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On the maximal rank in a subspace of matrices

LET Mn(F) be the space of n x n matrices over a field F, and let W be a
linear subspace of ft/^iF).

Flanders [2] proved that if dim W>m and |Fj>r + l, then W contains
a matrix of rank >r. He also characterized the subspaces W such that
dim W = m and W contains no matrix of rank >r.

In this note we prove a lower bound on the maximal rank attained in a
subspace of matrices (Theorem 1). We then use this bound to derive
Flanders' results (Theorems 2 and 3) without restrictions on F.

Let [n] denote { 1 , . . . , n}, and let < be the lexicographic order on
[n]x[n]. ((i,/)<('i>Ji) iff i< i \ or i = i^ and j<jl.)

For AeMn(F) denote by p(A)e[n]x[n], the location of A's lexi-
cographically first non-zero entry:

p(A)=min{a/) : A(

For a collection si={A1,..., Am} of n x n matrices, construct an n x n
matrix B as follows: B(k, l) = l if (fc, l) = p(Ai) for some l=£i=£m, and
B(k, 0 = 0 otherwise.

Denote by p(si) the minimal number of lines in B (a line is either a
row or a column) which cover all l's in B.

THEOREM 1. Let si={Al,..., Am}<=A4n(F). Then span si contains a
matrix of rank

Proof. Call a set of entries in a matrix independent, if it contains no
two entries on the same line. By Konig's Theorem ([4], Theorem 5.1.4 in
[3]), the maximal size of an independent set of l's in a 0-1 matrix, is
equal to the minimal number of lines, which cover all l's in that
matrix. Hence if p{si) = r, then there exist \^il,...,ir^m such that
{p (A^): 1 s£ j =£ r} is independent.

Let p(Ait) = (ki, (,) for l ^ j ^ r , then S={ku ..., fc,} and T = {/1,..., U
are both of cardinality r. For l=s/=Sr define Bt=\[S \ T]sMr(F) (the
minor determined by restricting the entries to S x T).

We shall prove the theorem by showing that span {B^,..., Br} contains
a non-singular matrix.

We may assume that kx<- • •<kT. Let h be the permutation on [r] for
which: lh(n

<' " <'h(r)- Denote the jth row of By by bt.
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Clearly B,'s first (j-1) rows are zero, b,(fc) = 0 for l*£k<h~1(j), and
bjih^d)) =fc 0. Let C be the r x r matrix, whose rows are b t , . . . , bT. C is
non-singular, because by the preceding remarks, permuting C's rows
according to h, we obtain an upper triangular matrix, with non-zeros on
the diagonal. Let D^BjCT1 for ls;/s£r. it is easy to check that the
following holds:

For all 1 *s / =£ r: D, 's first j — 1 rows are zero . .
and D,'s /rh row is the jth unit vector.

Claim 1. If Du ...,Dr satisfy (1), then there exists a 0-1 combination
of D j , . . . , Dr which is non-singular.

Proof. We use induction on r. The case r = l is trivial. Assume r > l .
For 1=£ j =£ r - 1 let D;=D,([r - l ) | [ r - lDeH-i t fO.-DJ, . . . ,D;_ , satisfy
(1) for r — 1, and so, by induction there exist x , , . . . , xT-l e{0,1} such that
X/ll f̂D'/ is non-singular.

Now, since Dp(i, /) = 0 for all (i, /) ^ (r, r), and Dr(r, r) = 1, we obtain by
expanding the bottom row:

det ( I XJD, + Dr) = det f I x,Dy)+det (2)

But detQ^lxfDJ^O, so (2) implies that U"1, x,D, and X^l x,D,+Dr

cannot both be singular. •
We return to the proof of the theorem. By the claim £y-i XjD, is

non-singular for some x '̂s, and therefore 2T-1 ̂ Bj =Q?/-i XJDJ)C is also
non-singular. This implies that rank (£j-i XjA^^r. I

The next result had been proved by Flanders [2], for \F\ > r +1 :

THEOREM 2. If W is a subspace of MniF), and dim W>m, then W
contains a matrix of rank > r. H

Proof. Choose a basis si = {A, , . . . , A,} of W. By performing a gaussian
elimination on {Aj , . . . , A,} (regarding them as n2 dimensional vectors),
we may assume that pCA]),..., p(A,) are all distinct. Since a line in a
matrix covers n entries, we cannot cover p(A^),..., p(A,) by less than tin
lines. Therefore p(si)^tln>r, which by Theorem 1 implies that W =
span .si contains a matrix of rank >r. •

Next we discuss a certain extremal case of Theorem 2.
Let F" be the space of n -tuples over F. Denote by x®yeMn(F),

the Kronecker product of x .yeF". For A,B<=F", let A<8>B =
span{x<8>y: xeA, yeB}.

The following result had been proved by Flanders [2], under the
assumptions |Fl^r + l and char(F)^2. Atkinson and Lloyd [1] had
obtained it assuming only |F]
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THEOREM 3. Suppose W<=A4,,(.F) is a subspace of dimension m, such
that for all AeW, rank (A)^r. Then either W = E<g>Fn or W = Fn<8)E,
for some r dimensional subspace E <= F".

Proof. Let si = {AU ..., A^} be a basis of W. As in Theorem 2, we
may assume that p(Aj) , . . . , p(Am) are all distinct. W does not contain a
matrix of rank >r, therefore by Theorem 1, p(s&)*Sr. Choose r lines
which cover p(Ai),..., p(Am). Since each line covers at most n of the
p(Aj)'s, it follows that the lines are pairwise disjoint, and that each of
them consists entirely of p(Aj)'s.

Hence, either all r lines are rows, or all r lines are columns.
We shall assume the first case—that is: p(Aj) , . . . , piA,^) form r rows.

(The case of columns is treated similarily).
Next we note that if Qu Q2eMn(F) are non-singular, then the maximal

rank in QxWQ2 is equal to the maximal rank in W, and W = Ei ®E^ for
some E^E^cF" iff Q1WQ2 = (Q1E1)®(E2Q2).

In particular, by performing the same row permutation on all matrices
in W, we may assume that p (A t ) , . . . , p(Am) consist of the first r rows.

Clearly, by gaussian elimination on Au ..., A^ (regarded as vectors in
F"2), we may obtain a new basis {By: 1 *£ i « r, 1 =£ j' =£ n} of W, such that
By(i,/) = 1 and By(fc,0 = 0 for all l=sfc=Sr, l=s l«n such that

Claim 2. B,y is zero, except for the jth column.

Proof. We have to show that B^fc, 0 = 0 for / ̂  ;' and r +1 =£ k =e n (for
ls=fc«r this is known). Since our claim is invariant under row and
column permutations, it suffices to prove it for specific i, j , k, I (which
satisfy Ii= j and r +1 *£ks£n), say i=j = r, k = l = r + l. That is, we show
that BrT(r + l,r + i) = 0. let Q, =B,,([r+ 1]| [r + l^eA^+^F), and define
Ey eMriF) for 1 =£ i, j *£ r by E,y(k, 0 = S^S,,.

Let P<=[r]x[r]. As Cp(i, r + l) = O for all peP , l=si=£r, we have:

(3)
eP '

Since W does not contain a matrix of rank >r, it follows that
det(XpepQ) = 0, and so if P^[r]x[r] satisfies:

(4)

Then Ipep Q(r +1 , r +1) = 0.
It is clear that the sets P = {(1,1), (2, 2 ) , . . . , ( r - 2 , r -2 ) , ( r -

1, r), (r, r-1)} (P = {(1,1)} for r = 1), and Px = PU{(r, r)}, both satisfy (4),
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and so:
£ Q(r+l,r

peP peP,

This implies Bn(r+l,r+l)=Crr(r+l,r+l) = O. •
We complete the proof of Theorem 3, by showing that for every

l ^ i s s r there exists *j eF", such that for every la£jasn By =% ®e, (^ is
the /th unit vector in F").

In view of Claim 2, we only have to show that for 1 ssjj, j'2=s rt, the j^th
column of Bih is equal to the j2th column of Bih. Again by permuting rows
and columns it suffices to prove (for example) that B l t(r +1,1) =
B12(r + 1,2). Using the notations of Claim 2, let

By Claim 2: C(r + 1, l) = Bn(r + l, 1), C(r +1,2) = B12(r+1,2). C, being
an r + l x r + 1 minor of a matrix in W is singular, because W has no
member of rank >r. On the other hand it is clear that:

det (C) = (-l)r(C(r + 1 , 1 ) - C(r +1, 2))

Therefore C(r+1,1) = C(r+1, 2) and so: B lx(r+1,1) = B12(r +1,2). •

Remark. Atkinson and Lloyd [1] have extended Flanders' classifica-
tion, by proving that if W<= Ai^F) does not contain a matrix of rank> r,
dim Wssrn — r + 1 and |F|s*r+l, then W is r-decomposable (that is:
W<=E1<8>Fn+Fn®E2 for some subspaces E L E J C F such that
dim£1 + dimE2 = r).

Contrary to Theorems 2 and 3, this result does depend on the field, as
the following example, which has been suggested by the referee, indi-
cates: Let W be the 5-dimensional space of all

(5)

over GF(2). Clearly W does not contain a non-singular matrix, yet W is
not 2-decomposable. For otherwise W—the space of all matrices of the
form (5) over say, GF(4)—would also be 2-decomposable, which is
impossible since W contains non-singular matrices.
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