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Let G be a finite abelian group, and let m be the maximal order of elements in G. It is shown 

that if s>m 
( 

l+loglcl 
1 m ’ 

then any sequence a,, . , a, of elements in G, has a non-empty 

subsequence which sums to zero. The result is a consequence of an inequality for the finite 
Fourier transform. 

1. Introduction 

For a finite abelian group G, let s(G) denote the maximal s for which there 
exists a sequence al, . . . , a,~GsuchthatCi,,ai#Oforall~#Ic{l,...,s}. 

Olson [4], addressing a problem of Davenport, showed that for a p-group 
G = Z,,., @ . . . $ Z,.,, s(G) = ZIG1 (p” - l), so in particular ~(2:) = (q - 1)n 
whenever q is a prime power. 

The exact value of s(G) is known in some other cases - see [3, 51. 
In this note we obtain an upper bound on s(G) for general G. Let t denote the 

number of prime divisiors of lG] counted with multiplicities, and let m be the 
maximum order of the elements of G. 

Baker and Schmidt [l] proved that 

s(G) < 5m2t log(3mt), 

where log denotes the natural logarithm. 
Our purpose is to prove the following 

Theorem 1 s(G) s m . 

Since ]G] c m’ Theorem 1 implies 

The second inequality verifies a conjecture of Baker and Schmidt ([l, p. 4621). 
In Section 2 we prove an uncertainty type inequality for the finite Fourier 

transform (Theorem 2), which directly implies Theorem 1 (Section 3). 
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2. An inequality for the Fourier transform 

Let F be a field which contaihs a primitive kth root of unity 5. The Fourier 
transform of a function f : Z;+,F is the function p : Z;+ F defined by f(x) = 

CyeZQ f( Y) cey’” (where Y -x denotes the standard inner product in 2;). 
Let 6 : Z,-, F be defined by 6(x) = 60,X. 
For an integer s 3 0, we define a(k, s) as follows: a(k, 0) = 1 and cu(k, s) = 

[cu(k, s’- 1) * k/(/c - 1)1 for s > 0. 
The main result of this section is the following; 

Theorem 2. Zf f : Z”, + F satisfies f (0) = 1 and f ( E) = 0 for all 0 # E E (0, l}“, then 

ISuppZl z= @(k, n). 

Proof. We argue by induction on n. 
First note that if g :Zk+ F satisfies lSuppgj 6 1, then g(x) = C&(x -x0) for 

some C E F and x,, i Z,, hence g(x) = (l/k) CyEzk g(y)cyX 
particular g(0) = I;-“Og(l). 

Therefore if f : Z,+- F satisfies f (0) = 1 and f (1) = 0, 

@(k 1). 
Assume now that n > 1 and f : Zz-+ F satisfies f (0) = 1 

O#&E{O, l}“. 
For y E 2, define f,: Zz-‘-, F by f,(x) = f (x, y), and 

g, :Zk+F by g&) =&(a). 
For (a, b) E Z;-’ CB Z, we have: 

= (C/k)cX@, and in 

then JSupppI 2 2 = 

and f(E) = 0 for all 

for a E Z;-’ define 

P<4 b) = c c f (x, r)C-“‘“-y” = yg(u)t-yb =&x,(b). 
1EZ.r’ yez, 

Hence lSupp.fl = Lz;-l lSuppg?,l. 
ForO<i<k-ldefinehi:Z;-‘+Fbyhj(x)=fO(x)-&i(x). Clearlyh,(O)=J_ 

and hi(e) = 0 for all 0 # E E (0, l}n-l, so by induction hypothesis Ai = Supp hi 

satisfies IAil a a(k, n - l)A 
Now, Ai = {a E Z;-‘:$,(a) # cx(u)} = {a E Z;-l:ga(0) # ciga(l)}, hence the 

following hold: 
(1) If a eAi then g, + 0 and therefore ISuppg^,l3 1. 
(2) If a E n;z; Ai, then g,(y) is not of the form Cf-” (for otherwise 

g,(O) = 5‘yog,(l)? contradicting a E A,), and therefore ISupp Cal 3 2. 
To complete the proof we need the following easy 

Lemma. Zf B,, . . . , Bk are sets of cardinal@ at least u, then 
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Proof. Let In,“=1Z3jl=v and Cj=Bi-fJ~EIBj for l<i<k. Since nf=ICi=O 
we obtain: 

and so 

Now (l), (2), and the lemma imply 

lSuppfl=~~_~lSup~g.l~~~A~I+ IF+ [++(k,n-l)\=a(k,n). q 

Corollary 2. Zf f is as in Theorem 1, and nak-1 then ISuppfl?=t.(&)“. 

Proof. Clearly a(k, k - 1) = k, hence 

ISupppI 3 cu(k, n) 2 cr(k, k - 1) + (-&)n-(k-l)~~ 
k n c-1 k-l . Cl 

Remark. The proof of Theorem 2 can be extended to show: 

Theorem 2’. Let 0 < d < k. Zf f : Z”, + F satisfies f (0) = 1 and f(E) = 0 for all 
O#EE{O, 1,. . . ,d}“, then 

3. Zero subsums in a finite abelian group 

First note that if H& a subgroup of ZS,, then the transform of the indicator 
function of H satisfies lH = IHI . lH1 where HI = {a E Z”,:a - h = 0 for all h E H}. 
We shall also use H’l= H. 

We proceed with the proof of Theorem 1: Let G = Z,,,, CT3 - - - CI3 Z,” where 
mi 1 m for all 1 Si Sn. Let s = s(G) and suppose a,, . . . , a, E G satisfy 
CT=1 Eiai # 0, for all 0 # (cl, . . . , E,) E (0, l}“. We write ai = (ail, . . . , ai,,) where 
O~aij<mjanddefineb,,...,b,~Z”,bybj=(m/mj)~(av,...,a,j)for1~j~ 
n. Let H be the subgroup of ZS, generated by bl, . . . , b,. The order of bj is at 
most mj, hence IHI s m1 * - * m, = ICI. 

By our assumptions HI fl (0, 1)” = {0}, hence lHl satisfies the conditions of 
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Theorem 2. Since s 3 m - 1 Corollary 2 implies 

m -. 
e 

Therefore 

1+1og(GJ 
m 

ss 

log- 

<m l+logH 
( > m ’ 

m-l 

Remarks. (1) The proof of Theorem 1 and the obvious inequality ~(2:) 2 
(k - 1)n show that the constant k/(k - 1) in Theorem 2, may not be replaced by 
any constant larger than k”‘-‘. 

(2) After completing this paper (February 1989), it was brought to our 
attention that Theorem 1 was proved in 1969 by P. van Emde Boas and 
D. Kruyswijk [2]. Their methods are different and do not include Theorem 2. 
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