ON THE MAXIMAL RANK IN A SUBSPACE OF MATRICES

by ROY MESHULAM

[Received 4th July 1984]

On the maximal rank in a subspace of matrices

LET $M_{n}(F)$ be the space of $n \times n$ matrices over a field F, and let W be a linear subspace of $M_{n}(F)$.

Flanders [2] proved that if dim $W>m$ and $|F| \geqslant r+1$, then W contains a matrix of rank $>r$. He also characterized the subspaces W such that $\operatorname{dim} W=r m$ and W contains no matrix of rank $>r$.

In this note we prove a lower bound on the maximal rank attained in a subspace of matrices (Theorem 1). We then use this bound to derive Flanders' results (Theorems 2 and 3) without restrictions on F.

Let $[n$] denote $\{1, \ldots, n\}$, and let $<$ be the lexicographic order on [$n] \times[n]$. $\left((i, j)<\left(i_{1}, j_{1}\right)\right.$ iff $i<i_{1}$ or $i=i_{1}$ and $j<j_{1}$.)

For $A \in M_{n}(F)$ denote by $p(A) \in[n] \times[n]$, the location of A 's lexicographically first non-zero entry:

$$
p(A)=\min \{(i, j): A(i, j) \neq 0\}
$$

For a collection $\mathscr{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ of $n \times n$ matrices, construct an $n \times n$ matrix B as follows: $B(k, l)=1$ if $(k, l)=p\left(A_{i}\right)$ for some $1 \leqslant i \leqslant m$, and $B(k, l)=0$ otherwise.

Denote by $\rho(\mathscr{A})$ the minimal number of lines in B (a line is either a row or a column) which cover all 1's in B.

Theorem 1. Let $\mathscr{A}=\left\{A_{1}, \ldots, A_{m}\right\} \subset M_{n}(F)$. Then span \mathscr{A} contains a matrix of rank $\geqslant \rho(\mathscr{A})$.

Proof. Call a set of entries in a matrix independent, if it contains no two entries on the same line. By König's Theorem ([4], Theorem 5.1.4 in [3]), the maximal size of an independent set of 1 's in a 0-1 matrix, is equal to the minimal number of lines, which cover all 1 's in that matrix. Hence if $\rho(\mathscr{A})=r$, then there exist $1 \leqslant i_{1}, \ldots, i_{r} \leqslant m$ such that $\left\{p\left(A_{\psi_{1}}\right): 1 \leqslant j \leqslant r\right\}$ is independent.

Let $p\left(A_{i}\right)=\left(k_{j}, l_{j}\right)$ for $1 \leqslant j \leqslant r$, then $S=\left\{k_{1}, \ldots, k_{7}\right\}$ and $T=\left\{l_{1}, \ldots, l_{r}\right\}$ are both of cardinality r. For $1 \leqslant j \leqslant r$ define $B_{i}=A_{i,}[S \mid T] \in M_{r}(F)$ (the minor determined by restricting the entries to $S \times T$).

We shall prove the theorem by showing that span $\left\{B_{1}, \ldots, B_{r}\right\}$ contains a non-singular matrix.

We may assume that $k_{1}<\cdots<k_{r}$. Let h be the permutation on [r] for which: $l_{h(1)}<\cdots<l_{h(r)}$. Denote the j th row of B_{j} by b_{j}.

Clearly B_{j} 's first ($j-1$) rows are zero, $b_{i}(k)=0$ for $1 \leqslant k<h^{-1}(j)$, and $b_{j}\left(h^{-1}(j)\right) \neq 0$. Let C be the $r \times r$ matrix, whose rows are $b_{1}, \ldots, b_{r} . C$ is non-singular, because by the preceding remarks, permuting C 's rows according to h, we obtain an upper triangular matrix, with non-zeros on the diagonal. Let $D_{i}=B_{i} C^{-1}$ for $1 \leqslant j \leqslant r$. It is easy to check that the following holds:

$$
\begin{align*}
& \text { For all } 1 \leqslant j \leqslant r: D_{i} \text { 's first } j-1 \text { rows are zero } \tag{1}\\
& \text { and } D_{i} \text { 's jth row is the jth unit vector. }
\end{align*}
$$

Claim 1. If D_{1}, \ldots, D_{r} satisfy (1), then there exists a $0-1$ combination of D_{1}, \ldots, D_{r} which is non-singular.

Proof. We use induction on r. The case $r=1$ is trivial. Assume $r>1$. For $1 \leqslant j \leqslant r-1$ let $D_{j}^{\prime}=D_{i}([r-1) \mid[r-1]) \in M_{r-1}(F)$. $D_{1}^{\prime}, \ldots, D_{r-1}^{\prime}$ satisfy (1) for $r-1$, and so, by induction there exist $x_{1}, \ldots, x_{r-1} \in\{0,1\}$ such that $\sum_{j=1}^{r-1} x_{j} D_{j}^{\prime}$ is non-singular.

Now, since $D_{r}(i, j)=0$ for all $(i, j) \neq(r, r)$, and $D_{r}(r, r)=1$, we obtain by expanding the bottom row:

$$
\begin{equation*}
\operatorname{det}\left(\sum_{j=1}^{r-1} x_{j} D_{j}+D_{r}\right)=\operatorname{det}\left(\sum_{j=1}^{r-1} x_{j} D_{j}\right)+\operatorname{det}\left(\sum_{j=1}^{r-1} x_{j} D_{j}^{\prime}\right) \tag{2}
\end{equation*}
$$

But $\operatorname{det}\left(\sum_{j=1}^{r-1} x_{j} D_{j}^{\prime}\right) \neq 0$, so (2) implies that $\sum_{j=1}^{-1} x_{j} D_{j}$ and $\sum_{j=1}^{r-1} x_{j} D_{j}+D_{r}$ cannot both be singular.

We return to the proof of the theorem. By the claim $\sum_{i=1}^{r} x_{i} D_{i}$ is non-singular for some x_{j} 's, and therefore $\sum_{-1}^{T} x_{1} B_{j}=\left(\sum_{j=1}^{\eta} x_{j} D_{j}\right) C$ is also non-singular. This implies that rank $\left(\sum_{j=1}^{r} x_{i} A_{i_{1}}\right) \geqslant r$.

The next result had been proved by Flanders [2], for $|F| \geqslant r+1$:
Theorem 2. If W is a subspace of $M_{n}(F)$, and $\operatorname{dim} W>m$, then W contains a matrix of rank >r.

Proof. Choose a basis $\mathscr{A}=\left\{A_{1}, \ldots, A_{t}\right\}$ of W. By performing a gaussian elimination on $\left\{A_{1}, \ldots, A_{t}\right\}$ (regarding them as n^{2} dimensional vectors), we may assume that $p\left(A_{1}\right), \ldots, p\left(A_{t}\right)$ are all distinct. Since a line in a matrix covers n entries, we cannot cover $p\left(A_{1}\right), \ldots, p\left(A_{1}\right)$ by less than t / n lines. Therefore $\rho(\mathscr{A}) \geqslant t / n>r$, which by Theorem 1 implies that $W=$ $\operatorname{span} \mathscr{A}$ contains a matrix of rank $>r$.

Next we discuss a certain extremal case of Theorem 2.
Let F^{n} be the space of n-tuples over F. Denote by $x \otimes y \in M_{n}(F)$, the Kronecker product of $x, y \in F^{n}$. For $A, B \subset F^{n}$, let $A \otimes B=$ $\operatorname{span}\{x \otimes y: x \in A, y \in B\}$.

The following result had been proved by Flanders [2], under the assumptions $|F| \geqslant r+1$ and $\operatorname{char}(F) \neq 2$. Atkinson and Lloyd [1] had obtained it assuming only $|F| \geqslant r+1$.

Theorem 3. Suppose $W \subset M_{n}(F)$ is a subspace of dimension m, such that for all $A \in W, \operatorname{rank}(A) \leqslant r$. Then either $W=E \otimes F^{n}$ or $W=F^{n} \otimes E$, for some r dimensional subspace $E \subset F^{n}$.

Proof. Let $\mathscr{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ be a basis of W. As in Theorem 2, we may assume that $p\left(A_{1}\right), \ldots, p\left(A_{m}\right)$ are all distinct. W does not contain a matrix of rank $>r$, therefore by Theorem $1, \rho(\mathscr{A}) \leqslant r$. Choose r lines which cover $p\left(A_{1}\right), \ldots, p\left(A_{m}\right)$. Since each line covers at most n of the $p\left(A_{i}\right)$'s, it follows that the lines are pairwise disjoint, and that each of them consists entirely of $p\left(A_{i}\right)$'s.

Hence, either all r lines are rows, or all r lines are columns.
We shall assume the first case-that is: $p\left(A_{1}\right), \ldots, p\left(A_{m}\right)$ form r rows. (The case of columns is treated similarily).

Next we note that if $Q_{1}, Q_{2} \in M_{n}(F)$ are non-singular, then the maximal rank in $Q_{1} W Q_{2}$ is equal to the maximal rank in W, and $W=E_{1} \otimes E_{2}$ for some $E_{1}, E_{2} \subset F^{n}$ iff $Q_{1} W Q_{2}=\left(Q_{1} E_{1}\right) \otimes\left(E_{2} Q_{2}\right)$.

In particular, by performing the same row permutation on all matrices in W, we may assume that $p\left(A_{1}\right), \ldots, p\left(A_{m}\right)$ consist of the first r rows.

Clearly, by gaussian elimination on A_{1}, \ldots, A_{m} (regarded as vectors in $F^{n^{2}}$), we may obtain a new basis $\left\{B_{i j}: 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n\right\}$ of W, such that $B_{l j}(i, j)=1$ and $B_{i j}(k, l)=0$ for all $1 \leqslant k \leqslant r, \quad 1 \leqslant l \leqslant n$ such that $(k, l) \neq(i, j)$.

Claim 2. $B_{i j}$ is zero, except for the jth column.
Proof. We have to show that $B_{i j}(k, l)=0$ for $l \neq j$ and $r+1 \leqslant k \leqslant n$ (for $1 \leqslant k \leqslant r$ this is known). Since our claim is invariant under row and column permutations, it suffices to prove it for specific i, j, k, l (which satisfy $l \neq j$ and $r+1 \leqslant k \leqslant n)$, say $i=j=r, k=l=r+1$. That is, we show that $B_{\pi}(r+1, r+1)=0$. let $C_{i j}=B_{l j}\left([r+1] \mid[r+1] \in M_{r+1}(F)\right.$, and define $E_{i j} \in M_{r}(F)$ for $1 \leqslant i, j \leqslant r$ by $E_{i j}(k, l)=\delta_{i k} \delta_{j l}$.

Let $P \subset[r] \times[r]$. As $C_{p}(i, r+1)=0$ for all $p \in P, 1 \leqslant i \leqslant r$, we have:

$$
\begin{equation*}
\operatorname{det}\left(\sum_{p \in P} C_{p}\right)=\operatorname{det}\left(\sum_{p \in P} E_{p}\right)\left(\sum_{p \in P} C_{p}(r+1, r+1)\right) . \tag{3}
\end{equation*}
$$

Since W does not contain a matrix of rank $>r$, it follows that $\operatorname{det}\left(\sum_{p \in P} C_{p}\right)=0$, and so if $P \subset[r] \times[r]$ satisfies:

$$
\begin{equation*}
\operatorname{det}\left(\sum_{p \in P} E_{p}\right) \neq 0 \tag{4}
\end{equation*}
$$

Then $\sum_{p \in P} C_{p}(r+1, r+1)=0$.
It is clear that the sets $P=\{(1,1),(2,2), \ldots,(r-2, r-2),(r-$ $1, r),(r, r-1)\}(P=\{(1,1)\}$ for $r=1)$, and $P_{1}=P \cup\{(r, r)\}$, both satisfy (4),
and so:

$$
\sum_{p \in P} C_{p}(r+1, r+1)=\sum_{p \in P_{1}} C_{p}(r+1, r+1)=0
$$

This implies $B_{r}(r+1, r+1)=C_{r}(r+1, r+1)=0$.
We complete the proof of Theorem 3, by showing that for every $1 \leqslant i \leqslant r$ there exists $x_{i} \in F^{n}$, such that for every $1 \leqslant j \leqslant n B_{i j}=x_{i} \otimes e_{j}\left(e_{i}\right.$ is the j th unit vector in F^{n}).

In view of Claim 2, we only have to show that for $1 \leqslant j_{1}, j_{2} \leqslant n$, the j_{1} th column of $B_{i j_{1}}$ is equal to the j_{2} th column of $B_{i j_{2}}$. Again by permuting rows and columns it suffices to prove (for example) that $B_{11}(r+1,1)=$ $\boldsymbol{B}_{12}(r+1,2)$. Using the notations of Claim 2, let

$$
C=C_{11}+C_{12}+\left(C_{23}+C_{34}+\cdots+C_{\pi+1}\right)
$$

By Claim 2: $C(r+1,1)=B_{11}(r+1,1), C(r+1,2)=B_{12}(r+1,2)$. C, being an $r+1 \times r+1$ minor of a matrix in W is singular, because W has no member of rank $>r$. On the other hand it is clear that:

$$
\operatorname{det}(C)=(-1)^{r}(C(r+1,1)-C(r+1,2))
$$

Therefore $C(r+1,1)=C(r+1,2)$ and so: $B_{11}(r+1,1)=B_{12}(r+1,2)$.
Remark. Atkinson and Lloyd [1] have extended Flanders' classification, by proving that if $W \subset M_{n}(F)$ does not contain a matrix of rank $>r$, $\operatorname{dim} W \geqslant r n-r+1$ and $|F| \geqslant r+1$, then W is r-decomposable (that is: $W \subset E_{1} \otimes F^{n}+F^{n} \otimes E_{2}$ for some subspaces $E_{1}, E_{2} \subset F^{n}$ such that $\operatorname{dim} E_{1}+\operatorname{dim} E_{2}=r$).

Contrary to Theorems 2 and 3, this result does depend on the field, as the following example, which has been suggested by the referee, indicates: Let W be the 5 -dimensional space of all

$$
\left(\begin{array}{ccc}
a & 0 & 0 \tag{5}\\
c & b & 0 \\
d & e & a+b
\end{array}\right)
$$

over $\operatorname{GF}(2)$. Clearly W does not contain a non-singular matrix, yet W is not 2 -decomposable. For otherwise W^{\prime}-the space of all matrices of the form (5) over say, $G F(4)$-would also be 2 -decomposable, which is impossible since W^{\prime} contains non-singular matrices.

Acknowledgment

I would like to thank Nathan Linial and Michael Rabin for their help.

REFERENCES

1. M. D. Atkinson and S. Lloyd, 'Large subspaces of matrices of bounded rank', Quarterly J. Math. 31 (1980). 253-262.
2. H. Flanders, 'On spaces of linear transformations with bounded rank', J. London Math. Soc. 37 (1962), 10-16.
3. M. Hall, Jr., Combinatorial Theory, Blaisdell, Waltham, Mass. 1967.
4. D. König, 'Graphok és matrixok', Mat. Fiz. Lapok 38 (1931), 115-119.

Institute of Mathematics,
Hebrew University
Jerusalem 91904
Israel

