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ABSTRACT

Let W be a linear subspace of symmetric n X n matrices whose rank is at most .
It is shown that if the underlying field has more than n elements, then:

el (131) (). oo

max{(tgl),kn—(g)-Fl}, t=2k+1.

dimW <

Let L be an affine space of n X n matrices all having rank at least k. It is shown that
if the underlying field is algebraically closed, then

dingnz-(kgl)

The last result is applied to a problem of Valiant concerning permanents and
determinants.

1. INTRODUCTION

Let M, (F) denote the space of n X n matrices over a field F, and let
H (F) be the subspace of symmetric n X n matrices.

*Research supported by AFOSR Grant 0271.
Current address: Dept. of Mathematics, M.I.T., Cambridge, MA 02139.
LINEAR ALGEBRA AND ITS APPLICATIONS 114 /115:261-271 (1989) 261

© Elsevier Science Publishing Co., Inc., 1989
655 Avenue of the Americas, New York, NY 10010 0024-3795 /89 /$3.50



262 ROY MESHULAM

In Section 2 we give an upper bound for the dimension of linear
subspaces of H,_(F) having a bounded rank. Let fz(n,t) be the maximal
dimension of a linear subspace W C H (F) such that rank(A) <t for all
AeW.

ExamprLE 1.

Wi(n,t)={A€H(F):A(i,j)=0ifi>torj>t}.

EXAMPLE 2.
Wy(n,2k)={A€H,(F):A(i,j)=0if i>k & j>k},
Wy(n,2k+1)={A€H,(F): A(i,j)=0if i>k & j>k & (i, j)
#(k+1,k+1)}.

Clearly rank(A) <t for any A € W(n,t).

Tueorem 1. If |F|> min{t +3,n +1}, then

fe(n,t) = max{dimW(n,t), dimWy(n,¢)}

_Imax<(t;1)’kn‘(§)}, £ =2k,

_1max{(t‘2“1),kn—(g)+1}, t=2k+1.

In Section 3 we consider h.(n, k)—the maximal dimension of an affine
subspace of M, (F) which contains only matrices of rank at least k.

ExaMPLE.

L(n,k)={AcM(F):A(i,j) =8, for I<i<j<k}.
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TueoreM 2. If F is algebraically closed or F = R, then
hp(n, k) =dim L(n, k) = n?— ("‘2”).

We conclude with an application of Theorem 2 to a problem of Valiant
concerning representations of permanents in terms of determinants.

2. SPACES OF SYMMETRIC MATRICES OF BOUNDED RANK

We shall deduce Theorem 1 from a combinatorial lower bound on the
maximal rank in a subspace of symmetric matrices (Theorem 3) and a simple
extremal graph theoretic result (Theorem 4).

We shall use the following notation: [7]<? will denote the collection of all
nonempty subsets of [n]={1,...,n)} of size <2 [n]® will denote the
complete graph on [n)]. For a matrix A € H (F) we define q(A) = {iy, j, }
€ [n]<? where (i, jo) = min{(i, j): A(i, j) # 0}, and the minimum is taken
with respect to the lexicographic ordering of [n]Xx[n] [(i, §) < (i}, j,) iff
i<ijori=i & j<jl

A collection % ={B,,...,B,} is called a matching if the B/s are
pairwise disjoint. For a graph with loops # C [n]<2 we denote

u(gc?)=max{ Y |B|:@’g@isamatching>.
Bea

With a collection of matrices & ={A,,...,A,,} C H(F) we associate a
graph with loops 2 = {q(A)),...,q(A,)} S [n]<2

THEOREM 3. If |F|>mM(#)+1, then Span(&/) contains a matrix of
rank > u(%).

Proof. It suffices to show that if p(#)=n and {g(A;)}]., forms a
partition of [n], then Span(%/) contains a nonsingular matrix. [The case
p(%#)<n reduces to the above, by considering the p(%)X p(%) minors
determined by a maximum matching in 4.]

Let f(x,,...,x,,)=det(T" x,A,). We shall show that the coefficient of
x{t---xpm in f is nonzero, where a,=|q(A))}, 1<i<m.
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Clearly this coefficient equals 2 det A, where A runs through all matrices
of order n which have exactly a, rows “belonging” to A, for all 1 <i < m.
More formally, consider two functions f;, f;:[m] — [n] which satisfy

ft) <fh(t) #a=2 filt)=£) i a =1 (*)

and

U (A1), £(6)) = [n]

t=1

The coefficient of x{!---x% equals Ldet A(f;, f;), where the summation
extends over all pairs f|, f; which satisfy (*), and A(f, ;) € M (F) is
defined as follows: For all 1 <t <m and i=1,2, the fi(¢)th row of A(f}, f5)
is the f(t)th row of A,.

We may assume now that g(A,)= {i,, j,}, where i, < j, (equality iff
a,=1),and 1=i, < --- <i_,. Itis clear that if f(¢)=1i, and fy(t)= j, for
1<t <m, then A(f,, f;) is a row permutation of an upper triangular matrix
with nonzeros on the diagonal, and hence det A( f,, f;) # 0. Theorem 3 will
therefore follow from:

Cramm 1. If det A(fy, f,) #0, then fi(t)=1, and f(t)=j, for all

I1gtgm,.

Proof. First we note the following:

(a) Columns 1,...,i,—1 in A contain only zeros.

(b) If g <j,, then the gth row of A contains zeros in entries 1,...,i_.

(c) Rows 1,...,i,—1in A, are all zero; hence det A(f}, f,)# 0 1mp11es
that fi(s)> fl(s) >i forall 1<

We shall prove Claim 1 by verifying that the following statement holds: If
det A(f;, ;) # 0, then forall 1 < p < n:

(1) If p=1i, then fi(t)=1i, and f(t) > j,
@) If p=j,>i, then f(t)=j,

The proof proceeds by induction on p: Let p=1=i,. Since A, is the only A,
whose first row is nonzero, we must have f(1)=1. Similarly f,(1)> j;
otherwise the first column of A(f;, ;) would be zero.

Assume now that 1 < p < n, and consider two cases:

(1) p=i,; If p=f(s)for some s, then by (c), p= fi(s)=i,. lf p>i,
then by induction fi(s)=1i,<p. Hence i,=p and so s =t and p = fi(¢).
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Assume then that p = f(s)> fi(s). As before, it follows that p > i, and
hence p = fy(s) = §,- The possibility p > j, is excluded by induction; there-
fore i, = p = j, and so i, = j, contradicting our assumption fi(s) < fi(s). It
remains to show that f,(¢) > j,. Suppose, to the contrary, that f(t) < j,, and
let B be the n X p matrix consisting of the first p columns of A(f, £;).

Lemma.  If the qth row of B is nonzero, then

g€ { fils)ri,<p}U{fifs):j,<p}.

Proof. Assume that g = fy(s). By (a), i, <p. If i,=p =i, then s=t¢,
and so q = fy(s)= ft) < j, = j,. But then, by (b), the gth row of A,
contains zeros in entries 1,...,i, = p, a contradiction. Therefore i, < p.

Assume now that g = fi(s) < f5(s). As before, i, < p, and so by induction
(and the beginning of the proof), g = fi(s) =i, But the ith row of A,
contains zeros in places 1,..., j, — 1; therefore it follows that i, = p > j,, and
so j, <p. u

The lemma implies that the number of nonzero rows in B is at most
()i, <plU{f(s):j,<p}l=p—1 Hence rank(B)<p—1 and
A( f}, f;) must be singular, contradicting our assumption. Therefore f(t) > §,,
which completes the proof of case (1).

(2) p=j,>1i,. Wehave to show that £(¢) = j,. If p= f|(s) for some s,
then i, < p = j,; hence i, <p and so, by induction, fi(s)=1i <p, a contra-
diction. Therefore p = f,(s) > fi(s). Again i, < p, and by induction p = £(s)
= j,. Now j < p is excluded by induction, so we conclude that j,=p=j,,
s=t,and f(t)= i, ]

Claim 1 shows that f(x,,...,x,,) is not identically zero, which together
with the assumption on the size of |F| proves Theorem 3. [ |

In the following we shall need a certain extremal property of p. For
I<t<nlet

u(n,t) =max{|ﬁ|:.@g [n]<®and p(#) <t}.

ExampLE 1.

By(n,t)= [t]gz-
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ExaMpLE 2.
By(n,2k) = [k]<*U {ee [n]®:]en[k] ]=1},
By(n,2k +1) = By(n,2k) U {{k+1}}.

Clearly p(%#,(n,t)) =t.
The following theorem and its proof are similar to the analogous graphical
case (see Problem 3.31 in [1]).

THEOREM 4.

u(n,t) =max{|B,(n,¢)|,|By(n, )|}

NG -
max{(‘;l),kn—(’z‘)ﬂ}, ~ 92k +1.

Proof. Let #C[n]<? be a maximal collection satisfying u(%)<*.
Maximality implies that u(2) =t and that if {x},{y} € % then {x,y) € Z.
Let G=2N[n]® be the graph without loops induced by %; then clearly
¥(G), the maximum number of disjoint edges in G, equals |t /2. We consider
two cases:

(a) t=2k+1: Clearly G is a maximal graph on [n] satisfying »(G) =k.
By Tutte’s theorem (Exercise 7.27 in [5]) there exists a subset of vertices S,
IS| = s, such that ¢(G - S), the number of odd components of G — S, equals
n+s—2k. Denote by A,..., A, ., o (By,..., B)) the odd (even) compo-
nents of G —S. The maximality of G implies that G[S], G[A,], G[B;] are
complete graphs (for all i and j), and that all edges ¢ € [n]® which satisty
{e 0 S| =1 necessarily belong to G. This structure of G implies that at most
one of the odd components of G —- S, say A,, contains vertices which are
loops in #. Denoting |A,| = a;, |B,| = b;, and using

X': (xi)< Er:x,.—r+l

i=1 ?

i=1 9
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whenever x; > 1, we obtain

l.@ls(sgl)+s(n—s)+ ‘fl_‘,l(b"+1)

i= 2
n+s—2k
a1+1) * (a,-)
+ +
G
1 n+s—2k
+1 b, + a,+2k+2-n—s
<(32 )+s(n——s)+ j{"’l ] igl
2

:(s;1)+s(n_S)+(2(k-2s)+2)_

This implies, since 0 < s < k, that

@1 (272 k= () 1)

(b) t = 2k: As before, »(G)=k. By the GallaiEdmonds theorem
(Exercise 7.32 in [5]), there exists S C[n], |S|=s, such that 2k=n+s—
¢(G~-98) and »(G—x)=»(G) for any vertex x belonging to an odd
component of G — 8. Since (2 ) = 2k, this last property implies that none of
the odd components of G —S contains a singleton of %#. Denoting the
components of G — S as before, we obtain

lgl<(821)+s(n—s)+ Zl: (b";rl)+n+§2k(“¢)

i=1 -1 \2

<[5+ stm-sye (M7 DTY,

and so

|g|<mx<(2k;1),kn.--(’;)}.
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Theorem 1 now follows from Theorems 3 and 4: Suppose W=
Span{ A,,..., A, } = Span(.%/) is an m-dimensional subspace of H (F) such
that rank(A)<t for all A& W. Performing a Gaussian elimination on
A,,..., A, (considered as n®dimensional vectors), we may assume that
#={q(A),...,q(A,)} contains m distinct edges (including loops). If
m > u(n,t), then u(#)>=t+1, and so we may choose ' C % such that
t+1gu(#)<t+2 Let &/'C o/ be the subcollection of matrices which
corresponds to %', then by Theorem 3, Span(.2/’) contains a matrix of rank
> p(#) =t +1, contradicting our assumptions. Therefore dimW =m <
u(n, t), and 50 Theorem 1 follows from Theorem 4.

REMARKS.

(1) Denote by g(n,2k) the maximal dimension of a subspace of skew-
symmetric F-matrices of rank < 2k. Theorem 3 and the graphical analogue
of Theorem 4 imply that if |F|> min{2k +3,n +1} and char F # 2 then

gr(n,2k) =max<(22k),kn - (k;I)}

(2) The maximal dimension of a subspace of matrices of bounded rank is
discussed by Flanders [2] (see also {6]).

3. THE MINIMAL RANK IN AN AFFINE SUBSPACE OF MATRICES

We assume throughout this section that either F = R or F is algebraically
closed.
In the proof of Theorem 2 we shall make use of the following:

Cramm 2. If a linear subspace W C M (F) satisfies
dimW > ( ; ),

then W contains a matrix with a nonzero eigenvalue which belongs to the

field.
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Proof.

(a) F=R: Clearly

dim[W N H,(R)] > dimW + dim H,(R) — dim M, (R)
>(;)+(T;1)~12=0.

Hence W contains a nonzero symmetric matrix which, of course, has a
nonzero real eigenvalue.

(b) F is algebraically closed: If W does not contain a matrix with a
nonzero eigenvalue, then all matrices in W are nilpotent, and hence by a
theorem of Gerstenhaber [4],

dimWs(;). n

We can now show that if L is an nz—(";’l)+1 dimensional affine

subspace of M (F), then L contains a matrix of rank at most k —1. By
(downward) induction on k, L contains a matrix A, of rank <k. If
rank(A,) < k —1 then we are done, so we assume rank(A,) = k. Changing
bases, we may take A, to be
(5 o
0 0/

where I, is the identity matrix of order k.
Let W be. the linear subspace of M (F) for which L= A,+ W, and let

U={BeMk(F):(’3 g)eW}.

Clearly

dimU > dimW +dim M,(F) — dim M_(F)

2 k+1 2 _ 2 _ k)
>(n ( 9 )+1)+k n (2 +1,

and so, by Claim 2, there exists a matrix B € U with an eigenvalue 0 # A € F,
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ie. det(I, — A 'B)=0. Now

Boz(g 8)EW,

and so A, — A !B, belongs to L and satisfies

L-A"'B 0

nk{ A, —A"'B,} =rank <k-1,
rank( Aq - A~1By) = r ( ’ O)

which proves Theorem 2.

We conclude with an application of Theorem 2: Let F be an infinite field
of characteristic # 2. The permanent of order n is said to be a projection of
the determinant of order m if there exists an m X m matrix f, whose entries
are either elements of F or variables + x, i 1<, j < n, such that perx;, i=
det f holds as a polynomial identity in F[x,,...,x ]

Let p(n) denote the least m for which such a matrix exists. Valiant (7]
has shown that p(n)= O(n?2") and conjectured that p(n) grows superpoly-
nomially in n. von zur Gathen [3] has recently proved that p(n)> \/§ n—1
In Theorem 5 we slightly improve this bound.

We shall apply yet another theorem of von zur Gathen:

TueoreM [3]. If F is an infinite field of characteristic + 2 and
M (Fy—>M_(F) is a polynomial mapping which satisfies perX =
det f(X), then rank f(A)>m —1 forall Ac M (F).

We shall also need the following easy fact (which may be proved by
induction on the maximal order of a nonzero subpermanent of A):

CramiM 3. If 0# A€ M (F), then there exists B€ M (F) for which
per( A + B) # per B.

THEOREM 4. Let F be an infinite field of characteristic # 2, and let
M (F)y-> M_(F) be an affine map which satisfies perX = det f(X).
Thenm >vV2n—1.

Proof. We may assume that F is algebraically closed. Next we note that
f is injective: If A# 0 and f(A)= f(0), then by Claim 3 there exists B
satisfying per B # per(A + B). On the other hand per B =det f(B)=
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det f(A + B) = per(A + B), a contradiction. It follows that L =

{fAX): X € M, (F)} is an n’-dimensional affine subspace of M, (F), and

according to von zur Gathen’s theorem all ranks in L are at least m — 1.
Theorem 2 now implies that

andso m>V2n —~1. ]

ReEMaRK. A result similar to Theorem 4 has also been obtained by L.
Babai and A. Seress (see [3]).
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