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ABSTRACT 

Let W be a linear subspace of symmetric n X n matrices whose rank is at most t. 
It is shown that if the underlying field has more than n elements, then: 

i 

m={( ‘il),kn-( i)), t=2k, 

dimWg 

max((t~I),kn-(~)+I), t=2k+l. 

Let L be an affine space of n x n matrices all having rank at least k. It is shown that 
if the underlying field is algebraically closed, then 

dim L < n2 - 

The last result is applied to a problem of Valiant concerning permanents and 
determinants. 

1. INTRODUCTION 

Let M,(F) denote the space of n x n matrices over a field F, and let 

H,(F) be the subspace of symmetric n x n matrices. 
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In Section 2 we give an upper bound for the dimension of linear 
subspaces of H,(F) having a bounded rank. Let &( n, t) be the maximal 
dimension of a linear subspace W c II,(F) such that rank(A) Q t for all 
A E W. 

EXAMPLE 1. 

W,(n,t)= {AEH,(F):A(i,j)=Oif i>torj>t}. 

EXAMPLE 2. 

W,(n,2k)= {AEH,(F):A(i,j)=Oif i>k&j>k}, 

W,(n,2k+l)={A~H,(F):A(i,j)=Oifi>k& j>k&(i,j) 

#(k+l,k+l)}. 

Clearly rank(A) < t for any A E Wi(n, t). 

THEOREM 1. If (F(amin{t+&n+l}, then 

fF(n,t)=max{dimW,(n,t),dimW,(n,t)} 

In Section 3 we consider h,(n, k)-the maximal dimension of an affine 
subspace of M,(F) which contains only matrices of rank at least k. 

EXAMPLE. 

L(n,k)= {AEM,(F):A(i,j)=6ijfor1<i<j<k}. 
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THEOREM 2. Zf F is algebraically closed or F = R, then 

h,(n,k)=dimL(n,k)=n’- kll . 
( 1 

We conclude with an application of Theorem 2 to a problem of Valiant 
concerning representations of permanents in terms of determinants. 

2. SPACES OF SYMMETRIC MATRICES OF BOUNDED RANK 

We shall deduce Theorem 1 from a combinatorial lower bound on the 
maximal rank in a subspace of symmetric matrices (Theorem 3) and a simple 
extremal graph theoretic result (Theorem 4). 

We shall use the following notation: [n] d 2 will denote the collection of all 
nonempty subsets of [n] = { 1,. . . , n } of size < 2. [r~](~) will denote the 
complete graph on [n]. For a matrix A E H,(F) we define 9(A) = {i,, j,} 
E [nlG2 where (ie, j,) = min{(i, j): A(i, j) # 0}, and the minimum is taken 
with respect to the lexicographic ordering of [n] x [n] [(i, j) < (il, j,) iff 
i < i, or i = i, & j < j,]. 

A collection .%? = { B,, . . . , B,,, } is called a matching if the Bi’s are 
pairwise disjoint. For a graph with loops G!? c [n] d ’ we denote 

p(.%?) = max c IBI: WC_ .%? is a matching . 

BE!%-’ 

With a collection of matrices .zzZ = { A,, . . . , A, ) C H,(F) we associate a 
graph with loops %f= {q(A,),...,q(A,)} G [nlG2. 

THEOREM 3. Zf ]F]>,p(.G?)+l, then Span(&) contains a matrix of 
rank > p( 9). 

Proof. It suffices to show that if I(.@) = n and { 9(Ai)}yz”,, forms a 
partition of [n], then Span(&) contains a nonsingular matrix. [The case 
~(9) -z n reduces to the above, by considering the p(.%?) X p(.%?) minors 
determined by a maximum matching in ~8.1 

Let f(xl ,..., x,) = det(Xz”, x,A,). We shall show that the coefficient of 
Xf’ . . . XZ” in f is nonzero, where ai = ]q(A,)(, 1 Q i Q m. 
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Clearly this coefficient equals Cdet A, where A runs through all matrices 
of order n which have exactly ai rows “belonging” to Ai, for all 1 < i < m. 

More formally, consider two functions f,, fi: [m] + [n] which satisfy 

fI(t) c_&(t) if a, = 2, h(t)=h(t) if a,=1 (*I 

and 

The coefficient of rfl . . . x2 equals C det A( f,, fz), where the summation 
extends over all pairs f,, f, which satisfy (*), and A(f,, f,) E M,(F) is 
defined as follows: For all 1~ t < m and i = 1,2, the f;( r)th row of A( f,, f,) 
is the x(t)th row of A,. 

We may assume now that q(A,) = {i,, jt}, where i, < j, (equality iff 
a, = l), and 1 = i, < . . . < i,. It is clear that if f,( t ) = i, and f2( t ) = j, for 
1~ t < m, then A( f,, f,) is a row permutation of an upper triangular matrix 
with nonzeros on the diagonal, and hence det A(f,, f,) # 0. Theorem 3 will 
therefore follow from: 

CLAIM 1. Zf det A(f,, f,) # 0, then f,(t) = i, and fi(t) = j, for all 

l<t<m. 

Proof. First we note the following: 

(a) Columns l,..., i, - 1 in A, contain only zeros. 
(b) If 9 < j,, then the 9th row of A, contains zeros in entries 1,. . . , i,. 
(c) Rows l,..., i, - 1 in A, are all zero; hence det A( f,, f,) + 0 implies 

that fa(s) > &(s) 2 i, for all 1 < s < m. 

We shall prove Claim 1 by verifying that the following statement holds: If 
det A(f,, f,) f 0, then for all 1~ p < n: 

(1) If p = i, then fi(t) = i, and f&t) > jt. 

(2) If p = j, > i, then f,(t) = j,. 

The proof proceeds by induction on p: Let p = 1 = i,. Since A, is the only A, 

whose first row is nonzero, we must have fi(l) = 1. Similarly fa(1) >, j,; 
otherwise the first column of A(f,, fi) would be zero. 

Assume now that 1 < p Q n, and consider two cases: 

(1) p = i,: If p = fi(s) for some s, then by (c), p = f,(s) > i,. If p > i,, 

then by induction fi(s) = i, < p. Hence i, = p and so s = t and p = fi(t ). 
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Assume then that p = fi(s) > fi(s). As before, it follows that p > i, and 
hence p = fi(s) > j,. The possibility p > j, is excluded by induction; there- 
fore i, = p = j, and so i, = j,, contradicting our assumption fi( s) < f,(s). It 
remains to show that fs(t ) >, j,. Suppose, to the contrary, that fs( t ) < j*, and 
let B be the n X p matrix consisting of the first p columns of A(f,, fi). 

LEMMA. Zf the qth row of B is nonmro, then 

4E {fi(s):i,<p}U{fi(s): js<p}. 

Proof. Assume that q = h(s). By (a), i, < p. If i, = p = i,, then s = t, 
and so q = fi( s) = fi( t ) < j, = j,. But then, by (b), the qth row of A, 
contains zeros in entries 1,. . . , i, = p, a contradiction. Therefore i, < p. 

Assume now that q = fi(s) < fi(s). As before, i, < p, and so by induction 
(and the beginning of the proof), q = fi(s) = i,. But the i,th row of A, 
contains zeros in places 1,. . . , j, - 1; therefore it follows that i, = p >, j,, and 
so j, < p. n 

The lemma implies that the number of nonzero rows in B is at most 
I{ fi(s) : i, < p} U { fi(s) : j, < p}( = p - 1. Hence rank(B) < p - 1 and 
A( f,, f,) must be singular, contradicting our assumption. Therefore fi(t) >, jt, 
which completes the proof of case (1). 

(2) p = j, > i,. We have to show that fi(t) = j,. If p = fi(s) for some s, 
then i, < p = jt; hence i, < p and so, by induction, fl(s) = i, < p, a contra- 
diction. Therefore p = h(s) > fi(s). Again i, < p, and by induction p = h(s) 
> j,. Now j, < p is excluded by induction, so we conclude that j, = p = jt, 
s = t, and fi(t) = j,. n 

Claim 1 shows that f(r,,..., xm) is not identically zero, which together 
with the assumption on the size of ) F) proves Theorem 3. n 

In the following we shall need a certain extremal property of p. For 
1 d t f n let 

EXAMPLE 1. 

.G?)l(n,t) = [t]“‘. 



266 ROYMESHULAM 

EUMPLE 2. 

Clearly ~(.%?~(n, t)) = t. 
The following theorem and its proof are similar to the analogous graphical 

case (see Problem 3.31 in [I]). 

THEOREM 4. 

--((t~l)ykn-(~)), t =2k, 
= 

m-((t~l),kn-(~j+l), t=2k+l. 

Roof. Let .4?c [nlG2 be a maximal collection satisfying p(..%!?) < t. 
Maximalityimpliesthat~(~)=tandthatif{x},{y}~~then{x,y}~~. 
Let G = 9? n[ rt]@) be the graph without loops induced by 99; then clearly 
v(G), the maximum number of disjoint edges in G, equals [t/Zl. We consider 
two cases: 

(a) t = 2k + 1: Clearly G is a maximal graph on [n] satisfying v(G) = k. 
By Tutte’s theorem (Exercise 7.27 in [S]) there exists a subset of vertices S, 
(SI = s, such that cr(G - S), the number of odd components of G - S, equals 
n + s - 2k. Denote by A, ,..., Anispgk (B, ,..., B,) the odd (even) compo- 
nents of G - S. The maximahty of G implies that G [S], G[ A i], G[ Bj] are 
complete graphs (for all i and j), and that all edges e E [n]@) which satisfy 
le n S( = 1 necessarily belong to 6. This structure of G implies that at most 
one of the odd components of G - S, say A,, contains vertices which are 
loops in g. Denoting J Ai\ = a,, lBil = b,, and using 

r 
‘i ci 1 i=l 
2 

d &r+l 
I I 

i=l 

2 
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whenever xi >, 1, we obtain 

n+s-2k 

i 

i bj+ c ai+2k+2-n-s 
j=l i--l 

2 

This implies, since 0 Q s < k, that 

267 

(b) t = 2k: As before, v(G) = k. By the Gallai-Edmonds theorem 
(Exercise 7.32 in [5]), there exists S c [n], IS( = s, such that 2k = n + s - 
c,(G-S) and v(G-x)=v(G) for any vertex x belonging to an odd 
component of G - S. Since p( 9’) = 2k, this last property implies that none of 
the odd components of G - S contains a singleton of .4?!. Denoting the 
components of G - S as before, we obtain 

and so 
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Theorem 1 now follows from Theorems 3 and 4: Suppose W = 
Span{ A,, . . . , A,} = Span(&) is an m-dimensional subspace of H,(F) such 
that rank(A) ,< t for all A E W. Performing a Gaussian elimination on 
A i,. . . , A,,, (considered as n’dimensional vectors), we may assume that 

a= (~(Ai),...,q(A,,z)] contains m distinct edges (including loops). If 
m > u(n, t), then p(g) >, t + 1, and so we may choose B’ c 9? such that 
t + 1~ p(.%“) < t +2. Let .&’ c Sp be the subcollection of matrices which 
corresponds to a’, then by Theorem 3, Span(csl’) contains a matrix of rank 
2 ~(9) > t + 1, contradicting our assumptions. Therefore dim W = m < 
u(n, t), and so Theorem 1 follows from Theorem 4. 

REMARKS. 

(1) Denote by g,(n,2k) the maximal dimension of a subspace of skew- 
symmetric F-matrices of rank < 2k. Theorem 3 and the graphical analogue 
of Theorem 4 imply that if (F( >, min(2k +3, n + 1) and char F # 2 then 

g,(n,2k) = max((22k~,kn-(k~1/). 

(2) The maximal dimension of a subspace of matrices of bounded rank is 
discussed by Flanders [2] (see also [6]). 

3. THE MINIMAL RANK IN AN AFFINE SUBSPACE OF MATRICES 

We assume throughout this section that either F = R or F is algebraically 
closed. 

In the proof of Theorem 2 we shall make use of the following: 

CLAIM 2. Zf a linear subspace W c M,(F) satisfies 

then W contains a matrix with a rumzero eigenvalue which belongs to the 
field. 
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Proof. 

(a) F = R: Clearly 

dim[ W n H,(R)] > dimW +dim H,(R) - dim M,(R) 

>(;)+(y)-P=o. 

Hence W contains a nonzero symmetric matrix which, of course, has a 
nonzero real eigenvalue. 

(b) F is algebraically closed: If W does not contain a matrix with a 
nonzero eigenvalue, then all matrices in W are nilpotent, and hence by a 
theorem of Gerstenhaber [4], 

dimW< i . 
i 1 

n 

We can now show that if L is an n2 - kil + 1 dimensional affine 
i 1 

subspace of M,(F), then L contains a matrix of rank at most k - 1. By 
(downward) induction on k, L contains a matrix A,, of rank < k. If 
rank(AO) 6 k - 1 then we are done, so we assume rank(A,) = k. Changing 
bases, we may take A, to be 

Zk 0 
i 1 0 0’ 

where I, is the identity matrix of order k. 
Let W be- the linear subspace of M,(F) for which L = A, + W, and let 

U={BEM~(F):((S~ $W). 

Clearly 

dimU>dimW+dimi’vZk(F’)-dimM,(F) 

.(n’-(“;‘j+l)+k’-n2=(2”)+1, 

and so, by Claim 2, there exists a matrix B E U with an eigenvalue 0 + X E F, 
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i.e. det(Z, - X-‘B) = 0. Now 

z3=* OEW 0 t 1 00 ’ 

and so A, - h - ‘$ belongs to L and satisfies 

which proves Theorem 2. 
We conclude with an application of Theorem 2: Let F be an infinite field 

of characteristic z 2. The permanent of order n is said to be a projection of 
the determinant of order m if there exists an m X m matrix f, whose entries 
are either elements of F or variables k xii, 16 i, j < n, such that perXij = 
det f holds as a polynomial identity in F[r,,. . . . , x,,]. 

Let p(n) denote the least m for which such a matrix exists. Valiant [7] 
has shown that p(n) = 0( n’2”) and conjectured that p(n) grows superpoly- 
nomialIy in n. von zur Gathen [3] has recently proved that p(n) 2 Err - 1. 
In Theorem 5 we slightly improve this bound. 

We shall apply yet another theorem of von zur Gathen: 

THEOREM [3]. Zf F is an infinite field of characteristic + 2 and 

f: M,,(F) + M,,(F) is a polynomial mapping which satisfies perX = 
detf(X), then rankf(A)>m-1 foraZZAEM,(F). 

We shall also need the following easy fact (which may be proved by 
induction on the maximal order of a nonzero subpermanent of A): 

CLAIM 3. Zf 0 # A E M,,(F), then there exists B E M,(F) fM which 

per( A + B) f per B. 

THEOREM 4. Let F be an infinite field of characteristic f 2, and let 

f: M,(F) + M,,,(F) be an afjke mup which satisfies perX = det f(X). 

Thenm&&n-1. 

Proof. We may assume that F is algebraically closed. Next we note that 
f is injective: If A # 0 and f(A) = f(O), then by Claim 3 there exists B 

satisfying per B z per(A + B). On the other hand per B = det f(B) = 
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det f(A + B) = per(A + B), a contradiction. It follows that L = 

{f(X): X E W,(F)] is an r&dimensional af%ne subspace of M,(F), and 
according to von zur Gathen’s theorem all ranks in L are at least m - 1. 

Theorem 2 now implies that 

andsom&&n-1. n 

REMAFUC. A result similar to Theorem 4 has also been obtained by L. 
Babai and A. Seress (see [3]). 
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