On Two Extremal Matrix Problems

Roy Meshulam* RUTCOR Rutgers University New Brunswick, New Jersey 08903

Dedicated to Alan J. Hoffman on the occasion of his 65th birthday.

Submitted by Alexander Schrijver

ABSTRACT

Let W be a linear subspace of symmetric $n \times n$ matrices whose rank is at most t. It is shown that if the underlying field has more than n elements, then:

$$\dim W \leqslant \left\{ \frac{\max\left\{ \begin{pmatrix} t+1\\ 2 \end{pmatrix}, kn - \begin{pmatrix} k\\ 2 \end{pmatrix} \right\}, \quad t = 2k, \\ \max\left\{ \begin{pmatrix} t+1\\ 2 \end{pmatrix}, kn - \begin{pmatrix} k\\ 2 \end{pmatrix} + 1 \right\}, \quad t = 2k+1. \end{cases} \right\}$$

Let L be an affine space of $n \times n$ matrices all having rank at least k. It is shown that if the underlying field is algebraically closed, then

$$\dim L \leq n^2 - \binom{k+1}{2}$$

The last result is applied to a problem of Valiant concerning permanents and determinants.

1. INTRODUCTION

Let $M_n(F)$ denote the space of $n \times n$ matrices over a field F, and let $H_n(F)$ be the subspace of symmetric $n \times n$ matrices.

LINEAR ALGEBRA AND ITS APPLICATIONS 114/115:261-271 (1989)

© Elsevier Science Publishing Co., Inc., 1989

655 Avenue of the Americas, New York, NY 10010

0024-3795/89/\$3.50

261

^{*}Research supported by AFOSR Grant 0271. Current address: Dept. of Mathematics, M.I.T., Cambridge, MA 02139.

In Section 2 we give an upper bound for the dimension of linear subspaces of $H_n(F)$ having a bounded rank. Let $f_F(n,t)$ be the maximal dimension of a linear subspace $W \subseteq H_n(F)$ such that $\operatorname{rank}(A) \leq t$ for all $A \in W$.

Example 1.

$$W_{1}(n,t) = \{ A \in H_{n}(F) : A(i,j) = 0 \text{ if } i > t \text{ or } j > t \}.$$

EXAMPLE 2.

$$W_{2}(n,2k) = \{ A \in H_{n}(F) : A(i,j) = 0 \text{ if } i > k \& j > k \},$$
$$W_{2}(n,2k+1) = \{ A \in H_{n}(F) : A(i,j) = 0 \text{ if } i > k \& j > k \& (i,j) \\ \neq (k+1,k+1) \}.$$

Clearly rank $(A) \leq t$ for any $A \in W_i(n, t)$.

Theorem 1. If $|F| \ge \min\{t+3, n+1\}$, then

$$f_F(n,t) = \max\{\dim W_1(n,t), \dim W_2(n,t)\}$$
$$= \begin{cases} \max\{\binom{t+1}{2}, kn - \binom{k}{2}\}, & t = 2k, \\ \max\{\binom{t+1}{2}, kn - \binom{k}{2} + 1\}, & t = 2k+1. \end{cases}$$

In Section 3 we consider $h_F(n, k)$ —the maximal dimension of an affine subspace of $M_n(F)$ which contains only matrices of rank at least k.

EXAMPLE.

$$L(n,k) = \left\{ A \in M_n(F) : A(i,j) = \delta_{ij} \text{ for } 1 \leq i \leq j \leq k \right\}.$$

EXTREMAL MATRIX PROBLEMS

THEOREM 2. If F is algebraically closed or $F = \mathbf{R}$, then

$$h_F(n,k) = \dim L(n,k) = n^2 - \binom{k+1}{2}.$$

We conclude with an application of Theorem 2 to a problem of Valiant concerning representations of permanents in terms of determinants.

2. SPACES OF SYMMETRIC MATRICES OF BOUNDED RANK

We shall deduce Theorem 1 from a combinatorial lower bound on the maximal rank in a subspace of symmetric matrices (Theorem 3) and a simple extremal graph theoretic result (Theorem 4).

We shall use the following notation: $[n]^{\leq 2}$ will denote the collection of all nonempty subsets of $[n] = \{1, ..., n\}$ of size ≤ 2 . $[n]^{(2)}$ will denote the complete graph on [n]. For a matrix $A \in H_n(F)$ we define $q(A) = \{i_0, j_0\} \in [n]^{\leq 2}$ where $(i_0, j_0) = \min\{(i, j): A(i, j) \neq 0\}$, and the minimum is taken with respect to the lexicographic ordering of $[n] \times [n]$ $[(i, j) < (i_1, j_1)$ iff $i < i_1$ or $i = i_1 \& j < j_1$].

A collection $\mathscr{B} = \{B_1, \ldots, B_m\}$ is called a *matching* if the B_i 's are pairwise disjoint. For a graph with loops $\mathscr{B} \subseteq [n]^{\leq 2}$ we denote

$$\mu(\mathscr{B}) = \max\left\{\sum_{B \in \mathscr{B}'} |B| \colon \mathscr{B}' \subseteq \mathscr{B} \text{ is a matching}\right\}.$$

With a collection of matrices $\mathscr{A} = \{A_1, \ldots, A_m\} \subset H_n(F)$ we associate a graph with loops $\mathscr{B} = \{q(A_1), \ldots, q(A_m)\} \subseteq [n]^{\leq 2}$.

THEOREM 3. If $|F| \ge \mu(\mathcal{B}) + 1$, then $\text{Span}(\mathcal{A})$ contains a matrix of rank $\ge \mu(\mathcal{B})$.

Proof. It suffices to show that if $\mu(\mathscr{B}) = n$ and $\{q(A_i)\}_{i=1}^m$ forms a partition of [n], then Span(\mathscr{A}) contains a nonsingular matrix. [The case $\mu(\mathscr{B}) < n$ reduces to the above, by considering the $\mu(\mathscr{B}) \times \mu(\mathscr{B})$ minors determined by a maximum matching in \mathscr{B} .]

Let $f(x_1, \ldots, x_m) = \det(\sum_{i=1}^m x_i A_i)$. We shall show that the coefficient of $x_1^{a_1} \cdots x_m^{a_m}$ in f is nonzero, where $a_i = |q(A_i)|, 1 \le i \le m$.

Clearly this coefficient equals $\Sigma \det A$, where A runs through all matrices of order n which have exactly a_i rows "belonging" to A_i , for all $1 \le i \le m$. More formally, consider two functions $f_1, f_2: [m] \to [n]$ which satisfy

$$f_1(t) < f_2(t)$$
 if $a_t = 2$, $f_1(t) = f_2(t)$ if $a_t = 1$ (*)

and

$$\bigcup_{t=1}^{m} \{ f_1(t), f_2(t) \} = [n].$$

The coefficient of $x_1^{a_1} \cdots x_m^{a_m}$ equals $\sum \det A(f_1, f_2)$, where the summation extends over all pairs f_1, f_2 which satisfy (*), and $A(f_1, f_2) \in M_n(F)$ is defined as follows: For all $1 \le t \le m$ and i = 1, 2, the $f_i(t)$ th row of $A(f_1, f_2)$ is the $f_i(t)$ th row of A_i .

We may assume now that $q(A_t) = \{i_t, j_t\}$, where $i_t \leq j_t$ (equality iff $a_t = 1$), and $1 = i_1 < \cdots < i_m$. It is clear that if $f_1(t) = i_t$ and $f_2(t) = j_t$ for $1 \leq t \leq m$, then $A(f_1, f_2)$ is a row permutation of an upper triangular matrix with nonzeros on the diagonal, and hence det $A(f_1, f_2) \neq 0$. Theorem 3 will therefore follow from:

Claim 1. If det $A(f_1, f_2) \neq 0$, then $f_1(t) = i_t$ and $f_2(t) = j_t$ for all $1 \leq t \leq m$.

Proof. First we note the following:

(a) Columns $1, \ldots, i_s - 1$ in A_s contain only zeros.

(b) If $q < j_s$, then the qth row of A_s contains zeros in entries $1, \ldots, i_s$.

(c) Rows $1, \ldots, i_s - 1$ in A_s are all zero; hence det $A(f_1, f_2) \neq 0$ implies that $f_2(s) \ge f_1(s) \ge i_s$ for all $1 \le s \le m$.

We shall prove Claim 1 by verifying that the following statement holds: If det $A(f_1, f_2) \neq 0$, then for all $1 \leq p \leq n$:

- (1) If $p = i_t$ then $f_1(t) = i_t$ and $f_2(t) \ge j_t$.
- (2) If $p = j_t > i_t$ then $f_2(t) = j_t$.

The proof proceeds by induction on p: Let $p = 1 = i_1$. Since A_1 is the only A_i whose first row is nonzero, we must have $f_1(1) = 1$. Similarly $f_2(1) \ge j_1$; otherwise the first column of $A(f_1, f_2)$ would be zero.

Assume now that 1 , and consider two cases:

(1) $p = i_t$: If $p = f_1(s)$ for some s, then by (c), $p = f_1(s) \ge i_s$. If $p > i_s$, then by induction $f_1(s) = i_s < p$. Hence $i_s = p$ and so s = t and $p = f_1(t)$.

Assume then that $p = f_2(s) > f_1(s)$. As before, it follows that $p > i_s$ and hence $p = f_2(s) \ge j_s$. The possibility $p > j_s$ is excluded by induction; therefore $i_t = p = j_s$ and so $i_s = j_s$, contradicting our assumption $f_1(s) < f_2(s)$. It remains to show that $f_2(t) \ge j_t$. Suppose, to the contrary, that $f_2(t) < j_t$, and let B be the $n \times p$ matrix consisting of the first p columns of $A(f_1, f_2)$.

LEMMA. If the qth row of B is nonzero, then

$$q \in \{ f_2(s) : i_s$$

Proof. Assume that $q = f_2(s)$. By (a), $i_s \le p$. If $i_s = p = i_t$, then s = t, and so $q = f_2(s) = f_2(t) < j_t = j_s$. But then, by (b), the qth row of A_s contains zeros in entries $1, \ldots, i_s = p$, a contradiction. Therefore $i_s < p$.

Assume now that $q = f_1(s) < f_2(s)$. As before, $i_s \leq p$, and so by induction (and the beginning of the proof), $q = f_1(s) = i_s$. But the *i*_sth row of A_s contains zeros in places $1, \ldots, j_s - 1$; therefore it follows that $i_t = p \ge j_s$, and so $j_s < p$.

The lemma implies that the number of nonzero rows in B is at most $|\{f_2(s): i_s < p\} \cup \{f_1(s): j_s < p\}| = p - 1$. Hence $\operatorname{rank}(B) \leq p - 1$ and $A(f_1, f_2)$ must be singular, contradicting our assumption. Therefore $f_2(t) \geq j_t$, which completes the proof of case (1).

(2) $p = j_t > i_t$. We have to show that $f_2(t) = j_t$. If $p = f_1(s)$ for some s, then $i_s \le p = j_t$; hence $i_s < p$ and so, by induction, $f_1(s) = i_s < p$, a contradiction. Therefore $p = f_2(s) > f_1(s)$. Again $i_s < p$, and by induction $p = f_2(s) > j_s$. Now $j_s < p$ is excluded by induction, so we conclude that $j_s = p = j_t$, s = t, and $f_2(t) = j_t$.

Claim 1 shows that $f(x_1, \ldots, x_m)$ is not identically zero, which together with the assumption on the size of |F| proves Theorem 3.

In the following we shall need a certain extremal property of μ . For $1 \leq t \leq n$ let

$$u(n,t) = \max\{|\mathscr{B}|: \mathscr{B} \subseteq [n]^{\leq 2} \text{ and } \mu(\mathscr{B}) \leq t\}.$$

EXAMPLE 1.

$$\mathscr{B}_{1}(n,t) = [t]^{\leq 2}.$$

Example 2.

$$\mathscr{B}_{2}(n,2k) = [k]^{\leq 2} \cup \left\{ e \in [n]^{(2)} : |e \cap [k]| = 1 \right\},$$
$$\mathscr{B}_{2}(n,2k+1) = \mathscr{B}_{2}(n,2k) \cup \{\{k+1\}\}.$$

Clearly $\mu(\mathscr{B}_i(n,t)) = t$.

The following theorem and its proof are similar to the analogous graphical case (see Problem 3.31 in [1]).

THEOREM 4.

u

$$(n,t) = \max\left\{ |\mathscr{B}_1(n,t)|, |\mathscr{B}_2(n,t)| \right\}$$
$$= \begin{cases} \max\left\{ \binom{t+1}{2}, kn - \binom{k}{2} \right\}, & t = 2k, \\ \max\left\{ \binom{t+1}{2}, kn - \binom{k}{2} + 1 \right\}, & t = 2k+1. \end{cases}$$

Proof. Let $\mathscr{B} \subseteq [n]^{\leq 2}$ be a maximal collection satisfying $\mu(\mathscr{B}) \leq t$. Maximality implies that $\mu(\mathscr{B}) = t$ and that if $\{x\}, \{y\} \in \mathscr{B}$ then $\{x, y\} \in \mathscr{B}$. Let $G = \mathscr{B} \cap [n]^{(2)}$ be the graph without loops induced by \mathscr{B} ; then clearly $\nu(G)$, the maximum number of disjoint edges in G, equals $\lfloor t/2 \rfloor$. We consider two cases:

(a) t = 2k + 1: Clearly G is a maximal graph on [n] satisfying $\nu(G) = k$. By Tutte's theorem (Exercise 7.27 in [5]) there exists a subset of vertices S, |S| = s, such that $c_1(G - S)$, the number of odd components of G - S, equals n + s - 2k. Denote by A_1, \ldots, A_{n+s-2k} (B_1, \ldots, B_l) the odd (even) components of G - S. The maximality of G implies that G[S], $G[A_i]$, $G[B_j]$ are complete graphs (for all *i* and *j*), and that all edges $e \in [n]^{(2)}$ which satisfy $|e \cap S| = 1$ necessarily belong to G. This structure of G implies that at most one of the odd components of G - S, say A_1 , contains vertices which are loops in \mathscr{B} . Denoting $|A_i| = a_i$, $|B_j| = b_j$, and using

$$\sum_{i=1}^{r} \binom{x_i}{2} \leq \binom{r}{\sum_{i=1}^{r} x_i - r + 1}{2},$$

266

whenever $x_i \ge 1$, we obtain

$$\begin{aligned} |\mathscr{B}| &\leq \binom{s+1}{2} + s(n-s) + \sum_{j=1}^{l} \binom{b_j+1}{2} \\ &+ \binom{a_1+1}{2} + \sum_{i=2}^{n+s-2k} \binom{a_i}{2} \\ &\leq \binom{s+1}{2} + s(n-s) + \binom{\sum_{j=1}^{l} b_j + \sum_{i=1}^{n+s-2k} a_i + 2k + 2 - n - s}{2} \\ &= \binom{s+1}{2} + s(n-s) + \binom{2(k-s)+2}{2}. \end{aligned}$$

This implies, since $0 \leq s \leq k$, that

$$|\mathscr{B}| \leq \max\left\{ \binom{2k+2}{2}, kn - \binom{k}{2} + 1 \right\}.$$

(b) t = 2k: As before, $\nu(G) = k$. By the Gallai-Edmonds theorem (Exercise 7.32 in [5]), there exists $S \subseteq [n]$, |S| = s, such that $2k = n + s - c_1(G - S)$ and $\nu(G - x) = \nu(G)$ for any vertex x belonging to an odd component of G - S. Since $\mu(\mathscr{B}) = 2k$, this last property implies that none of the odd components of G - S contains a singleton of \mathscr{B} . Denoting the components of G - S as before, we obtain

$$\begin{aligned} |\mathscr{B}| &\leq {\binom{s+1}{2}} + s(n-s) + \sum_{j=1}^{l} {\binom{b_j+1}{2}} + \sum_{i=1}^{n+s-2k} {\binom{a_i}{2}} \\ &\leq {\binom{s+1}{2}} + s(n-s) + {\binom{2(k-s)+1}{2}}, \end{aligned}$$

and so

$$|\mathscr{B}| \leq max\left\{\binom{2k+1}{2}, kn-\binom{k}{2}\right\}.$$

Theorem 1 now follows from Theorems 3 and 4: Suppose W =Span{ A_1, \ldots, A_m } = Span(\mathscr{A}) is an *m*-dimensional subspace of $H_n(F)$ such that rank(A) $\leq t$ for all $A \in W$. Performing a Gaussian elimination on A_1, \ldots, A_m (considered as n^2 -dimensional vectors), we may assume that $\mathscr{B} = \{q(A_1), \ldots, q(A_m)\}$ contains *m* distinct edges (including loops). If m > u(n, t), then $\mu(\mathscr{B}) \geq t + 1$, and so we may choose $\mathscr{B}' \subseteq \mathscr{B}$ such that $t + 1 \leq \mu(\mathscr{B}') \leq t + 2$. Let $\mathscr{A}' \subseteq \mathscr{A}$ be the subcollection of matrices which corresponds to \mathscr{B}' , then by Theorem 3, Span(\mathscr{A}') contains a matrix of rank $\geq \mu(\mathscr{B}') \geq t + 1$, contradicting our assumptions. Therefore dim $W = m \leq u(n, t)$, and so Theorem 1 follows from Theorem 4.

REMARKS.

(1) Denote by $g_F(n,2k)$ the maximal dimension of a subspace of skew-symmetric F-matrices of rank $\leq 2k$. Theorem 3 and the graphical analogue of Theorem 4 imply that if $|F| \ge \min\{2k+3, n+1\}$ and char $F \ne 2$ then

$$\mathbf{g}_F(n,2k) = \max\left\{ \begin{pmatrix} 2k\\ 2 \end{pmatrix}, kn - \begin{pmatrix} k+1\\ 2 \end{pmatrix} \right\}.$$

(2) The maximal dimension of a subspace of matrices of bounded rank is discussed by Flanders [2] (see also [6]).

3. THE MINIMAL RANK IN AN AFFINE SUBSPACE OF MATRICES

We assume throughout this section that either $F = \mathbf{R}$ or F is algebraically closed.

In the proof of Theorem 2 we shall make use of the following:

CLAIM 2. If a linear subspace $W \subseteq M_r(F)$ satisfies

$$\dim W > \binom{r}{2},$$

then W contains a matrix with a nonzero eigenvalue which belongs to the field.

Proof.

(a) $F = \mathbf{R}$: Clearly

$$\dim \left[W \cap H_r(\mathbf{R}) \right] \ge \dim W + \dim H_r(\mathbf{R}) - \dim M_r(\mathbf{R})$$
$$> {r \choose 2} + {r+1 \choose 2} - r^2 = 0.$$

Hence W contains a nonzero symmetric matrix which, of course, has a nonzero real eigenvalue.

(b) F is algebraically closed: If W does not contain a matrix with a nonzero eigenvalue, then all matrices in W are nilpotent, and hence by a theorem of Gerstenhaber [4],

$$\dim W \leq \binom{r}{2}.$$

We can now show that if L is an $n^2 - \binom{k+1}{2} + 1$ dimensional affine subspace of $M_n(F)$, then L contains a matrix of rank at most k-1. By (downward) induction on k, L contains a matrix A_0 of rank $\leq k$. If rank $(A_0) \leq k-1$ then we are done, so we assume rank $(A_0) = k$. Changing bases, we may take A_0 to be

$$\begin{pmatrix} I_k & 0\\ 0 & 0 \end{pmatrix},$$

where I_k is the identity matrix of order k.

Let W be the linear subspace of $M_n(F)$ for which $L = A_0 + W$, and let

$$U = \left\{ B \in M_k(F) : \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} \in W \right\}.$$

Clearly

$$\dim U \ge \dim W + \dim M_k(F) - \dim M_n(F)$$

$$\geq \left(n^2 - \binom{k+1}{2} + 1\right) + k^2 - n^2 = \binom{k}{2} + 1,$$

and so, by Claim 2, there exists a matrix $B \in U$ with an eigenvalue $0 \neq \lambda \in F$,

i.e. $det(I_k - \lambda^{-1}B) = 0$. Now

$$B_0 = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} \in W,$$

and so $A_0 - \lambda^{-1}B_0$ belongs to L and satisfies

$$\operatorname{rank}(A_0 - \lambda^{-1}B_0) = \operatorname{rank}\begin{pmatrix} I_k - \lambda^{-1}B & 0\\ 0 & 0 \end{pmatrix} \leq k - 1,$$

which proves Theorem 2.

We conclude with an application of Theorem 2: Let F be an infinite field of characteristic $\neq 2$. The permanent of order n is said to be a *projection* of the determinant of order m if there exists an $m \times m$ matrix f, whose entries are either elements of F or variables $\pm x_{ij}$, $1 \le i, j \le n$, such that per $x_{ij} =$ det f holds as a polynomial identity in $F[x_{11}, \ldots, x_{nn}]$.

Let p(n) denote the least *m* for which such a matrix exists. Valiant [7] has shown that $p(n) = O(n^2 2^n)$ and conjectured that p(n) grows superpolynomially in *n*. von zur Gathen [3] has recently proved that $p(n) \ge \sqrt{\frac{8}{7}} n - 1$. In Theorem 5 we slightly improve this bound.

We shall apply yet another theorem of von zur Gathen:

THEOREM [3]. If F is an infinite field of characteristic $\neq 2$ and $f: M_n(F) \rightarrow M_m(F)$ is a polynomial mapping which satisfies per $X = \det f(X)$, then rank $f(A) \ge m-1$ for all $A \in M_n(F)$.

We shall also need the following easy fact (which may be proved by induction on the maximal order of a nonzero subpermanent of A):

CLAIM 3. If $0 \neq A \in M_n(F)$, then there exists $B \in M_n(F)$ for which $per(A+B) \neq per B$.

THEOREM 4. Let F be an infinite field of characteristic $\neq 2$, and let $f: M_n(F) \rightarrow M_m(F)$ be an affine map which satisfies per $X = \det f(X)$. Then $m \ge \sqrt{2} n - 1$.

Proof. We may assume that F is algebraically closed. Next we note that f is injective: If $A \neq 0$ and f(A) = f(0), then by Claim 3 there exists B satisfying per $B \neq per(A + B)$. On the other hand per $B = \det f(B) =$

det f(A + B) = per(A + B), a contradiction. It follows that $L = \{f(X): X \in M_n(F)\}$ is an n^2 -dimensional affine subspace of $M_m(F)$, and according to von zur Gathen's theorem all ranks in L are at least m - 1.

Theorem 2 now implies that

$$n^2 = \dim L \leqslant m^2 - {m \choose 2} = {m+1 \choose 2},$$

and so $m \ge \sqrt{2} n - 1$.

REMARK. A result similar to Theorem 4 has also been obtained by L. Babai and A. Seress (see [3]).

REFERENCES

- 1 B. Bollobas, Graph Theory An Introductory Course, Springer-Verlag, 1978.
- 2 H. Flanders, On subspaces of linear transformation of bounded rank, J. London Math. Soc. 37:10-16 (1962).
- 3 J. von zur Gathen, Permanent and determinant, *Linear Algebra Appl.* 96:87-100 (1987).
- 4 M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices, Amer. J. Math. 80:614-622 (1958).
- 5 L. Lovasz, Combinatorial Problems and Exercises, North Holland, 1979.
- 6 R. Meshulam, On the maximal rank in a subspace of matrices, Quart. J. Math. 36:225-229 (1985).
- 7 L. Valiant, The complexity of computing the permanent, *Theoret. Comput. Sci.* 8:189-201 (1979).

Received January 1, 1988; final manuscript accepted July 15, 1988