined on a finite group and the support of its Fourier transform. Let $D_{p,q}$ be the non-commutative group of order pq, where p, q are primes, and p | q - 1. We prove an uncertainty-type inequality for $D_{p,q}^N = \{(x_1, \ldots, x_N): x_i \in D_{p,q}\}$, which has the following application: If H is a subgroup of $D_{p,q}^N$ and $x_1 \cdots x_N = 1$ for all $(x_1, \ldots, x_N) \in H$, then $(D_{p,q}^N : H) \ge q^{\frac{1}{2}} p^{(N-1)/2}$.

1. INTRODUCTION

The classical uncertainty inequality and some of its extensions assert (roughly) that a function and its Fourier transform cannot both be concentrated on small sets (see [1] for the classical inequality, and [6] for a recent generalization).

In this note we are concerned with discrete uncertainty type inequalities for finite groups.

Let G be a finite group, and let $Irr(G) = \{\rho_1, \ldots, \rho_i\}$ denote the complex irreducible representations of G, where $\rho_i: G \to GL(V_i)$ and deg $\rho_i = \dim V_i = n_i$.

For a function $f: G \to \mathbb{C}$ and a representation $\rho: G \to GL(V)$, let $\hat{f}(\rho) = \sum_{x \in G} f(x)\rho(x) \in End(V)$ denote the Fourier transform of f at ρ . This definition may be extended to functions $g: G \to End(U)$, where U is a complex vector space, by $\hat{g}(\rho) = \sum_{x \in G} f(x) \otimes \rho(x) \in End(U \otimes V)$.

Let $Supp f = \{x: f(x) \neq 0\}$ and $Supp \hat{f} = \{\rho \in Irr(G): \hat{f}(\rho) \neq 0\}$. We shall use $\mu(f) = \sum_{i=1}^{r} \dim V_i \cdot rank \hat{f}(\rho_i)$ and $\tilde{\mu}(f) = \sum \{\dim V_i: \hat{f}(\rho_i) \neq 0\}$ as measures of $Supp \hat{f}$. Clearly, $\tilde{\mu}(f) \leq \mu(f) \leq \tilde{\mu}(f)^2$, and when G is abelian, $\tilde{\mu}(f) = \mu(f) = |Supp \hat{f}|$.

An alternative definition of $\mu(f)$ in terms of the group algebra $\mathbb{C}[G]$ is as follows. Let $u = \sum_{x \in G} f(x)x \in \mathbb{C}[G]$ and define a linear transformation $T_f: \mathbb{C}[G] \to \mathbb{C}[G]$ by $T_f(v) = uv$.

PROPOSITION 1. $\mu(f) = rank T_f$.

PROOF. Define $\varphi \colon \mathbb{C}[G] \to \prod_{i=1}^{t} End(V_i)$ by

$$\varphi\left(\sum_{x\in G}h(x)x\right)=(\hat{h}(\rho_1),\ldots,\hat{h}(\rho_t))$$

and $S: \prod_{i=1}^{t} End(V_i) \rightarrow \prod_{i=1}^{t} End(V_i)$ by

$$S(A_1,\ldots,A_t) = (\hat{f}(\rho_1)A_1,\ldots,\hat{f}(\rho_t)A_t).$$

 φ is an isomorphism (Proposition 10 in [5]), and it is easy to check that $S\varphi = \varphi T_f$; therefore rank $T_f = rank S = \sum_{i=1}^t \dim V_i \cdot rank \hat{f}(\rho_i)$.

In Section 2 we prove the following simple uncertainty-type inequality. For abelian groups, part (a) of Theorem 1 was observed in [3], and with a simpler proof in [7].

For a subset $A \subset G$, denote by $1_A(x)$ the indicator function of A.

0195-6698/92/050401 + 07 \$02.00/0

THEOREM 1. Let $0 \neq f: G \rightarrow \mathbb{C}$. Then: (a) $|Supp f| \mu(f) \ge |G|$.

(b) Suppose f(1) = 1. Then $|\text{Supp } f| \mu(f) = |G|$ iff H = Supp f is a subgroup of G, and $f(x) = 1_H(x)\chi(x)$, where χ is a 1-dimensional character of H.

The bound in Theorem 1 may sometimes be improved when more is known on Supp f. An example of this with an application to abelian groups is described in [4].

Here we consider another example, as follows. Let G^N be the direct product $G \times \cdots \times G$ (N times), and for $c \in G$ let $A_N(G, c) = \{(x_1, \ldots, x_N) : x_1 \cdots x_N = c\}$. Define:

$$\lambda(G, N) = \min\{\mu(f): 0 \neq f: G \to \mathbb{C}, Supp f \subset A_N(G, c) \text{ for some } c \in G\}.$$

 $\tilde{\lambda}(G, N)$ is similarly defined using $\tilde{\mu}$; as before, $\tilde{\lambda}(G, N)^2 \ge \lambda(G, N) \ge \tilde{\lambda}(G, N)$. If G is abelian then $K = A_N(G, c)$ is a coset of the subgroup $H = A_N(G, 1) \subset G^N$.

Theorem 1 now implies that $\mu(1_K) = \mu(1_H) = (G^N : H) = |G|$ and $\lambda(G, N) = |G|$.

The situation is rather different when G is non-abelian. In Section 3 we consider the case $G = D_{p,q} = \mathbb{Z}_p \ltimes \mathbb{Z}_q$, where p, q are primes and $p \mid q - 1$.

Theorem 2. $q^{\frac{1}{2}}p^{(N-1)/2} \leq \tilde{\lambda}(D_{p,q}, N) \leq \lambda(D_{p,q}, N) \leq qp^{N}$.

As an application we have:

COROLLARY 1. If $H \subset A_N(D_{p,q}, 1)$ is a subgroup of $D_{p,q}^N$, then $(D_{p,q}^N; H) = \mu(1_H) \ge \lambda(D_{p,q}, N) \ge q^{\frac{1}{2}} p^{(N-1)/2}.$

We conclude in Section 4 with some bounds on $\lambda(G, N)$ for general non-abelian groups.

2. Proof of Theorem 1

Let A = Supp f. To prove (a) it suffices, by Proposition 1, to show that rank $T_f \ge |G|/|A|$.

Let t denote the maximal cardinality of a sequence $g_1, \ldots, g_t \in G$ which satisfies $Ag_i \notin \bigcup_{j < i} Ag_j$ for all $2 \le i \le t$. (Here $Ax = \{ax : a \in A\}$). Clearly if g_1, \ldots, g_t is such a sequence then $T_f(g_1), \ldots, T_f(g_t)$ are linearly independent in $\mathbb{C}[G]$ and so $\mu(f) = rank T_f \ge t$. Now the maximality of t implies that $\bigcup_{i=1}^t Ag_i = G$; thus $\mu(f) \ge t \ge |G|/|A|$, which proves (a).

Proof of (b): suppose $f(x) = 1_H(x)\chi(x)$, where χ is a 1-dimensional character of H. Let g_1, \ldots, g_l be a set of l = (G: H) representatives for the right cosets of H in G. It is easy to check that $\{T_f(g_i): 1 \le i \le l\}$ forms a basis for the image of T_f in $\mathbb{C}[G]$ and so $\mu(f) = rank T_f = (G: H)$.

Conversely, suppose f(1) = 1 and $\mu(f) = |G|/|A|$. The proof of part (a) implies that t = |G|/|A| and that, for any $g \in G$, either Ag = A or $Ag \cap A = \emptyset$. (Otherwise $0 < |Ag \cap A| < |A|$ for some $g \in G$. Now choose inductively a maximal sequence $g'_1, \ldots, g'_r \in G$ such that $g'_1 = 1$, $g'_2 = g$ and $Ag'_i \notin \bigcup_{j < i} Ag'_j$ for $2 \le i \le r$. By maximality $\bigcup_{i=1}^r Ag'_i = G$, and so $t \ge r > |G|/|A|$, a contradiction.)

It follows that A is a subgroup of G: if $a, b \in A$, then $a \in Ab^{-1}a \cap A$, so $Ab^{-1}a = A$, and $b^{-1}a \in A$.

Now let $1 = g_1, \ldots, g_l$ be representatives for the right cosets of A. The subspaces $U_i = \mathbb{C}[A] \cdot g_i$ are all invariant under T_f , and $\bigoplus_{i=1}^l U_i = \mathbb{C}[G]$. Hence rank $T_f = C[G]$.

(G: A) = l implies that rank $T_{f \mid U_i} = 1$ for all $1 \le i \le l$. Taking i = 1 it follows that for any $y \in A$, $T_f(y) = h(y)T_f(1)$ for some $h(y) \in \mathbb{C}$. Thus $\sum_{x \in A} f(x)xy = \sum_{x \in A} h(y)f(x)x$, which easily implies f(xy) = f(x)f(y) for all $x, y \in A$.

3. An Uncertainty Inequality on $D_{p,q}^N$

Let p, q be primes with p | q - 1, and let λ be a (multiplicative) generator of $\mathbb{Z}_q^* = \mathbb{Z}_q - \{0\}$. Write r = (q - 1)/p and $\alpha = \lambda'$.

 $C_p = \langle a \rangle$, the cyclic group of order p, acts on $C_q = \langle b \rangle$, the cyclic group of order q, by $b^a = b^{\alpha}$. The semi-direct product $C_p \ltimes C_q$ with respect to this action is denoted by $D_{p,q}$, and has the following presentation:

$$D_{p,q} = \langle a, b : a^p = b^q = 1 \quad a^{-1}ba = b^{\alpha} \rangle.$$

For $x = a^k b^l \in D_{p,q}$, let $\pi(x) = a^k$.

The complex irreducible representations of $D_{p,q}$ are as follows: (see p. 94 in [2] for the more general case of Frobenius groups):

(1) $D_{p,q}$ has p 1-dimensional representations $\{\varphi_j\}_{j=0}^{p-1}$ defined by $\varphi_j(a^k b^l) = e_p(jk)$, where $e_p(x) = e^{2\pi i x/p}$.

(2) Let $\{\psi_j\}_{j=0}^{q-1}$ be the (1-dimensional) representations of C_q , $\psi_j(b^l) = e_q(jl)$. The induced representations $\rho_j = ind \psi_j$ may be described as follows. Let W be the p-dimensional complex vector space spanned by $\{w_i: t \in \mathbb{Z}_p\}$. Define $\rho_j: D_{p,q} \to GL(W)$ by

$$\rho_j(a^k b^l)(w_t) = e_q(j l \alpha^t) w_{t+k}.$$
(1)

All ρ_j , $j \in \mathbb{Z}_q^*$ are irreducible and $\rho_j \simeq \rho_{j'}$ iff $j' = \alpha^{\mu} j$ for some u. Thus $\Lambda = \{\rho_j : j = \lambda^m \ 0 \le m < (q-1)/p\}$ constitutes all irreducible p-dimensional representations of $D_{p,q}$.

We now prove Theorem 2. For the upper bound note that

$$H = \left\{ (b^{l_1}, \ldots, b^{l_N}) \colon \sum_{i=1}^N l_i \equiv 0 \pmod{q} \right\} \subset A_N(D_{p,q}, 1)$$

is a subgroup of $D_{p,q}^N$. Thus

$$\lambda(D_{p,q}, N) \leq \mu(1_H) = (D_{p,q}^N; H) = pq^N.$$

For the lower bound we first estimate $\tilde{\mu}(f)$ on two restricted classes of functions.

PROPOSITION 2. Suppose $0 \neq f: D_{p,q}^N \to \mathbb{C}$ satisfies $Supp f \subset A_N(D_{p,q}, 1)$, and $f(a^{k_1}b^{l_1}, \ldots, a^{k_N}b^{l_N}) = f(a^{k_1}, \ldots, a^{k_N})$ whenever $\prod_{i=1}^N a^{k_i}b^{l_i} = 1$. Then $\mu(f) \ge (q-1)p^N$ and $\tilde{\mu}(f) \ge (q-1)p^{N-1}$.

PROOF. For $\mathbf{k} = (k_1, \ldots, k_N) \in \mathbb{Z}_p^N$, $\mathbf{l} = (l_1, \ldots, l_N) \in \mathbb{Z}_q^N$, we abbreviate $a^{\mathbf{k}}b^{\mathbf{l}} = \prod_{i=1}^N a^{k_i} b^{l_i}$.

By repeated applications of the defining relations of $D_{p,q}$ we obtain:

$$a^{\mathbf{k}}b^{\mathbf{l}} = a^{A}b^{B}$$
 where $A = \sum_{i=1}^{N} k_{i}, \quad B = \sum_{i=1}^{N} l_{i}\alpha^{\sum_{s=i+1}^{N} k_{s}}.$ (2)

For a fixed $\mathbf{k} \in K = \{(k_1, ..., k_N) \in \mathbb{Z}_p^N : \sum_{i=1}^N k_i \equiv 0 \pmod{p}\}, \text{ let } L(\mathbf{k}) = \{\mathbf{l} \in \mathbb{Z}_q^N : a^{\mathbf{k}}b^{\mathbf{l}} = 1\}.$ By (2),

$$\mathbf{l} \in L(\mathbf{k}) \quad \text{iff} \quad l_N \equiv -\sum_{i=1}^{N-1} l_i \alpha^{-\sum_{s=1}^i k_s} \pmod{q}. \tag{3}$$

Keeping with previous notation, let ρ_j be an irreducible *p*-dimensional representation of $D_{p,q}$ and denote

$$F_j(\mathbf{k}) = \sum_{\mathbf{l} \in L(\mathbf{k})} \bigotimes_{i=1}^N \rho_j(b^{l_i}) \in End(W^{\otimes N}).$$

Let $\bigotimes_{i=1}^{N} w_{t_i} \in W^{\otimes N}$. Using (1) and (3) we obtain

$$F_{j}(\mathbf{k})\left(\bigotimes_{i=1}^{N} w_{t_{i}}\right) = \sum_{\mathbf{l}\in L(\mathbf{k})} \bigotimes_{i=1}^{N} e_{q}(jl_{i}\alpha^{t_{i}})w_{t_{i}}$$
$$= \left(\sum_{\mathbf{l}\in L(\mathbf{k})} e_{q}\left(j\sum_{i=1}^{N} l_{i}\alpha^{t_{i}}\right)\right)w_{t_{1}}\otimes\cdots\otimes w_{t_{N}}$$
$$= \left(\prod_{i=1}^{N-1}\sum_{l_{i}=0}^{q-1} e_{q}(jl_{i}(\alpha^{t_{i}} - \alpha^{t_{N}-\sum_{s=1}^{i}k_{s}}))\right)w_{t_{1}}\otimes\cdots\otimes w_{t_{N}}.$$

Thus $F_j(\mathbf{k})(\bigotimes_{i=1}^N w_{t_i}) = q^{N-1} \bigotimes_{i=1}^N w_{t_i}$ if

$$t_i \equiv t_N - \sum_{s=1}^{i} k_s \pmod{p} \quad \text{for all } 1 \le i \le N \tag{4}$$

and is 0 otherwise.

We rewrite (4) as

$$k_1 \equiv t_N - t_1 \pmod{p} \quad \text{and} \quad k_i \equiv t_{i-1} - t_i \pmod{p} \quad \text{for } 2 \le i \le N.$$
(5)

Now, by the assumptions on f:

$$\hat{f}(\rho_j \otimes \cdots \otimes \rho_j) = \sum_{\mathbf{k} \in K} f(a^{k_1}, \dots, a^{k_N}) \sum_{\mathbf{l} \in L(\mathbf{k})} \bigotimes_{i=1}^N \rho_j(a^{k_i} b^{l_i})$$
$$= \sum_{\mathbf{k} \in K} f(a^{k_1}, \dots, a^{k_N}) \bigotimes_{i=1}^N \rho_j(a^{k_i}) \cdot F_j(\mathbf{k}). \quad (6)$$

Combining (5) and (6), we obtain

$$\hat{f}(\rho_{j}\otimes\cdots\otimes\rho_{j})\left(\bigotimes_{i=1}^{N}w_{t_{i}}\right)$$

$$=q^{N-1}f(a^{t_{N}-t_{1}},\ldots,a^{t_{N-1}-t_{N}})\rho_{j}(a^{t_{N}-t_{1}})\otimes\cdots\otimes\rho_{j}(a^{t_{N-1}-t_{N}})\left(\bigotimes_{i=1}^{N}w_{t_{i}}\right)$$

$$=q^{N-1}f(a^{t_{N}-t_{1}},a^{t_{1}-t_{2}},\ldots,a^{t_{N-1}-t_{N}})w_{t_{N}}\otimes w_{t_{1}}\otimes\cdots\otimes w_{t_{N-1}}.$$
(7)

Now, by assumption, $f(a^{k_1}, \ldots, a^{k_N}) \neq 0$ for some $\mathbf{k} \in K$, so (7) implies that $\hat{f}(\rho_j \otimes \cdots \otimes \rho_j)$ is 1-1 on

$$Span\left\{\bigotimes_{i=1}^{N} w_{k-k_{1}-\cdots-k_{i}}: k \in \mathbb{Z}_{p}\right\} \subset W^{\otimes N}$$

Therefore rank $\hat{f}(\rho_i \otimes \cdots \otimes \rho_i) \ge p$, and so

$$\mu(f) \ge \sum_{\rho_j \in \Lambda} (\deg \rho_j)^N \operatorname{rank} \hat{f}(\rho_j \otimes \cdots \otimes \rho_j) \ge (q-1)p^N.$$
$$\tilde{u}(f) \ge (q-1)p^{N-1}.$$

Similarly, $\tilde{\mu}(f) \ge (q-1)p^{N-1}$.

For a function $f: D_{p,q}^N \to \mathbb{C}$ and $x, y \in D_{p,q}$, let $f_{x,y}: D_{p,q}^{N-2} \to \mathbb{C}$ be defined by $f_{x,y}(x_1, \ldots, x_{N-2}) = f(x_1, \ldots, x_{N-2}, x, y)$.

PROPOSITION 3. Let $f: D_{p,q}^{N} \to \mathbb{C}$ satisfy $Supp f \subset A_{N}(D_{p,q}, c)$, and suppose there exist $u_{1}, u_{2}, v_{1}, v_{2} \in D_{p,q}$ such that: (1) $u_{1}u_{2} = v_{1}v_{2} = c'$ and $\pi(u_{i}) = \pi(v_{i})$ for i = 1, 2. (2) $f_{u_{1},u_{2}}(x_{1}, \ldots, x_{N-2}) \neq f_{v_{1},v_{2}}(x_{1}, \ldots, x_{N-2})$ on $D_{p,q}^{N-2}$. Then $\tilde{\mu}(f) \geq p \tilde{\lambda}(D_{p,q}, N-2)$.

PROOF. Define $g: D_{p,q}^{N-2} \to \mathbb{C}$ by

$$g(x_1,\ldots,x_{N-2})=f_{u_1,u_2}(x_1,\ldots,x_{N-2})-f_{v_1,v_2}(x_1,\ldots,x_{N-2}),$$

and let $E = \operatorname{Supp} \hat{g} = \{ \bar{\eta} \in \operatorname{Irr}(D_{p,q}^{N-2}) : \hat{g}(\bar{\eta}) \neq 0 \}.$

Clearly Supp $g \subset A_{N-2}(D_{p,q}, c(c')^{-1})$ and $g \neq 0$, so:

$$\sum_{\bar{\eta}\in E} \deg \bar{\eta} = \tilde{\mu}(g) \ge \tilde{\lambda}(D_{p,q}, N-2).$$
(8)

Now fix a representation $\bar{\eta}: D_{p,q}^{N-2} \to GL(U), \quad \bar{\eta} = \eta_1 \otimes \cdots \otimes \eta_{N-2} \in E$, and define $h: D_{p,q}^2 \to End(U)$ by $h(x, y) = f_{x,y}(\bar{\eta})$. For any $n \in Irr(D^2)$, we have

For any $\eta_{N-1} \otimes \eta_N \in Irr(D^2_{p,q})$, we have

$$\widehat{f}(\eta_1 \otimes \cdots \otimes \eta_N) = \sum_{x,y} \sum_{x_1,\dots,x_{N-2}} f_{x,y}(x_1,\dots,x_{N-2})\eta_1(x_1) \otimes \cdots \otimes \eta_{N-2}(x_{N-2}) \otimes \eta_{N-1}(x) \otimes \eta_N(y)$$
$$= \sum_{x,y} \widehat{f_{x,y}}(\widehat{\eta}) \otimes \eta_{N-1}(x) \otimes \eta_N(y) = \widehat{h}(\eta_{N-1} \otimes \eta_N).$$
(9)

CLAIM. There exists $\eta_{N-1} \otimes \eta_N \in Irr(D_{p,q}^2)$ such that $\deg(\eta_{N-1} \otimes \eta_N) \ge p$, and $\hat{h}(\eta_{N-1} \otimes \eta_N) \ne 0$.

PROOF. Otherwise Supp $\hat{h} \subset \{\varphi_i \otimes \varphi_j \in Irr(D_{p,q}^2): 0 \le i, j \le p-1\}$ (where $\{\varphi_i\}_{i=0}^{p-1}$ are the 1-dimensional representations of $D_{p,q}$), and so $h(x, y) = \sum_{i,j=0}^{p-1} \varphi_i(x)\varphi_j(y)A_{ij}$ for some A_{ij} 's in End(U).

Now $\pi(u_i) = \pi(v_i)$ implies that $\varphi(u_i) = \varphi(v_i)$ for any 1-dimensional representation φ , and so

$$\hat{f}_{u_1,u_2}(\bar{\eta}) = h(u_1, u_2) = h(v_1, v_2) = \hat{f}_{v_1,v_2}(\bar{\eta}),$$

contradicting the choice of $\bar{\eta}$.

The claim, together with (8) and (9), imply

$$\begin{split} \tilde{\mu}(f) &= \sum \left\{ \deg(\eta_1 \otimes \cdots \otimes \eta_N) : \eta_i \in Irr(D_{p,q}) \, \hat{f}(\eta_1 \otimes \cdots \otimes \eta_N) \neq 0 \right\} \\ &\geq \sum_{\bar{\eta} \in E} (\deg \bar{\eta}) p \geq p \, \tilde{\lambda}(D_{p,q}, N-2). \quad \Box \end{split}$$

We now prove Theorem 2 by induction on N. First note that by theorem 1 $\lambda(D_{p,q}, N) \ge |D_{p,q}^N|/|A_N(D_{p,q}, c)| = pq$. In particular, $\tilde{\lambda}(D_{p,q}, 1) \ge \sqrt{pq}$ and $\tilde{\lambda}(D_{p,q}, 2) \ge \sqrt{pq}$.

Now suppose that $N \ge 3$ and $f: D_{p,q}^N \to \mathbb{C}$ satisfies $Supp f \subset A_N(D_{p,q}, c)$. Clearly $g(x_1, \ldots, x_N) = f(x_1, \ldots, x_{N-1}, x_N c)$ satisfies $Supp g \subset A_N(D_{p,q}, 1)$, and $\tilde{\mu}(f) = \tilde{\mu}(g)$. We may thus assume that f itself satisfies $Supp f \subset A_N(D_{p,q}, 1)$.

We consider two possibilities.

Case 1. For any $1 \le j \le N-1$ and u_1 , u_2 , v_1 , $v_2 \in D_{p,q}$, if $u_1u_2 = v_1v_2$ and $\pi(u_i) = \pi(v_i), i = 1, 2,$ then

$$f(x_1,\ldots,x_{j-1},u_1,u_2,x_{j+2},\ldots,x_N) = f(x_1,\ldots,x_{j-1},v_1,v_2,x_{j+2},\ldots,x_N)$$

for all $x_1, \ldots, x_{j-1}, x_{j+2}, \ldots, x_N \in D_{p,q}$. In case 1 we repeatedly apply $(a^{k_i}b^{l'})(a^{k_{i+1}}b^{l_{i+1}}) = a^{k_i}(a^{k_{i+1}}b^{l'a^{k_{i+1}}+l_{i+1}})$ to obtain:

$$f(a^{k_1}b^{l_1},\ldots,a^{k_N}b^{l_N}) = f(a^{k_1},\ldots,a^{k_N}b^{e}),$$
(10)

where $e = \sum_{i=1}^{N} l_i \alpha^{\sum_{s=i+1}^{N} k_s}$.

Equation (10) implies that $f(a^{k_1}b^{l_1},\ldots,a^{k_N}b^{l_N}) = f(a^{k_1},\ldots,a^{k_N})$ whenever $\prod_{i=1}^{N} a^{k_i} b^{l_i} = 1$. Therefore, by Proposition 2, $\tilde{\mu}(f) \ge (q-1)p^{N-1} > q^{\frac{1}{2}}p^{(N-1)/2}$.

Case 2. There exist $1 \le j \le N-1$ and $u_1, u_2, v_1, v_2 \in D_{p,q}$, which satisfy $u_1u_2 =$ v_1v_2 and $\pi(u_i) = \pi(v_i)$, i = 1, 2, and such that

$$f(x_1,\ldots,x_{j-1},u_1,u_2,x_{j+2},\ldots,x_N) \neq f(x_1,\ldots,x_{j-1},v_1,v_2,x_{j+2},\ldots,x_N)$$

In this case define $g(z_1, \ldots, z_N) = f(z_{N-i}, \ldots, z_N, z_1, \ldots, z_{N-i-1})$. Clearly, Supp $g \subset I$ $A_N(D_{p,q}, 1)$ and $g(z_1, \ldots, z_{N-2}, u_1, u_2) \neq g(z_1, \ldots, z_{N-2}, v_1, v_2)$, so by Proposition 3 and the induction hypothesis

$$\tilde{\mu}(f) = \tilde{\mu}(g) \ge p \tilde{\lambda}(D_{p,q}, N-2) \ge q^{\frac{1}{2}} p^{(N-1)/2}.$$

4. On $\lambda(G, N)$ for General Non-Abelian Groups

We first note the following upper bounds on $\lambda(G, N)$: (1) If A is an abelian subgroup of G, then $H = \{(x_1, \ldots, x_N) \in A^N : x_1, \ldots, x_N = 1\}$ is a subgroup of G^N , and so

$$\lambda(G, N) \le \mu(1_H) = (G: H) = |A| (G: A)^N.$$

(2) Let f(x) denote the indicator function of $A_N(G, 1)$. A simple computation using the orthogonality relations yields:

PROPOSITION 4. $\lambda(G, N) \leq \mu(f) = \sum_{i=1}^{t} n_i^{2N}$, where n_1, \ldots, n_t are the degrees of the irreducible representations of G.

Note that both bounds exceed $b(G)^N$, where $b(G) = \max\{n_i: 1 \le i \le t\}$. For a lower bound we have the following:

THEOREM 3. For any non-abelian group G, there exists c(G) > 1 such that $\lambda(G, N) \ge$ $c(G)^N$.

The proof uses the approach of Theorem 2, but the c(G) obtained is usually very small. For some classes of groups we have a uniform bound; i.e. if G is non-solvable then $\lambda(G, N) \ge \sqrt{2^N}$. We defer the details to a subsequent paper.

ACKNOWLEDGEMENT

This research was supported by Technion V. P. R. Grant No. 100-854.

References

^{1.} H. Dym and H. P. McKean, Fourier Series and Integrals, Academic Press, New York, 1972.

^{2.} I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.

- 3. J. Kahn and R. Meshulam, On mod-p transversals, Combinatorica, 11 (1991), 17-22.
- 4. R. Meshulam, An uncertainty inequality and zero subsums, Discr. Math. 84 (1990), 197-200.
- 5. J.-P. Serre, Linear Representations of Finite Groups, Springer Verlag, New York, 1977.
- 6. K. T. Smith, The uncertainty principle on groups, IMA preprint series, 402, 1988.
- 7. M. Szegedy, Private communication, 1989.

Received 20 August 1991 and accepted in revised form 5 March 1992

ROY MESHULAM Department of Mathematics, Technion, Haifa 32000, Israel