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Let G be a finite abelian group, and let m be the maximal order of elements in G. It is shown

IGl

that if s >m(1 + log 7), then any sequence a,, . . ., a, of elements in G, has a non-empty

subsequence which sums to zero. The result is a consequence of an inequality for the finite
Fourier transform.

1. Introduction

For a finite abelian group G, let s(G) denote the maximal s for which there
exists a sequence a,, . .., a, € G such that ¥,.,a,#0 forall ¢ #1<={1, ..., s}.

Olson [4], addressing a problem of Davenport, showed that for a p-group
G=2,,®---®Z,, s(G)=Li-1(p“—1), so in particular s(Z7)=(q—1)n
whenever ¢ is a prime power.

The exact value of s(G) is known in some other cases — see [3, 5].

In this note we obtain an upper bound on s(G) for general G. Let ¢t denote the
number of prime divisiors of |G| counted with multiplicities, and let m be the
maximum order of the elements of G.

Baker and Schmidt [1] proved that

s(G) < 5m?t log(3mt),

where log denotes the natural logarithm.
Our purpose is to prove the following

G
Theorem 1. s(G) < m(l + log I——I)
m

Since |G| =m’ Theorem 1 implies
Corollary 1. s(G)<m -log|G|<=m -logm - t.
The second inequality verifies a conjecture of Baker and Schmidt ([1, p. 462]).

In Section 2 we prove an uncertainty type inequality for the finite Fourier
transform (Theorem 2), which directly implies Theorem 1 (Section 3).
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2. An inequality for the Fourier transform

Let F be a field which contaihs a primitive kth root of unity §{. The Fourier
transform of a function f:Z;—F is the function f:Z?— F defined by f(x) =
Y,ezz f(¥)E7* (where y - x denotes the standard inner product in Z%).

Let §:Z,— F be defined by 6(x) = g ,.

For an integer s =0, we define a(k, s) as follows: a(k, 0)=1 and a(k, s) =
[a(k, s—1)-k/(k —1)] for s>0.

The main result of this section is the following;

Theorem 2. If f: Z}— F satisfies f(0) =1 and f(&) =0 for all 0+ € € {0, 1}", then
Supp f| = a(k, n).

Proof. We argue by induction on n.

First note that if g:Z,— F satisfies |Supp §| <1, then g(x) = Cé(x —x,) for
some CeF and xo€Z,, hence g(x)=(1/k) X,z 8(y)&* =(C/k)f™, and in
particular g(0) = {7™g(1).

Therefore if f:Z,— F satisfies f(0)=1 and f(1)=0, then |[Suppf|=2=
a(k, 1).

Assume now that n>1 and f:Z%— F satisfies f(0)=1 and f(g) =0 for all
0+#¢c€e{0,1}"

For y € Z, define ]}\:ZZ‘I—>F by f,(x)=f(x,y), and for aeZ;™" define
8.:Z,—> F by g,(y) = f,(a).

For (a, b) € Z; ' ® Z, we have:

Fab)y= 3 3 fEyt= 3 L@t =)

xeZl ' yez, YE€Zy
Hence [Supp f| = Locz;t ISupp &al-

For 0<i<k —1 define h;:Z;'— F by h,(x) = fo(x) — &fi(x). Clearly h;(0) =1
and h;(¢)=0 for all 0#¢ € {0, 1}""', so by induction hypothesis A; = Supp h;
satisfies |[A;| = a(k, n — 1)A N

Now, A, ={aeZ; ':fy(a)# tfi(a)) ={aeZ; ':g,(0) # {'g,(1)}, hence the
following hold:
(1) If a € A, then g, ¥ 0 and therefore |Suppg,|= 1.
(2) If aeM; A, then g,(y) is not of the form C{™ (for otherwise
8.(0) = &g, (1), contradicting a € A,,), and therefore |Supp g,/ =2.

To complete the proof we need the following easy

Lemma. If B,, ..., B, are sets of cardinality at least u, then

ku
-1

k k
U Bil + ‘ﬂ Bi( =
i=1 i=1 k
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Proof. Let |, Bjj=v and C,=B,—(., B; for 1<i=<k. Since (<, C;=9
we obtain:

(u—vyk < [{(r, i):x € C} < \u c|- G-,

and so
k k k —v)k k
UB,-\ + ﬂB,-l= U C,-’ PP )
i=1 i=1 i=1 k—1 k—1
Now (1), (2), and the lemma imply
k—1

k-1
U Ai‘ +
i=0

ﬂoAi\ = [% ak, n — 1)] =alk,n). O

Suppfl= 3, |Suppg.l=>

aeZ}

k k \"
Corollary 2. If f is as in Theorem 1, and n=k—1 then |Suppf|>;- (-’:> .

Proof. Clearly a(k, k —1) = k, hence
k k

n=k=1) n
|Suppf|>ar(k,n)>a’(k,k—1)'<‘k_1> 2;-<k_1)- O

Remark. The proof of Theorem 2 can be extended to show:

Theorem 2’. Let 0<d<k. If f:Z}— F satisfies f(0)=1 and f(g)=0 for all
0#e€{0,1,...,d}" then

|SUpr|>[--- kad]kfd]---kfd] (n times).

3. Zero subsums in a finite abelian group

First note that if H is a subgroup of Z;,, then the transform of the indicator
function of H satisfies 1, =|H|-1,: where H* ={aeZ},:a-h=0forall h e H}.
We shall also use H** = H.

We proceed with the proof of Theorem 1: Let G=Z,, ®--- D Z,, where

m;|m for all 1<i<n. Let s=s5(G) and suppose a;,...,a,€G satisfy
Yi_,&a;#0, for al 0# (g4, . . ., &) € {0, 1}°. We write a;,= (a;, . . . , a;,) Where
0=<a; <m; and define b,, ..., b, € Z;, by b;=(m/m;) - (ay, . . ., ay) for 1<j=<

n. Let H be the subgroup of Z;, generated by b,, ..., b,. The order of b; is at
most m;, hence |H|<m,---m,=|G|.
By our assumptions H* N {0, 1}* = {0}, hence 1. satisfies the conditions of
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Theorem 2. Since s =m — 1 Corollary 2 implies

ﬂ.<i>s<|su T = Supp(|H*| - 1)| = [H| <|G]
= (=) <isupp T: pp )l =H|<|G].
Therefore
1+log@
m |G|
ss——-<m<1+log—~>~
log ”
m-—1

Remarks. (1) The proof of Theorem 1 and the obvious inequality s(Z%)=
(k — 1)n show that the constant k/(k — 1) in Theorem 2, may not be replaced by
any constant larger than k%1,

(2) After completing this paper (February 1989), it was brought to our
attention that Theorem 1 was proved in 1969 by P. van Emde Boas and
D. Kruyswijk [2]. Their methods are different and do not include Theorem 2.
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