COMMUNICATION

AN UNCERTAINTY INEQUALITY AND ZERO SUBSUMS

Roy MESHULAM
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Communicated by J. Kahn

Received 15 February 1990
Let G be a finite abelian group, and let m be the maximal order of elements in G. It is shown that if $s>m\left(1+\log \frac{|G|}{m}\right)$, then any sequence a_{1}, \ldots, a_{s} of elements in G, has a non-empty subsequence which sums to zero. The result is a consequence of an inequality for the finite Fourier transform.

1. Introduction

For a finite abelian group G, let $s(G)$ denote the maximal s for which there exists a sequence $a_{1}, \ldots, a_{s} \in G$ such that $\sum_{i \in I} a_{i} \neq 0$ for all $\phi \neq I \subset\{1, \ldots, s\}$.

Olson [4], addressing a problem of Davenport, showed that for a p-group $G=\boldsymbol{Z}_{p^{e,}} \oplus \cdots \oplus \boldsymbol{Z}_{p^{\ell,},} s(G)=\sum_{i=1}^{r}\left(p^{e_{i}}-1\right)$, so in particular $s\left(\boldsymbol{Z}_{q}^{n}\right)=(q-1) n$ whenever q is a prime power.

The exact value of $s(G)$ is known in some other cases - see [3,5].
In this note we obtain an upper bound on $s(G)$ for general G. Let t denote the number of prime divisiors of $|G|$ counted with multiplicities, and let m be the maximum order of the elements of G.

Baker and Schmidt [1] proved that

$$
s(G) \leqslant 5 m^{2} t \log (3 m t)
$$

where log denotes the natural logarithm.
Our purpose is to prove the following
Theorem 1. $s(G) \leqslant m\left(1+\log \frac{|G|}{m}\right)$.

Since $|G| \leqslant m^{t}$ Theorem 1 implies
Corollary 1. $s(G) \leqslant m \cdot \log |G| \leqslant m \cdot \log m \cdot t$.
The second inequality verifies a conjecture of Baker and Schmidt ([1, p. 462]). In Section 2 we prove an uncertainty type inequality for the finite Fourier transform (Theorem 2), which directly implies Theorem 1 (Section 3).

2. An inequality for the Fourier transform

Let \boldsymbol{F} be a field which contains a primitive k th root of unity ζ. The Fourier transform of a function $f: \boldsymbol{Z}_{k}^{n} \rightarrow \boldsymbol{F}$ is the function $\hat{f}: \boldsymbol{Z}_{k}^{n} \rightarrow \boldsymbol{F}$ defined by $\hat{f}(x)=$ $\sum_{y \in Z_{k}} f(y) \zeta^{-y \cdot x}$ (where $y \cdot x$ denotes the standard inner product in \boldsymbol{Z}_{k}^{n}).

Let $\delta: Z_{k} \rightarrow \boldsymbol{F}$ be defined by $\delta(x)=\delta_{0, x}$.
For an integer $s \geqslant 0$, we define $\alpha(k, s)$ as follows: $\alpha(k, 0)=1$ and $\alpha(k, s)=$ $\left\lceil\alpha\left(k, s^{\prime}-1\right) \cdot k /(k-1)\right\rceil$ for $s>0$.

The main result of this section is the following;

Theorem 2. If $f: \boldsymbol{Z}_{k}^{n} \rightarrow \boldsymbol{F}$ satisfies $f(0)=1$ and $f(\varepsilon)=0$ for all $0 \neq \varepsilon \in\{0,1\}^{n}$, then $|\operatorname{Supp} \hat{f}| \geqslant \alpha(k, n)$.

Proof. We argue by induction on n.
First note that if $g: \boldsymbol{Z}_{k} \rightarrow \boldsymbol{F}$ satisfies $|\operatorname{Supp} \hat{g}| \leqslant 1$, then $\hat{g}(x)=C \delta\left(x-x_{0}\right)$ for some $C \in \boldsymbol{F}$ and $x_{0} \in \boldsymbol{Z}_{k}$, hence $g(x)=(1 / k) \sum_{y \in Z_{k}} \hat{g}(y) \zeta^{y x}=(C / k) \zeta^{x_{0} x}$, and in particular $g(0)=\zeta^{-x_{0}} g(1)$.

Therefore if $f: \boldsymbol{Z}_{k} \rightarrow \boldsymbol{F}$ satisfies $f(0)=1$ and $f(1)=0$, then $|\operatorname{Supp} \hat{f}| \geqslant 2=$ $\alpha(k, 1)$.

Assume now that $n>1$ and $f: \boldsymbol{Z}_{k}^{n} \rightarrow \boldsymbol{F}$ satisfies $f(0)=1$ and $f(\varepsilon)=0$ for all $0 \neq \varepsilon \in\{0,1\}^{n}$.

For $y \in \boldsymbol{Z}_{k}$ define $f_{y}: \boldsymbol{Z}_{k}^{n-1} \rightarrow \boldsymbol{F}$ by $f_{y}(x)=f(x, y)$, and for $a \in \boldsymbol{Z}_{k}^{n-1}$ define $g_{a}: \boldsymbol{Z}_{k} \rightarrow \boldsymbol{F}$ by $g_{a}(y)=\widehat{y_{y}}(a)$.

For $(a, b) \in Z_{k}^{n-1} \oplus Z_{k}$ we have:

$$
\hat{f}(a, b)=\sum_{x \in \mathbb{Z}_{k}^{n-1}} \sum_{y \in \mathbf{Z}_{k}} f(x, y) \zeta^{-x \cdot a-y b}=\sum_{y \in \mathbf{Z}_{k}} \widehat{f}_{y}(a) \zeta^{-y b}=\widehat{g_{a}}(b) .
$$

Hence $|\operatorname{Supp} \hat{f}|=\sum_{a \in Z_{k}^{n-1}}\left|\operatorname{Supp} \widehat{g_{a}}\right|$.
For $0 \leqslant i \leqslant k-1$ define $h_{i}: Z_{k}^{n-1} \rightarrow F$ by $h_{i}(x)=f_{0}(x)-\zeta^{i} f_{1}(x)$. Clearly $h_{i}(0)=1$ and $h_{i}(\varepsilon)=0$ for all $0 \neq \varepsilon \in\{0,1\}^{n-1}$, so by induction hypothesis $A_{i}=\operatorname{Supp} \widehat{h}_{i}$ satisfies $\left|\Lambda_{i}\right| \geqslant \alpha(k, n-1)$.

Now, $A_{i}=\left\{a \in \boldsymbol{Z}_{k}^{n-1}: \widehat{f_{0}}(a) \neq \zeta^{i} \widehat{f_{1}}(a)\right\}=\left\{a \in \boldsymbol{Z}_{k}^{n-1}: g_{a}(0) \neq \zeta^{i} g_{a}(1)\right\}$, hence the following hold:
(1) If $a \in A_{i}$ then $g_{a} \equiv \equiv 0$ and therefore $\left|\operatorname{Supp} \widehat{g_{a}}\right| \geqslant 1$.
(2) If $a \in \bigcap_{i=0}^{k-1} A_{i}$, then $g_{a}(y)$ is not of the form $C \zeta^{-y y_{0}}$ (for otherwise $g_{a}(0)=\zeta^{y_{0}} g_{a}(1)$, contradicting $\left.a \in A_{y_{0}}\right)$, and therefore $\left|\operatorname{Supp} \widehat{g_{a}}\right| \geqslant 2$.

To complete the proof we need the following easy
Lemma. If B_{1}, \ldots, B_{k} are sets of cardinality at least u, then

$$
\left|\bigcup_{i=1}^{k} B_{i}\right|+\left|\bigcap_{i=1}^{k} B_{i}\right| \geqslant \frac{k u}{k-1} .
$$

Proof. Let $\left|\bigcap_{j=1}^{k} B_{j}\right|=v$ and $C_{i}=B_{i}-\bigcap_{j=1}^{k} B_{j}$ for $1 \leqslant i \leqslant k$. Since $\bigcap_{i=1}^{k} C_{i}=\emptyset$ we obtain:

$$
(u-v) k \leqslant\left|\left\{(x, i): x \in C_{i}\right\}\right| \leqslant\left|\bigcup_{i=1}^{k} C_{i}\right| \cdot(k-1)
$$

and so

$$
\left|\bigcup_{i=1}^{k} B_{i}\right|+\left|\bigcap_{i=1}^{k} B_{i}\right|=\left|\bigcup_{i=1}^{k} C_{i}\right|+2 v \geqslant \frac{(u-v) k}{k-1}+2 v \geqslant \frac{k u}{k-1} .
$$

Now (1), (2), and the lemma imply
$|\operatorname{Supp} \hat{f}|=\sum_{a \in \mathbb{Z}_{k^{-1}}}\left|\operatorname{Supp} \widehat{g_{a}}\right| \geqslant\left|\bigcup_{i=0}^{k-1} A_{i}\right|+\left|\bigcap_{i=0}^{k-1} A_{i}\right| \geqslant\left[\frac{k}{k-1} \alpha(k, n-1)\right]=\alpha(k, n)$.
Corollary 2. If f is as in Theorem 1, and $n \geqslant k-1$ then $|\operatorname{Supp} \hat{f}| \geqslant \frac{k}{e} \cdot\left(\frac{k}{k-1}\right)^{n}$.
Proof. Clearly $\alpha(k, k-1)=k$, hence

$$
|\operatorname{Supp} \hat{f}| \geqslant \alpha(k, n) \geqslant \alpha(k, k-1) \cdot\left(\frac{k}{k-1}\right)^{n-(k-1)} \geqslant \frac{k}{e} \cdot\left(\frac{k}{k-1}\right)^{n} .
$$

Remark. The proof of Theorem 2 can be extended to show:
Theorem 2'. Let $0<d<k$. If $f: \boldsymbol{Z}_{k}^{n} \rightarrow \boldsymbol{F}$ satisfies $f(0)=1$ and $f(\varepsilon)=0$ for all $0 \neq \varepsilon \in\{0,1, \ldots, d\}^{n}$, then

$$
\mid \text { Supp } \hat{f} \left\lvert\, \geqslant\left\lceil\cdots\left\lceil\left\lceil\frac{k}{k-d}\right\rceil \frac{k}{k-d}\right\rceil \cdots \frac{k}{k-d}\right\rceil(n \text { times }) .\right.
$$

3. Zero subsums in a finite abelian group

First note that if H is a subgroup of $\boldsymbol{Z}_{\boldsymbol{m}}^{s}$, then the transform of the indicator function of H satisfies $\widehat{1_{H}}=|H| \cdot 1_{H^{\perp}}$ where $H^{\perp}=\left\{a \in Z_{m}^{s}: a \cdot h=0\right.$ for all $\left.h \in H\right\}$. We shall also use $H^{1 \perp}=H$.

We proceed with the proof of Theorem 1: Let $G=\boldsymbol{Z}_{m_{1}} \oplus \cdots \oplus \boldsymbol{Z}_{m_{n}}$ where $m_{i} \mid m$ for all $1 \leqslant i \leqslant n$. Let $s=s(G)$ and suppose $a_{1}, \ldots, a_{s} \in G$ satisfy $\sum_{i=1}^{s} \varepsilon_{i} a_{i} \neq 0$, for all $0 \neq\left(\varepsilon_{1}, \ldots, \varepsilon_{s}\right) \in\{0,1\}^{s}$. We write $a_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$ where $0 \leqslant a_{i j}<m_{j}$ and define $b_{1}, \ldots, b_{n} \in \boldsymbol{Z}_{m}^{s}$ by $b_{j}=\left(m / m_{j}\right) \cdot\left(a_{1 j}, \ldots, a_{s j}\right)$ for $1 \leqslant j \leqslant$ n. Let H be the subgroup of \boldsymbol{Z}_{m}^{s} generated by b_{1}, \ldots, b_{n}. The order of b_{j} is at most m_{j}, hence $|H| \leqslant m_{1} \cdots m_{n}=|G|$.

By our assumptions $H^{\perp} \cap\{0,1\}^{s}=\{0\}$, hence $1_{H^{\perp}}$ satisfies the conditions of

Theorem 2. Since $s \geqslant m-1$ Corollary 2 implies

$$
\frac{m}{e} \cdot\left(\frac{m}{m-1}\right)^{s} \leqslant\left|\operatorname{Supp} \widehat{1_{H^{\perp}} \mid}=\left|\operatorname{Supp}\left(\left|H^{\perp}\right| \cdot 1_{H}\right)\right|=|H| \leqslant|G| .\right.
$$

Therefore

$$
s \leqslant \frac{1+\log \frac{|G|}{m}}{\log \frac{m}{m-1}}<m\left(1+\log \frac{|G|}{m}\right) .
$$

Remarks. (1) The proof of Theorem 1 and the obvious inequality $s\left(Z_{k}^{n}\right) \geqslant$ ($k-1$) n show that the constant $k /(k-1)$ in Theorem 2, may not be replaced by any constant larger than $k^{1 / k-1}$.
(2) After completing this paper (February 1989), it was brought to our attention that Theorem 1 was proved in 1969 by P. van Emde Boas and D. Kruyswijk [2]. Their methods are different and do not include Theorem 2.

Acknowledgment

I would like to thank Jeff Kahn for his helpful comments.

References

[1] R.C. Baker and W.M. Schmidt, Diophantine problems in variables restricted to the values 0 and 1, J. Number Theory 12 (1980) 460-486.
[2] P. van Emde Boas and D. Kruyswijk, A combinatorial problem on finite abelian groups III, Z.W. 1969-008 (Math. Centrum, Amsterdam).
[3] H.B. Mann, Additive group theory - A progress report, Bull. Amer. Math. Soc. 79 (1973) 1069-1075.
[4] J.E. Olson, A combinatorial problem on finite abelian groups I, J. Number Theory 1 (1969) 8-10.
[5] J.E. Olson, A combinatorial problem on finite abelian groups II, J. Number Theory 1 (1969) 195-199.

