On Two Extremal Matrix Problems

Roy Meshulam*
RUTCOR
Rutgers University
New Brunswick, New Jersey 08903
Dedicated to Alan J. Hoffman on the occasion of his 65th birthday.

Submitted by Alexander Schrijver

ABSTRACT

Let W be a linear subspace of symmetric $n \times n$ matrices whose rank is at most t. It is shown that if the underlying field has more than n elements, then:

$$
\operatorname{dim} W \leqslant \begin{cases}\max \left\{\binom{t+1}{2}, k n-\binom{k}{2}\right\}, & t=2 k \\ \max \left\{\binom{t+1}{2}, k n-\binom{k}{2}+1\right\}, & t=2 k+1\end{cases}
$$

Let L be an affine space of $n \times n$ matrices all having rank at least k. It is shown that if the underlying field is algebraically closed, then

$$
\operatorname{dim} L \leqslant n^{2}-\binom{k+1}{2}
$$

The last result is applied to a problem of Valiant concerning permanents and determinants.

1. INTRODUCTION

Let $M_{n}(F)$ denote the space of $n \times n$ matrices over a field F, and let $H_{n}(F)$ be the subspace of symmetric $n \times n$ matrices.

[^0]In Section 2 we give an upper bound for the dimension of linear subspaces of $H_{n}(F)$ having a bounded rank. Let $f_{F}(n, t)$ be the maximal dimension of a linear subspace $W \subseteq H_{n}(F)$ such that $\operatorname{rank}(A) \leqslant t$ for all $A \in W$.

Example 1.

$$
W_{1}(n, t)=\left\{A \in H_{n}(F): A(i, j)=0 \text { if } i>t \text { or } j>t\right\}
$$

Example 2.

$$
\begin{aligned}
& W_{2}(n, 2 k)=\left\{A \in H_{n}(F): A(i, j)=0 \text { if } i>k \& j>k\right\} \\
& W_{2}(n, 2 k+1)=\left\{A \in H_{n}(F): A(i, j)=0 \text { if } i>k \& j>k \&(i, j)\right. \\
&\neq(k+1, k+1)\} .
\end{aligned}
$$

Clearly $\operatorname{rank}(A) \leqslant t$ for any $A \in W_{i}(n, t)$.

Theorem 1. If $|F| \geqslant \min \{t+3, n+1\}$, then

$$
\begin{aligned}
f_{F}(n, t) & =\max \left\{\operatorname{dim} W_{1}(n, t), \operatorname{dim} W_{2}(n, t)\right\} \\
& = \begin{cases}\max \left\{\binom{t+1}{2}, k n-\binom{k}{2}\right\}, & t=2 k, \\
\max \left\{\binom{t+1}{2}, k n-\binom{k}{2}+1\right\}, & t=2 k+1 .\end{cases}
\end{aligned}
$$

In Section 3 we consider $h_{F}(n, k)$-the maximal dimension of an affine subspace of $M_{n}(F)$ which contains only matrices of rank at least k.

Example.

$$
L(n, k)=\left\{A \in M_{n}(F): A(i, j)=\delta_{i j} \text { for } l \leqslant i \leqslant j \leqslant k\right\} .
$$

Theorem 2. If F is algebraically closed or $F=\mathbf{R}$, then

$$
h_{F}(n, k)=\operatorname{dim} L(n, k)=n^{2}-\binom{k+1}{2} .
$$

We conclude with an application of Theorem 2 to a problem of Valiant concerning representations of permanents in terms of determinants.

2. SPACES OF SYMMETRIC MATRICES OF BOUNDED RANK

We shall deduce Theorem 1 from a combinatorial lower bound on the maximal rank in a subspace of symmetric matrices (Theorem 3) and a simple extremal graph theoretic result (Theorem 4).

We shall use the following notation: $[n]^{\leqslant 2}$ will denote the collection of all nonempty subsets of $[n]=\{1, \ldots, n\}$ of size $\leqslant 2$. [n] ${ }^{(2)}$ will denote the complete graph on [n]. For a matrix $A \in H_{n}(F)$ we define $q(A)=\left\{i_{0}, j_{0}\right\}$ $\in[n]^{\leqslant 2}$ where $\left(i_{0}, j_{0}\right)=\min \{(i, j): A(i, j) \neq 0\}$, and the minimum is taken with respect to the lexicographic ordering of $[n] \times[n]\left[(i, j)<\left(i_{1}, j_{1}\right)\right.$ iff $i<i_{1}$ or $i=i_{1} \& j<j_{1}$].

A collection $\mathscr{B}=\left\{B_{1}, \ldots, B_{m}\right\}$ is called a matching if the B_{i} 's are pairwise disjoint. For a graph with loops $\mathscr{B} \subseteq[n] \leqslant 2$ we denote

$$
\mu(\mathscr{B})=\max \left\{\sum_{B \in \mathscr{B}^{\prime}}|B|: \mathscr{B}^{\prime} \subseteq \mathscr{B} \text { is a matching }\right\} .
$$

With a collection of matrices $\mathscr{A}=\left\{A_{1}, \ldots, A_{m}\right\} \subset H_{n}(F)$ we associate a graph with loops $\mathscr{B}=\left\{q\left(A_{1}\right), \ldots, q\left(A_{m}\right)\right\} \subseteq[n] \leqslant 2$.

Theorem 3. If $|F| \geqslant \mu(\mathscr{B})+1$, then $\operatorname{Span}(\mathscr{A})$ contains a matrix of $\operatorname{rank} \geqslant \mu(\mathscr{B})$.

Proof. It suffices to show that if $\mu(\mathscr{B})=n$ and $\left\{q\left(A_{i}\right)\right\}_{i=1}^{m}$ forms a partition of $[n$], then $\operatorname{Span}(\mathscr{A})$ contains a nonsingular matrix. [The case $\mu(\mathscr{B})<n$ reduces to the above, by considering the $\mu(\mathscr{B}) \times \mu(\mathscr{B})$ minors determined by a maximum matching in \mathscr{B}.]

Let $f\left(x_{1}, \ldots, x_{m}\right)=\operatorname{det}\left(\sum_{i=1}^{m} x_{i} A_{i}\right)$. We shall show that the coefficient of $x_{1}^{a_{1}} \cdots x_{m}^{a_{m}}$ in f is nonzero, where $a_{i}=\left|q\left(A_{i}\right)\right|, 1 \leqslant i \leqslant m$.

Clearly this coefficient equals $\sum \operatorname{det} A$, where A runs through all matrices of order n which have exactly a_{i} rows "belonging" to A_{i}, for all $\mathrm{l} \leqslant i \leqslant m$. More formally, consider two functions $f_{1}, f_{2}:[m] \rightarrow[n]$ which satisfy

$$
f_{1}(t)<f_{2}(t) \quad \text { if } a_{t}=2, \quad f_{1}(t)=f_{2}(t) \quad \text { if } a_{t}=1
$$

and

$$
\bigcup_{t=1}^{m}\left\{f_{1}(t), f_{2}(t)\right\}=[n]
$$

The coefficient of $x_{1}^{a_{1}} \cdots x_{m}^{a_{m}}$ equals $\Sigma \operatorname{det} A\left(f_{1}, f_{2}\right)$, where the summation extends over all pairs f_{1}, f_{2} which satisfy ($\left.*\right)$, and $A\left(f_{1}, f_{2}\right) \in M_{n}(F)$ is defined as follows: For all $\mathrm{I} \leqslant t \leqslant m$ and $i=1,2$, the $f_{i}(t)$ th row of $A\left(f_{1}, f_{2}\right)$ is the $f_{i}(t)$ th row of A_{t}.

We may assume now that $q\left(A_{t}\right)=\left\{i_{t}, j_{t}\right\}$, where $i_{t} \leqslant j_{t}$ (equality iff $a_{t}=1$), and $1=i_{1}<\cdots<i_{m}$. It is clear that if $f_{1}(t)=i_{t}$ and $f_{2}(t)=j_{t}$ for $1 \leqslant t \leqslant m$, then $A\left(f_{1}, f_{2}\right)$ is a row permutation of an upper triangular matrix with nonzeros on the diagonal, and hence $\operatorname{det} A\left(f_{1}, f_{2}\right) \neq 0$. Theorem 3 will therefore follow from:

Claim 1. If $\operatorname{det} A\left(f_{1}, f_{2}\right) \neq 0$, then $f_{1}(t)=i_{t}$ and $f_{2}(t)=j_{t}$ for all $1 \leqslant t \leqslant m$.

Proof. First we note the following:
(a) Columns $1, \ldots, i_{s}-1$ in A_{s} contain only zeros.
(b) If $q<j_{s}$, then the q th row of A_{s} contains zeros in entries l, \ldots, i_{s}.
(c) Rows $1, \ldots, i_{s}-1$ in A_{s} are all zero; hence $\operatorname{det} A\left(f_{1}, f_{2}\right) \neq 0$ implies that $f_{2}(s) \geqslant f_{1}(s) \geqslant i_{s}$ for all $1 \leqslant s \leqslant m$.

We shall prove Claim 1 by verifying that the following statement holds: If $\operatorname{det} A\left(f_{1}, f_{2}\right) \neq 0$, then for all $1 \leqslant p \leqslant n$:
(1) If $p=i_{t}$ then $f_{1}(t)=i_{t}$ and $f_{2}(t) \geqslant j_{t}$.
(2) If $p=j_{t}>i_{t}$ then $f_{2}(t)=j_{t}$.

The proof proceeds by induction on p : Let $p=1=i_{1}$. Since A_{1} is the only A_{i} whose first row is nonzero, we must have $f_{1}(1)=1$. Similarly $f_{2}(1) \geqslant j_{1}$; otherwise the first column of $A\left(f_{1}, f_{2}\right)$ would be zero.

Assume now that $1<p \leqslant n$, and consider two cases:
(1) $p=i_{t}: \quad$ If $p=f_{1}(s)$ for some s, then by (c), $p=f_{1}(s) \geqslant i_{s}$. If $p>i_{s}$, then by induction $f_{1}(s)=i_{s}<p$. Hence $i_{s}=p$ and so $s=t$ and $p=f_{1}(t)$.

Assume then that $p=f_{2}(s)>f_{1}(s)$. As before, it follows that $p>i_{s}$ and hence $p=f_{2}(s) \geqslant j_{s}$. The possibility $p>j_{s}$ is excluded by induction; therefore $i_{t}=p=j_{s}$ and so $i_{s}=j_{s}$, contradicting our assumption $f_{1}(s)<f_{2}(s)$. It remains to show that $f_{2}(t) \geqslant j_{t}$. Suppose, to the contrary, that $f_{2}(t)<j_{t}$, and let B be the $n \times p$ matrix consisting of the first p columns of $A\left(f_{1}, f_{2}\right)$.

Lemma. If the q th row of B is nonzero, then

$$
q \in\left\{f_{2}(s): i_{s}<p\right\} \cup\left\{f_{1}(s): j_{s}<p\right\} .
$$

Proof. Assume that $q=f_{2}(s)$. By (a), $i_{s} \leqslant p$. If $i_{s}=p=i_{t}$, then $s=t$, and so $q=f_{2}(s)=f_{2}(t)<j_{t}=j_{s}$. But then, by (b), the q th row of A_{s} contains zeros in entries $1, \ldots, i_{s}=p$, a contradiction. Therefore $i_{s}<p$.

Assume now that $q=f_{1}(s)<f_{2}(s)$. As before, $i_{s} \leqslant p$, and so by induction (and the beginning of the proof), $q=f_{1}(s)=i_{s}$. But the i_{s} th row of A_{s} contains zeros in places $1, \ldots, j_{s}-1$; therefore it follows that $i_{t}=p \geqslant j_{s}$, and so $j_{s}<\boldsymbol{p}$.

The lemma implies that the number of nonzero rows in B is at most $\left|\left\{f_{2}(s): i_{s}<p\right\} \cup\left\{f_{1}(s): j_{s}<p\right\}\right|=p-1$. Hence $\operatorname{rank}(B) \leqslant p-1$ and $A\left(f_{1}, f_{2}\right)$ must be singular, contradicting our assumption. Therefore $f_{2}(t) \geqslant j_{t}$, which completes the proof of case (1).
(2) $p=j_{t}>i_{t}$. We have to show that $f_{2}(t)=j_{t}$. If $p=f_{1}(s)$ for some s, then $i_{s} \leqslant p=j_{t}$, hence $i_{s}<p$ and so, by induction, $f_{1}(s)=i_{s}<p$, a contradiction. Therefore $p=f_{2}(s)>f_{1}(s)$. Again $i_{s}<p$, and by induction $p=f_{2}(s)$ $\geqslant j_{s}$. Now $j_{s}<p$ is excluded by induction, so we conclude that $j_{s}=p=j_{t}$, $s=t$, and $f_{2}(t)=j_{r}$.

Claim 1 shows that $f\left(x_{1}, \ldots, x_{m}\right)$ is not identically zero, which together with the assumption on the size of $|F|$ proves Theorem 3.

In the following we shall need a certain extremal property of μ. For $1 \leqslant t \leqslant n$ let

$$
u(n, t)=\max \left\{|\mathscr{P}|: \mathscr{B} \subseteq[n]^{\leqslant 2} \text { and } \mu(\mathscr{B}) \leqslant t\right\}
$$

Example 1.

$$
\mathscr{B}_{1}(n, t)=[t]^{<2} .
$$

Example 2.

$$
\begin{aligned}
\mathscr{P}_{2}(n, 2 k) & =[k]^{\leqslant 2} \cup\left\{e \in[n]^{(2)}:|e \cap[k]|=1\right\}, \\
\mathscr{B}_{2}(n, 2 k+1) & =\mathscr{R}_{2}(n, 2 k) \cup\{\{k+1\}\} .
\end{aligned}
$$

Clearly $\mu\left(\mathscr{P}_{i}(n, t)\right)=t$.
The following theorem and its proof are similar to the analogous graphical case (see Problem 3.31 in [1]).

Theorem 4.

$$
\begin{aligned}
u(n, t) & =\max \left\{\left|\mathscr{B}_{1}(n, t)\right|,\left|\mathscr{B}_{2}(n, t)\right|\right\} \\
& = \begin{cases}\max \left\{\binom{t+1}{2}, k n-\binom{k}{2}\right\}, & t=2 k \\
\max \left\{\binom{t+1}{2}, k n-\binom{k}{2}+1\right\}, & t=2 k+1\end{cases}
\end{aligned}
$$

Proof. Let $\mathscr{B} \subseteq[n]^{\leqslant 2}$ be a maximal collection satisfying $\mu(\mathscr{P}) \leqslant t$. Maximality implies that $\mu(\mathscr{D})=t$ and that if $\{x\},\{y\} \in \mathscr{B}$ then $\{x, y\} \in \mathscr{B}$. Let $G=\mathscr{B} \cap[n]^{(2)}$ be the graph without loops induced by \mathscr{B}; then clearly $\nu(G)$, the maximum number of disjoint edges in G, equals $\lfloor t / 2\rfloor$. We consider two cases:
(a) $t=2 k+1$: Clearly G is a maximal graph on $[n]$ satisfying $\nu(\mathrm{C})=k$. By Tutte's theorem (Exercise 7.27 in [5]) there exists a subset of vertices S, $|S|=s$, such that $c_{1}(G-S)$, the number of odd components of $G-S$, equals $n+s-2 k$. Denote by $A_{1}, \ldots, A_{n+s-2 k}\left(B_{1}, \ldots, B_{l}\right)$ the odd (even) components of $G-S$. The maximality of G implies that $G[S], G\left[A_{i}\right], G\left[B_{j}\right]$ are complete graphs (for all i and j), and that all edges $e \in[n]^{(2)}$ which satisfy $|e \cap S|=1$ necessarily belong to G. This structure of G implies that at most one of the odd components of $G-S$, say A_{1}, contains vertices which are loops in \mathscr{B}. Denoting $\left|A_{i}\right|=a_{i},\left|B_{j}\right|=b_{i}$, and using

$$
\sum_{i=1}^{r}\binom{x_{i}}{2} \leqslant\binom{\sum_{i=1}^{r} x_{i}-r+1}{2}
$$

whenever $x_{i} \geqslant 1$, we obtain

$$
\begin{aligned}
|\mathscr{B}| \leqslant & \binom{s+1}{2}+s(n-s)+\sum_{j=1}^{l}\binom{b_{j}+1}{2} \\
& +\binom{a_{1}+1}{2}+\sum_{i=2}^{n+s-2 k}\binom{a_{i}}{2} \\
& \leqslant\binom{ s+1}{2}+s(n-s)+\left(\sum_{j=1}^{l} b_{j}+\sum_{i=1}^{n+s-2 k} a_{i}+2 k+2-n-s\right) \\
& =\binom{s+1}{2}+s(n-s)+\binom{2(k-s)+2}{2} .
\end{aligned}
$$

This implies, since $0 \leqslant s \leqslant k$, that

$$
|\mathscr{B}| \leqslant \max \left\{\binom{2 k+2}{2}, k n-\binom{k}{2}+1\right\} .
$$

(b) $t=2 k$: As before, $p(G)=k$. By the Gallai-Edmonds theorem (Exercise 7.32 in [5]), there exists $S \subseteq[n],|S|=s$, such that $2 k=n+s-$ $c_{1}(G-S)$ and $\nu(G-x)=\nu(G)$ for any vertex x belonging to an odd component of $G-S$. Since $\mu(\mathscr{B})=2 k$, this last property implies that none of the odd components of $G-S$ contains a singleton of \mathscr{B}. Denoting the components of $G-S$ as before, we obtain

$$
\begin{aligned}
|\mathscr{B}| & \leqslant\binom{ s+1}{2}+s(n-s)+\sum_{j=1}^{l}\binom{b_{j}+1}{2}+\sum_{i=1}^{n+s-2 k}\binom{a_{i}}{2} \\
& \leqslant\binom{ s+1}{2}+s(n-s)+\binom{2(k-s)+1}{2},
\end{aligned}
$$

and so

$$
|\mathscr{B}| \leqslant \max \left\{\binom{2 k+1}{2}, k n-\binom{k}{2}\right\} .
$$

Theorem 1 now follows from Theorems 3 and 4: Suppose $W=$ $\operatorname{Span}\left\{A_{1}, \ldots, A_{m}\right\}=\operatorname{Span}(\mathscr{A})$ is an m-dimensional subspace of $H_{n}(F)$ such that $\operatorname{rank}(A) \leqslant t$ for all $A \in W$. Performing a Gaussian elimination on A_{1}, \ldots, A_{m} (considered as n^{2}-dimensional vectors), we may assume that $\mathscr{B}=\left\{q\left(A_{1}\right), \ldots, q\left(A_{m}\right)\right\}$ contains m distinct edges (including loops). If $m>u(n, t)$, then $\mu(\mathscr{B}) \geqslant t+1$, and so we may choose $\mathscr{B}^{\prime} \subseteq \mathscr{B}$ such that $t+1 \leqslant \mu\left(\mathscr{B}^{\prime}\right) \leqslant t+2$. Let $\mathscr{A}^{\prime} \subseteq \mathscr{A}$ be the subcollection of matrices which corresponds to \mathscr{B}^{\prime}, then by Theorem 3, Span($\left.\mathscr{A}^{\prime}\right)$ contains a matrix of rank $\geqslant \mu\left(\mathscr{B}^{\prime}\right) \geqslant t+1$, contradicting our assumptions. Therefore $\operatorname{dim} W=m \leqslant$ $u(n, t)$, and so Theorem 1 follows from Theorem 4.

Remarks.

(1) Denote by $g_{F}(n, 2 k)$ the maximal dimension of a subspace of skewsymmetric F-matrices of rank $\leqslant 2 k$. Theorem 3 and the graphical analogue of Theorem 4 imply that if $|F| \geqslant \min \{2 k+3, n+1\}$ and char $F \neq 2$ then

$$
g_{F}(n, 2 k)=\max \left\{\binom{2 k}{2}, k n-\binom{k+1}{2}\right\} .
$$

(2) The maximal dimension of a subspace of matrices of bounded rank is discussed by Flanders [2] (see also [6]).

3. THE MINIMAL RANK IN AN AFFINE SUBSPACE OF MATRICES

We assume throughout this section that either $F=\mathbf{R}$ or F is algebraically closed.

In the proof of Theorem 2 we shall make use of the following:

Claim 2. If a linear subspace $W \subseteq M_{r}(F)$ satisfies

$$
\operatorname{dim} W>\binom{r}{2}
$$

then W contains a matrix with a nonzero eigenvalue which belongs to the field.

Proof.
(a) $F=\mathbf{R}$: Clearly

$$
\begin{aligned}
\operatorname{dim}\left[W \cap H_{r}(\mathbf{R})\right] & \geqslant \operatorname{dim} W+\operatorname{dim} H_{r}(\mathbf{R})-\operatorname{dim} M_{r}(\mathbf{R}) \\
& >\binom{r}{2}+\binom{r+1}{2}-r^{2}=0
\end{aligned}
$$

Hence W contains a nonzero symmetric matrix which, of course, has a nonzero real eigenvalue.
(b) F is algebraically closed: If W does not contain a matrix with a nonzero eigenvalue, then all matrices in W are nilpotent, and hence by a theorem of Gerstenhaber [4],

$$
\operatorname{dim} W \leqslant\binom{ r}{2}
$$

We can now show that if L is an $n^{2}-\binom{k+1}{2}+1$ dimensional affine subspace of $M_{n}(F)$, then L contains a matrix of rank at most $k-1$. By (downward) induction on k, L contains a matrix A_{0} of rank $\leqslant k$. If $\operatorname{rank}\left(A_{0}\right) \leqslant k-1$ then we are done, so we assume $\operatorname{rank}\left(A_{0}\right)=k$. Changing bases, we may take A_{0} to be

$$
\left(\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right)
$$

where I_{k} is the identity matrix of order k.
Let W be the linear subspace of $M_{n}(F)$ for which $L=A_{0}+W$, and let

$$
U=\left\{B \in M_{k}(F):\left(\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right) \in W\right\} .
$$

Clearly

$$
\begin{aligned}
\operatorname{dim} U & \geqslant \operatorname{dim} W+\operatorname{dim} M_{k}(F)-\operatorname{dim} M_{n}(F) \\
& \geqslant\left(n^{2}-\binom{k+1}{2}+1\right)+k^{2}-n^{2}=\binom{k}{2}+1
\end{aligned}
$$

and so, by Claim 2, there exists a matrix $B \in U$ with an eigenvalue $0 \neq \lambda \in F$,
i.e. $\operatorname{det}\left(I_{k}-\lambda^{-1} B\right)=0$. Now

$$
B_{0}=\left(\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right) \in W
$$

and so $A_{0}-\lambda^{-1} B_{0}$ belongs to L and satisfies

$$
\operatorname{rank}\left(A_{0}-\lambda^{-1} B_{0}\right)=\operatorname{rank}\left(\begin{array}{cc}
I_{k}-\lambda^{-1} B & 0 \\
0 & 0
\end{array}\right) \leqslant k-1
$$

which proves Theorem 2.
We conclude with an application of Theorem 2: Let F be an infinite field of characteristic $\neq 2$. The permanent of order n is said to be a projection of the determinant of order m if there exists an $m \times m$ matrix f, whose entries are either elements of F or variables $\pm x_{i j}, 1 \leqslant i, j \leqslant n$, such that per $x_{i j}=$ $\operatorname{det} f$ holds as a polynomial identity in $F\left[x_{11}, \ldots, x_{n n}\right]$.

Let $p(n)$ denote the least m for which such a matrix exists. Valiant [7] has shown that $p(n)=O\left(n^{2} 2^{n}\right)$ and conjectured that $p(n)$ grows superpolynomially in n. von zur Gathen [3] has recently proved that $p(n) \geqslant \sqrt{\frac{8}{7}} n-1$. In Theorem 5 we slightly improve this bound.

We shall apply yet another theorem of von zur Gathen:

Theorem [3]. If F is an infinite field of characteristic $\neq 2$ and $f: M_{n}(F) \rightarrow M_{m}(F)$ is a polynomial mapping which satisfies per $X=$ $\operatorname{det} f(X)$, then rank $f(A) \geqslant m-1$ for all $A \in M_{n}(F)$.

We shall also need the following easy fact (which may be proved by induction on the maximal order of a nonzero subpermanent of A):

Claim 3. If $0 \neq A \in M_{n}(F)$, then there exists $B \in M_{n}(F)$ for which $\operatorname{per}(A+B) \neq \operatorname{per} B$.

Theorem 4. Let F be an infinite field of characteristic $\neq 2$, and let $f: M_{n}(F) \rightarrow M_{m}(F)$ be an affine map which satisfies \quad per $X=\operatorname{det} f(X)$. Then $m \geqslant \sqrt{2} n-1$.

Proof. We may assume that F is algebraically closed. Next we note that f is injective: If $A \neq 0$ and $f(A)=f(0)$, then by Clain 3 there exists B satisfying $\operatorname{per} B \neq \operatorname{per}(A+B)$. On the other hand $\operatorname{per} B=\operatorname{det} f(B)=$
$\operatorname{det} f(A+B)=\operatorname{per}(A+B)$, a contradiction. It follows that $L=$ $\left\{f(X): X \in M_{n}(F)\right\}$ is an n^{2}-dimensional affine subspace of $M_{m}(F)$, and according to von zur Gathen's theorem all ranks in L are at least $m-1$.

Theorem 2 now implies that

$$
n^{2}=\operatorname{dim} L \leqslant m^{2}-\binom{m}{2}=\binom{m+1}{2}
$$

and so $m \geqslant \sqrt{2} n-1$.

Remark. A result similar to Theorem 4 has also been obtained by L . Babai and A. Seress (see [3]).

REFERENCES

1 B. Bollobas, Graph Theory - An Introductory Course, Springer-Verlag, 1978.
2 H. Flanders, On subspaces of linear transformation of bounded rank, J. London Math. Soc. 37:10-16 (1962).
3 J. von zur Gathen, Permanent and determinant, Linear Algebra Appl. 96:87-100 (1987).

4 M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices, Amer. J. Math. 80:614-622 (1958).

5 L. Lovasz, Combinatorial Problems and Exercises, North Holland, 1979.
6 R. Meshulam, On the maximal rank in a subspace of matrices, Quart. J. Math. 36:225-229 (1985).
7 L. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8:189-201 (1979).

Received January 1, 1988; final manuscript accepted July 15, 1988

[^0]: *Research supported by AFOSR Grant 0271.
 Current address: Dept. of Mathematics, M.I.T., Cambridge, MA 02139.

