Relative Leray Numbers via Spectral Sequences

Gil Kalai * Roy Meshulam ${ }^{\dagger}$

Dedicated to Michael O. Rabin, a trailblazing mathematician and computer scientist

Abstract

Let \mathbb{F} be a fixed field and let X be a simplicial complex on the vertex set V. The Leray number $L(X ; \mathbb{F})$ is the minimal d such that for all $i \geq d$ and $S \subset V$, the induced complex $X[S]$ satisfies $\tilde{H}_{i}(X[S] ; \mathbb{F})=0$. Leray numbers play a role in formulating and proving topological Helly type theorems. For two complexes X, Y on the same vertex set V, define the relative Leray number $L_{Y}(X ; \mathbb{F})$ as the minimal d such that $\tilde{H}_{i}(X[V \backslash \tau] ; \mathbb{F})=0$ for all $i \geq d$ and $\tau \in Y$. In this paper we extend the topological colorful Helly theorem to the relative setting. Our main tool is a spectral sequence for the intersection of complexes indexed by a geometric lattice.

1 Introduction

Let \mathbb{F} be a fixed field and let X be a simplicial complex on the vertex set V. All homology and cohomology appearing in the the sequel will be with \mathbb{F} coefficients. The induced subcomplex of X on a subset $S \subset V$ is $X[S]=\{\sigma \in X: \sigma \subset S\}$.

Definition 1.1. The Leray number $L(X)=L(X ; \mathbb{F})$ of X over \mathbb{F} is the minimal d such that $\tilde{H}_{i}(X[S])=0$ for all $S \subset V$ and $i \geq d$. The complex X is d-Leray over \mathbb{F} if $L(X) \leq d$.

First introduced by Wegner [18], the family $\mathcal{L}^{d}=\mathcal{L}_{\mathbb{F}}^{d}$ of d-Leray complexes over the field \mathbb{F}, has the following relevance to Helly type theorems. Let \mathcal{F} be a family of sets. The Helly number $h(\mathcal{F})$ is the minimal positive integer h such that if a finite subfamily $\mathcal{G} \subset \mathcal{F}$ satisfies $\bigcap \mathcal{G}^{\prime} \neq \emptyset$ for all $\mathcal{G}^{\prime} \subset \mathcal{G}$ of cardinality $\leq h$, then $\bigcap \mathcal{G} \neq \emptyset$. Let $h(\mathcal{F})=\infty$ if no such finite h exists. For example, Helly's classical theorem asserts that the Helly number of the family of convex sets in \mathbb{R}^{d} is $d+1$. Helly type theorems can often be formulated as properties of the associated nerves. Recall that the nerve of a family of sets \mathcal{F} is the simplicial complex $N(\mathcal{F})$ on the vertex set \mathcal{F}, whose simplices are all subfamilies $\mathcal{G} \subset \mathcal{F}$ such that $\bigcap \mathcal{G} \neq \emptyset$. A simple link between the Helly and Leray numbers is the inequality $h(\mathcal{F}) \leq L(N(\mathcal{F}))+1$ (see e.g. (1.2) in [13]). A simplicial complex X is d-representable if $X=N(\mathcal{K})$ for a family \mathcal{K} of convex sets in \mathbb{R}^{d}. Let \mathcal{K}^{d} be the set of all d-representable complexes. Helly's theorem can then be stated as follows: If $X \in \mathcal{K}^{d}$ contains the full d-skeleton of its vertex set, then X is a simplex. The nerve lemma (see e.g. [5]) implies that $\mathcal{K}^{d} \subset \mathcal{L}^{d}$, but the latter family is much richer, and there is substantial interest in understanding to what extent Helly type statements for \mathcal{K}^{d} remain true for \mathcal{L}^{d}. A basic example is the following. A finite family \mathcal{F} of simplicial complexes in \mathbb{R}^{d} is a good

[^0]cover if for any $\mathcal{F}^{\prime} \subset \mathcal{F}$, the intersection $\bigcap \mathcal{F}^{\prime}$ is either empty or contractible. If \mathcal{F} is a good cover in \mathbb{R}^{d}, then by the nerve lemma $N(\mathcal{F})$ is homotopic to $\bigcup \mathcal{F}$ and therefore $L(N(\mathcal{F})) \leq d$. Hence follows the Topological Helly's Theorem: If \mathcal{F} is a good cover in \mathbb{R}^{d}, then $h(\mathcal{F}) \leq L(N(\mathcal{F}))+1 \leq d+1$.

The Colorful Helly Theorem due to Bárány and Lovász [2] is a fundamental result with a number of important applications in discrete geometry (see e.g. [7] and the references therein).

Theorem 1.2 ([2]). Let $\mathcal{K}_{1}, \ldots, \mathcal{K}_{d+1}$ be $d+1$ finite families of convex sets in \mathbb{R}^{d}, such that $\bigcap_{i=1}^{d+1} K_{i} \neq$ \emptyset for all choices of $K_{1} \in \mathcal{K}_{1}, \ldots, K_{d+1} \in \mathcal{K}_{d+1}$. Then there exists an $1 \leq i \leq d+1$ such that $\bigcap_{K \in \mathcal{K}_{i}} K \neq \emptyset$.

In [11] we showed that the d-representability of $X=N\left(\bigcup_{i=1}^{d+1} \mathcal{K}_{i}\right)$ can be replaced by the weaker assumption that X is d-Leray.

Theorem $1.3([11])$. Let $V=\bigcup_{i=1}^{d+1} V_{i}$ be a partition of V, and let X be a d-Leray complex on V. View each V_{i} as a 0-dimensional complex and suppose that X contains the join $V_{1} * \cdots * V_{d+1}$. Then there exists an $1 \leq i \leq d+1$ such that V_{i} is a simplex of X.

In fact, the transversal matroid $V_{1} * \cdots * V_{d+1}$ in the statement of Theorem 1.3 , can be replaced by an arbitrary matroid. In the sequel we identify a matroid with the simplicial complex of its independent sets. We recall that every induced subcomplex $M[S]$ of a matroid M is pure, namely all maximal faces of $M[S]$ have the same dimension. This property can actually serve as the definition of a matroid in terms of the simplicial complex of its independent sets.

Theorem 1.4 ([11]). Let M be a matroid with a rank function ρ_{M}, and let X be a d-Leray complex over some field \mathbb{F}, both on the same vertex set V. If $M \subset X$, then there exists a $\tau \in X$ such that $\rho_{M}(V \backslash \tau) \leq d$.

For recent applications of Theorem 1.4 to graph theory and to combinatorial geometry see [1] and [8, 15, 9] respectively. While [1] uses Theorem 1.4 under the stronger assumption that X is d-collapsible, the results in $[8,15,9]$ do require its full version for d-Leray complexes.

In this paper we prove a generalization of Theorem 1.4 using a new spectral sequence approach. Let X and Y be two complexes on the same vertex set V.

Definition 1.5. The relative Leray number of X with respect to Y is

$$
L_{Y}(X)=L_{Y}(X ; \mathbb{F})=\min \left\{d: \tilde{H}_{i}(X[V \backslash \tau])=0 \quad \text { for all } i \geq d \text { and } \tau \in Y\right\}
$$

Our main result is the following relative extension of Theorem 1.4. Let X, Y be simplicial complexes on the vertex set V. Let $Y^{\vee}=\{A \subset V: V \backslash A \notin Y\}$ denote the Alexander dual of Y as a subcomplex of the simplex on V.

Theorem 1.6. Let M be a matroid such that $Y^{\vee} \subset M \subset X$. Then there exists a simplex $\tau \in X$ such that $\rho_{M}(V \backslash \tau) \leq L_{Y}(X)$.

The paper is organized as follows. In section 2 we give a characterization of the relative Leray numbers in terms of links. In section 3 we construct a Mayer-Vietoris type spectral sequence (Proposition 3.1), and use it to establish a homological non-vanishing criterion (Corollary 3.4) for certain families of complexes indexed by a geometric lattice. This result, which may be of independent interest, is the main ingredient in the proof of Theorem 1.6 given in section 4.

2 Relative Leray Numbers via Links

We first recall a few definitions. Let X be a simplicial complex on the vertex set V. The star and link of a subset $\tau \subset V$ are given by

$$
\begin{aligned}
& \operatorname{st}(X, \tau)=\{\sigma \in X: \sigma \cup \tau \in X\} \\
& \operatorname{lk}(X, \tau)=\{\sigma \in \operatorname{st}(X, \tau): \sigma \cap \tau=\emptyset\}
\end{aligned}
$$

Note that if $\tau \notin X$, then $\operatorname{st}(X, \tau)=\operatorname{lk}(X, \tau)=\{ \}$ is the void complex. In particular, if $\tilde{H}_{*}(\operatorname{lk}(X, \tau)) \neq$ 0 then $\tau \in X$. It is well known (see e.g. Proposition 3.1 in [12]) that $L(X) \leq d \operatorname{iff} \tilde{H}_{i}(\operatorname{lk}(X, \sigma))=0$ for all simplices $\sigma \in X$ and $i \geq d$. The relative version of this fact is the following

Proposition 2.1. Let X, Y be complexes on the vertex set V. Then

$$
L_{Y}(X)=\tilde{L}_{Y}(X):=\min \left\{d: \tilde{H}_{i}(\operatorname{lk}(X, \sigma))=0 \text { for all } i \geq d \text { and } \sigma \in Y\right\}
$$

Proposition 2.1 is implicit in the proof of Claim 3.2 in [12], and can also be deduced from a result of Bayer, Charalambous and Popescu (see Theorem 2.8 in [3]). For completeness, we include a simple direct proof of a slightly stronger result, following the argument in [12].

Definition 2.2. Let X be a complex on the vertex set V and let $A \subset V$. The pair (X, A) satisfies property $P_{d}\left(k_{1}, k_{2}\right)$, if $\tilde{H}_{i}\left(\operatorname{lk}\left(X\left[V \backslash \sigma_{1}\right], \sigma_{2}\right)\right)=0$ for all $i \geq d$ and all disjoint $\sigma_{1}, \sigma_{2} \subset A$ such that $\left|\sigma_{1}\right| \leq k_{1},\left|\sigma_{2}\right| \leq k_{2}$.

Proposition 2.3. For a fixed pair (X, A) and $k_{1} \geq 0, k_{2} \geq 1$, the properties $P_{d}\left(k_{1}, k_{2}\right)$ and $P_{d}\left(k_{1}+\right.$ $\left.1, k_{2}-1\right)$ are equivalent.

Proof. Let τ_{1}, τ_{2} be disjoint subsets of A such that $\left|\tau_{1}\right| \leq k_{1}+1,\left|\tau_{2}\right| \leq k_{2}-1$ and suppose $v \in \tau_{1}$. Let $\sigma_{1}=\tau_{1} \backslash\{v\}, \sigma_{2}=\tau_{2} \cup\{v\}$, and let Z be the complex on the vertex set $W=V \backslash\left(\sigma_{1} \cup \tau_{2}\right)$ given by $Z=\operatorname{lk}\left(X\left[V \backslash \sigma_{1}\right], \tau_{2}\right)$. Write $Z=Z_{1} \cup Z_{2}$ where

$$
\begin{align*}
& Z_{1}=Z[W \backslash\{v\}]=\operatorname{lk}\left(X\left[V \backslash \tau_{1}\right], \tau_{2}\right) \tag{1}\\
& Z_{2}=\operatorname{st}(Z, v)=\operatorname{st}\left(\operatorname{lk}\left(X\left[V \backslash \sigma_{1}\right], \tau_{2}\right), v\right)
\end{align*}
$$

Then

$$
\begin{equation*}
Z_{1} \cap Z_{2}=\operatorname{lk}(Z, v)=\operatorname{lk}\left(\operatorname{lk}\left(X\left[V \backslash \sigma_{1}\right], \tau_{2}\right), v\right)=\operatorname{lk}\left(X\left[V \backslash \sigma_{1}\right], \sigma_{2}\right) \tag{2}
\end{equation*}
$$

As Z_{2} is a cone and hence contractible, we obtain a Mayer-Vietoris exact sequence

$$
\begin{equation*}
\ldots \rightarrow \tilde{H}_{i+1}(Z) \rightarrow \tilde{H}_{i}(\operatorname{lk}(Z, v)) \rightarrow \tilde{H}_{i}(Z[W \backslash\{v\}]) \rightarrow \tilde{H}_{i}(Z) \rightarrow \ldots \tag{3}
\end{equation*}
$$

Using the identifications of Z_{1}, Z_{2} and $Z_{1} \cap Z_{2}$ in (1) and (2), the exact sequence (3) takes the explicit form

$$
\begin{align*}
& \cdots \rightarrow \tilde{H}_{i+1}\left(\operatorname{lk}\left(X\left[V \backslash \sigma_{1}\right], \tau_{2}\right)\right) \rightarrow \tilde{H}_{i}\left(\operatorname{lk}\left(X\left[V \backslash \sigma_{1}\right], \sigma_{2}\right)\right) \\
& \rightarrow \tilde{H}_{i}\left(\operatorname{lk}\left(X\left[V \backslash \tau_{1}\right], \tau_{2}\right)\right) \rightarrow \tilde{H}_{i}\left(\operatorname{lk}\left(X\left[V \backslash \sigma_{1}\right], \tau_{2}\right)\right) \rightarrow \ldots \tag{4}
\end{align*}
$$

$\mathbf{P}_{\mathbf{d}}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right) \Rightarrow \mathbf{P}_{\mathbf{d}}\left(\mathbf{k}_{\mathbf{1}}+\mathbf{1}, \mathbf{k}_{\mathbf{2}}-\mathbf{1}\right): \quad$ Suppose (X, A) satisfies $P_{d}\left(k_{1}, k_{2}\right)$ and let $i \geq d$. Let τ_{1}, τ_{2} be disjoint subsets of A such that $\left|\tau_{1}\right|=k_{1}+1,\left|\tau_{2}\right| \leq k_{2}-1$. Choose $v \in \tau_{1}$, and let $\sigma_{1}=\tau_{1} \backslash\{v\}$, $\sigma_{2}=\tau_{2} \cup\{v\}$. The assumption that $P_{d}\left(k_{1}, k_{2}\right)$ holds implies that the second and the fourth terms in
(4) vanish. It follows that $\tilde{H}_{i}\left(\operatorname{lk}\left(X\left[V \backslash \tau_{1}\right], \tau_{2}\right)\right)=0$ as required.
$\mathbf{P}_{\mathbf{d}}\left(\mathbf{k}_{\mathbf{1}}+\mathbf{1}, \mathbf{k}_{\mathbf{2}}-\mathbf{1}\right) \Rightarrow \mathbf{P}_{\mathbf{d}}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)$: \quad Suppose (X, A) satisfies $P_{d}\left(k_{1}+1, k_{2}-1\right)$ and let $i \geq d$. Let σ_{1}, σ_{2} be disjoint subsets of A such that $\left|\sigma_{1}\right| \leq k_{1},\left|\sigma_{2}\right|=k_{2}$. Choose $v \in \sigma_{2}$, and let $\tau_{1}=\sigma_{1} \cup\{v\}$ and $\tau_{2}=\sigma_{2} \backslash\{v\}$. The assumption that $P_{d}\left(k_{1}+1, k_{2}-1\right)$ holds implies that the first and the third terms in (4) vanish. It follows that $\tilde{H}_{i}\left(\operatorname{lk}\left(X\left[V \backslash \sigma_{1}\right], \sigma_{2}\right)\right)=0$ as required.

Proof of Proposition 2.1. Clearly, $L_{Y}(X)=\max \left\{L_{A}(X): A \in Y\right\}$, and $\tilde{L}_{Y}(X)=\max \left\{\tilde{L}_{A}(X):\right.$ $A \in Y\}$. It therefore suffices to show that $L_{A}(X)=\tilde{L}_{A}(X)$ for a simplex A. Now, $L_{A}(X) \leq d$ iff (X, A) satisfies $P_{d}(|A|, 0)$, while $\tilde{L}_{A}(X) \leq d$ iff (X, A) satisfies $P_{d}(0,|A|)$. Finally, $P_{d}(|A|, 0)$ and $P_{d}(0,|A|)$ are equivalent by Proposition 2.3.

3 Empty Intersections and Non-Vanishing Homology

For a poset P and an element $x \in P$, let $P_{>x}=\{y \in P: y>x\}$ and $P_{\geq x}=\{y \in P: y \geq x\}$. Let $\Delta(P)$ denote the order complex of P, i.e. the simplicial complex on the vertex set P whose simplices are the chains $x_{0}<\cdots<x_{k}$. Let M be a matroid with rank function ρ_{M} on the ground set V. Let $\mathcal{K}(M)$ denote the poset of all flats $K \neq V$ of M ordered by inclusion, and let $\mathcal{K}_{0}(M)=\{K \in \mathcal{K}(M)$: $\left.\rho_{M}(K)>0\right\}$. It is classically known (see e.g. [4]) that $\tilde{H}_{j}\left(\Delta\left(\mathcal{K}_{0}(M)\right)\right)=0$ for $j \neq \rho_{M}(V)-2$. Let $K \in \mathcal{K}(M)$ and let B_{K} be an arbitrary basis of K. The contraction of K from M is the matroid on $V \backslash K$ defined by $M / K=\left\{A \subset V \backslash K: B_{K} \cup A \in M\right\}$ (see e.g. [14]). The matroid M / K satisfies $\rho_{M / K}(V \backslash K)=\rho_{M}(V)-\rho_{M}(K)$ and $\mathcal{K}_{0}(M / K) \cong \mathcal{K}(M)_{>K}$. Let $\left\{Y_{K}: K \in \mathcal{K}(M)\right\}$ be a family of simplicial complexes such that $Y_{K} \cap Y_{K^{\prime}}=Y_{K \cap K^{\prime}}$ for all $K, K^{\prime} \in \mathcal{K}(M)$. Let $Y=\bigcup_{K \in \mathcal{K}(M)} Y_{K}$. For $y \in Y$ let $K_{y}=\bigcap\left\{K \in \mathcal{K}(M): y \in Y_{K}\right\} \in \mathcal{K}(M)$. The proof of the following result is an application of the method of simplicial resolutions (see e.g. Vassiliev's paper [17]).

Proposition 3.1. There exists a first quadrant spectral sequence $\left\{E_{p, q}^{r}\right\}$ converging to $H_{*}(Y)$ whose E^{1} term satisfies

$$
\begin{equation*}
E_{p, q}^{1} \cong \bigoplus_{\substack{K \in \mathcal{K}(M) \\ \rho_{M}(K)=\rho_{M}(V)-p-1}} H_{q}\left(Y_{K}\right) \otimes \tilde{H}_{p-1}\left(\Delta\left(\mathcal{K}_{0}(M / K)\right)\right) . \tag{5}
\end{equation*}
$$

Proof. Let $\rho_{M}(V)=m$. For $0 \leq p \leq m-1$ let

$$
F_{p}=\bigcup_{\substack{K \in \mathcal{K}(M) \\ \rho_{M}(K) \geq m-p-1}} Y_{K} \times \Delta\left(\mathcal{K}(M)_{\geq K}\right)
$$

Let $\varphi: F_{m-1} \rightarrow Y$ denote the projection on the first coordinate. For $y \in Y$, the fiber $\varphi^{-1}(y)=$ $\{y\} \times \Delta\left(\mathcal{K}(M)_{\geq K_{y}}\right)$ is a cone on the vertex $\left(y, K_{y}\right)$ and is therefore contractible. Hence, by the Vietoris-Begle theorem (see e.g. p. 344 in [16]), $H_{*}\left(F_{m-1}\right) \cong H_{*}(Y)$. The filtration $F_{0} \subset \cdots \subset F_{m-1}$ thus gives rise to a spectral sequence $\left\{E_{p, q}^{r}\right\}$ that converges to $H_{*}(Y)$. Let

$$
G_{p}=\bigcup_{\substack{K \in \mathcal{K}(M) \\ \rho_{M}(K)=m-p-1}} Y_{K} \times \Delta\left(\mathcal{K}(M)_{\geq K}\right)
$$

Then $F_{p}=G_{p} \cup F_{p-1}$ and

$$
G_{p} \cap F_{p-1}=\bigcup_{\substack{K \in \mathcal{K}(M) \\ \rho_{M}(K)=m-p-1}} Y_{K} \times \Delta\left(\mathcal{K}(M)_{>K}\right)
$$

Additionally, if $K \neq K^{\prime} \in \mathcal{K}(M)$ satisfy $\rho_{M}(K)=\rho_{M}\left(K^{\prime}\right)=m-p-1$, then

$$
\mathcal{K}(M)_{\geq K} \cap \mathcal{K}(M)_{\geq K^{\prime}} \subset \mathcal{K}(M)_{>K}
$$

and therefore

$$
\begin{equation*}
\left(Y_{K} \times \Delta\left(\mathcal{K}(M)_{\geq K}\right)\right) \cap\left(Y_{K^{\prime}} \times \Delta\left(\mathcal{K}(M)_{\geq K^{\prime}}\right)\right) \subset Y_{K} \times \Delta\left(\mathcal{K}(M)_{>K}\right) \tag{6}
\end{equation*}
$$

We will also need the following simple
Claim 3.2. Let $\left\{\left(S_{\alpha}, R_{\alpha}\right)\right\}_{\alpha \in A}$ be a finite family of pairs of cell complexes such that $R_{\alpha} \subset S_{\alpha}$ and $S_{\alpha} \cap S_{\alpha^{\prime}} \subset R_{\alpha}$ for all $\alpha \neq \alpha^{\prime} \in A$. Let $S=\cup_{\alpha \in A} S_{\alpha}$ and $R=\cup_{\alpha \in A} R_{\alpha}$. Then

$$
\begin{equation*}
H_{*}(S, R) \cong \bigoplus_{\alpha \in A} H_{*}\left(S_{\alpha}, R_{\alpha}\right) \tag{7}
\end{equation*}
$$

Proof. For $\alpha \in A$ let $i_{\alpha}: C_{*}\left(S_{\alpha}, R_{\alpha}\right) \rightarrow C_{*}(S, R)$ be the map induced by the inclusion $S_{\alpha} \rightarrow S$. Consider the surjection

$$
\phi=\sum_{\alpha \in A} i_{\alpha}: \bigoplus_{\alpha \in A} C_{*}\left(S_{\alpha}, R_{\alpha}\right) \rightarrow C_{*}(S, R)
$$

It is straightforward to check that the condition $S_{\alpha} \cap S_{\alpha^{\prime}} \subset R_{\alpha}$ for $\alpha \neq \alpha^{\prime}$ implies that ϕ injective. Hence ϕ is an isomorphism and (7) already holds at the chain level.

We proceed with a computation of $E_{p, q}^{1}$, followed by a justification of each step.

$$
\begin{aligned}
E_{p, q}^{1} & =H_{p+q}\left(F_{p}, F_{p-1}\right) \\
& \stackrel{(a)}{\cong} H_{p+q}\left(G_{p}, G_{p} \cap F_{p-1}\right) \\
& =H_{p+q}\left(\bigcup_{\rho_{M}(K)=m-p-1} Y_{K} \times \Delta\left(\mathcal{K}(M)_{\geq K}\right), \bigcup_{\rho_{M}(K)=m-p-1} Y_{K} \times \Delta\left(\mathcal{K}(M)_{>K}\right)\right) \\
& \stackrel{(b)}{\cong} \bigoplus_{\rho_{M}(K)=m-p-1} H_{p+q}\left(Y_{K} \times \Delta\left(\mathcal{K}(M)_{\geq K}\right), Y_{K} \times \Delta\left(\mathcal{K}(M)_{>K}\right)\right) \\
& \stackrel{(c)}{\cong} \bigoplus_{\rho_{M}(K)=m-p-1} \bigoplus_{i+j=p+q} H_{i}\left(Y_{K}\right) \otimes H_{j}\left(\Delta\left(\mathcal{K}(M)_{\geq K}\right), \Delta\left(\mathcal{K}(M)_{>K}\right)\right) \\
& \stackrel{(d)}{\cong} \bigoplus_{\rho_{M}(K)=m-p-1} \bigoplus_{i+j=p+q} H_{i}\left(Y_{K}\right) \otimes \tilde{H}_{j-1}\left(\Delta\left(\mathcal{K}(M)_{>K}\right)\right) \\
& \stackrel{(e)}{\cong} \bigoplus_{\rho_{M}(K)=m-p-1} \bigoplus_{i+j=p+q} H_{i}\left(Y_{K}\right) \otimes \tilde{H}_{j-1}\left(\Delta\left(\mathcal{K}_{0}(M / K)\right)\right) .
\end{aligned}
$$

Details of the derivation: (a) is the excision isomorphism, (b) is a consequence of (6) and Claim 3.2, (c) is the Künneth formula, (d) follows from the the contractibility of $\Delta\left(\mathcal{K}(M)_{\geq K}\right)$ and the exact sequence of the pair $\left(\Delta\left(\mathcal{K}(M)_{\geq K}\right), \Delta\left(\mathcal{K}(M)_{>K}\right)\right)$, and finally (e) follows from the poset isomorphism $\mathcal{K}(M)_{>K} \cong \mathcal{K}_{0}(M / K)$ given by $L \rightarrow L \backslash K$.

If $\rho_{M}(K)=m-p-1$ then $\tilde{H}_{j-1}\left(\Delta\left(\mathcal{K}_{0}(M / K)\right)\right)=0$ for

$$
j-1 \neq \rho_{M / K}(V \backslash K)-2=\rho_{M}(V)-\rho_{M}(K)-2=p-1
$$

It thus follows from (8) that

$$
E_{p, q}^{1} \cong \bigoplus_{\rho_{M}(K)=m-p-1} H_{q}\left(Y_{K}\right) \otimes \tilde{H}_{p-1}\left(\Delta\left(\mathcal{K}_{0}(M / K)\right)\right)
$$

For the proof of the next result, we recall the combinatorial version of the Alexander duality theorem, see e.g. section 6 in [10] and Theorem 2 in [6]. For a simple direct proof see section 2 in [3].

Theorem 3.3 (Combinatorial Alexander Duality). Let X be a simplicial complex on V. Then for all $0 \leq q \leq|V|-1$

$$
\tilde{H}_{|V|-2-q}(X ; \mathbb{Z}) \cong \tilde{H}^{q-1}\left(X^{\vee} ; \mathbb{Z}\right)
$$

In particular, $\tilde{H}_{|V|-2-q}(X ; \mathbb{F}) \cong \tilde{H}_{q-1}\left(X^{\vee} ; \mathbb{F}\right)$ for homology with field coefficients \mathbb{F}.
Let $\left\{Z_{K}: Z \in \mathcal{K}(M)\right\}$ be a family of complexes such that $Z_{K} \cup Z_{K^{\prime}}=Z_{K \cap K^{\prime}}$ for all $K, K^{\prime} \in \mathcal{K}(M)$. Proposition 3.1 implies the following

Corollary 3.4. Suppose that $\bigcap_{K \in \mathcal{K}(M)} Z_{K}=\{\emptyset\}$. Then there exist $0 \leq p \leq \rho_{M}(V)-1$ and $K \in \mathcal{K}(M)$ of rank $\rho_{M}(K)=\rho_{M}(V)-p-1$, such that $\tilde{H}_{p-1}\left(Z_{K}\right) \neq 0$.

Proof. Let $\rho_{M}(V)=m$. We may assume that all the Z_{K} 's are subcomplexes of the $(N-1)$ dimensional simplex Δ_{N-1} where $N>m$. Let $Y_{K}=Z_{K}^{\vee}$ be the Alexander dual of Z_{K} in Δ_{N-1}. Then for all $K, K^{\prime} \in \mathcal{K}(M)$

$$
Y_{K} \cap Y_{K^{\prime}}=Z_{K}^{\vee} \cap Z_{K^{\prime}}^{\vee}=\left(Z_{K} \cup Z_{K^{\prime}}\right)^{\vee}=Z_{K \cap K^{\prime}}^{\vee}=Y_{K \cap K^{\prime}}
$$

Moreover,

$$
Y=\bigcup_{K \in \mathcal{K}(M)} Y_{K}=\bigcup_{K \in \mathcal{K}(M)} Z_{K}^{\vee}=\left(\bigcap_{K \in \mathcal{K}(M)} Z_{K}\right)^{\vee}=\{\emptyset\}^{\vee}=\partial \Delta_{N-1} \cong S^{N-2}
$$

By Proposition 3.1 there exists a spectral sequence $\left\{E_{p, q}^{r}\right\}$ converging to $H_{*}(Y)=H_{*}\left(S^{N-2}\right)$ with E^{1} terms given by (5). As $H_{N-2}\left(S^{N-2}\right) \neq 0$, it follows that there exist $0 \leq p \leq m-1$ and $q \geq 0$ such that $p+q=N-2$ and $E_{p, q}^{1} \neq 0$. Hence, by (5), there exists a flat $K \in \mathcal{K}(M)$ of rank $\rho_{M}(K)=m-p-1$ such that $H_{q}\left(Y_{K}\right) \neq 0$. Note that $q=N-2-p>m-2-p \geq 0$. By Alexander duality we obtain

$$
0 \neq H_{q}\left(Y_{K}\right)=\tilde{H}_{q}\left(Y_{K}\right)=\tilde{H}_{q}\left(Z_{K}^{\vee}\right) \cong \tilde{H}_{N-3-q}\left(Z_{K}\right)=\tilde{H}_{p-1}\left(Z_{K}\right)
$$

4 A Relative Topological Colorful Helly Theorem

Proof of Theorem 1.6. It suffices to show the existence of a subset $\tau \subset V$ such that

$$
\begin{equation*}
\tau \in X \cap Y \quad \& \quad \tilde{H}_{\rho_{M}(V \backslash \tau)-1}(\operatorname{lk}(X, \tau)) \neq 0 \tag{9}
\end{equation*}
$$

Indeed, if (9) holds then of course $\tau \in X$. Moreover, as $\tau \in Y$ and $\tilde{H}_{\rho_{M}(V \backslash \tau)-1}(\operatorname{lk}(X, \tau)) \neq 0$, it follows from Proposition 2.1 that $\rho_{M}(V \backslash \tau) \leq L_{Y}(X)$, as required. The idea behind finding such τ is that the assumption $Y^{\vee} \subset M \subset X$ gives rise to a naturally defined family of complexes $\left\{Z_{K}\right\}$ indexed by the flats of the dual matroid M^{*} (see below), whose intersection is empty. Corollary 3.4 then implies the existence of a $p \geq 0$ and a flat K of M^{*}, such that $\rho_{M^{*}}(K)=\rho_{M^{*}}(V)-p-1$ and $\tilde{H}_{p-1}\left(Z_{K}\right) \neq 0$. Finally, it can be shown that these two conditions imply (9) for $\tau=K$.
We proceed with the detailed argument. Let $M^{*}=\left\{\sigma \subset V: \rho_{M}(V \backslash \sigma)=\rho_{M}(V)\right\}$ be the dual matroid of M. The rank function of M^{*} satisfies $\rho_{M^{*}}(A)=|A|-\rho_{M}(V)+\rho_{M}(V \backslash A)$. For $K \in \mathcal{K}\left(M^{*}\right)$, we view the simplices of $X^{\vee} \backslash X^{\vee}[K]$ as a poset ordered by inclusion, and consider its order complex $Z_{K}=\Delta\left(X^{\vee} \backslash X^{\vee}[K]\right)$. Then

$$
Z_{K} \cup Z_{K^{\prime}}=\Delta\left(X^{\vee} \backslash X^{\vee}[K]\right) \cup \Delta\left(X^{\vee} \backslash X^{\vee}\left[K^{\prime}\right]\right)=\Delta\left(X^{\vee} \backslash X^{\vee}\left[K \cap K^{\prime}\right]\right)=Z_{K \cap K^{\prime}}
$$

Let $\operatorname{sd}\left(X^{\vee}[V \backslash K]\right)=\Delta\left(X^{\vee}[V \backslash K] \backslash\{\emptyset\}\right)$ denote the barycentric subdivision of $X^{\vee}[V \backslash K]$. The inclusion map

$$
\operatorname{sd}\left(X^{\vee}[V \backslash K]\right) \rightarrow \Delta\left(X^{\vee} \backslash X^{\vee}[K]\right)=Z_{K}
$$

is a homotopy equivalence. Indeed, the retraction $\Delta\left(X^{\vee} \backslash X^{\vee}[K]\right) \rightarrow \operatorname{sd}\left(X^{\vee}[V \backslash K]\right)$ is given by the simplicial map that sends a vertex σ of $\Delta\left(X^{\vee} \backslash X^{\vee}[K]\right)$ to the vertex $\sigma \backslash K$ of $\operatorname{sd}\left(X^{\vee}[V \backslash K]\right)$. It follows that there is a homotopy equivalence

$$
\begin{equation*}
Z_{K} \simeq \operatorname{sd}\left(X^{\vee}[V \backslash K]\right) \simeq X^{\vee}[V \backslash K] \tag{10}
\end{equation*}
$$

Let $\sigma \in X^{\vee}$. Then $V \backslash \sigma \notin X$, and hence $V \backslash \sigma \notin M$. Therefore σ does not contain a basis of M^{*}, and thus $\sigma \subset K$ for some $K \in \mathcal{K}\left(M^{*}\right)$. Hence σ is not a vertex of Z_{K}. It follows that

$$
\bigcap_{K \in \mathcal{K}\left(M^{*}\right)} Z_{K}=\{\emptyset\} .
$$

By Corollary 3.4 there exist $0 \leq p \leq \rho_{M^{*}}(V)-1$ and $K \in \mathcal{K}\left(M^{*}\right)$ such that

$$
\begin{equation*}
\tilde{H}_{p-1}\left(Z_{K}\right) \neq 0 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{M^{*}}(K)=\rho_{M^{*}}(V)-p-1 \tag{12}
\end{equation*}
$$

As $K \in \mathcal{K}\left(M^{*}\right)$, it follows that $V \backslash K \notin M$. The assumption $Y^{\vee} \subset M$ then implies that $V \backslash K \notin Y^{\vee}$, hence $K \in Y$. Furthermore, (12) is equivalent to

$$
\begin{equation*}
\rho_{M}(V \backslash K)=|V|-|K|-p-1 \tag{13}
\end{equation*}
$$

Note that

$$
\begin{equation*}
X^{\vee}[V \backslash K]=\operatorname{lk}(X, K)^{\vee} \tag{14}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\sigma \in \operatorname{lk}(X, K)^{\vee} & \Longleftrightarrow \sigma \subset V \backslash K \&(V \backslash K) \backslash \sigma \notin \operatorname{lk}(X, K) \\
& \Longleftrightarrow \sigma \subset V \backslash K \& V \backslash \sigma \notin X \Longleftrightarrow \sigma \in X^{\vee}[V \backslash K] .
\end{aligned}
$$

Using (11),(10),(14), Alexander duality and (13), we obtain

$$
\begin{aligned}
0 & \neq \tilde{H}_{p-1}\left(Z_{K}\right) \cong \tilde{H}_{p-1}\left(X^{\vee}[V \backslash K]\right)=\tilde{H}_{p-1}\left(\operatorname{lk}(X, K)^{\vee}\right) \\
& \cong \tilde{H}_{|V|-|K|-p-2}(\operatorname{lk}(X, K))=\tilde{H}_{\rho_{M}(V \backslash K)-1}(\operatorname{lk}(X, K))
\end{aligned}
$$

As $K \in Y$, it follows from Proposition 2.1 that $\rho_{M}(V \backslash K) \leq L_{Y}(X)$. Finally, $K \in X$ since $\tilde{H}_{*}(\operatorname{lk}(X, K)) \neq 0$.

References

[1] R. Aharoni, R. Holzman and Z. Jiang, Rainbow fractional matchings, Combinatorica, 39 (2019) 1191-1202.
[2] I. Bárány, A generalization of Carathéodory's theorem, Discrete Math., 40(1982) 141-152.
[3] D. Bayer, H. Charalambous and S. Popescu, Extremal Betti numbers and applications to monomial ideals, J. Algebra, 221(1999) 497-512.
[4] A. Björner, The homology and shellability of matroids and geometric lattices. Matroid applications, 226-283, Encyclopedia Math. Appl., 40, Cambridge Univ. Press, Cambridge, 1992.
[5] A. Björner, Nerves, fibers and homotopy groups, J. Combin. Theory Ser. A, 102(2003) 88-93.
[6] A. Björner, L. Butler and A. Matveev, Note on a combinatorial application of Alexander duality, J. Combin. Theory Ser. A, 80(1997) 163-165.
[7] J. A. De Loera, X. Goaoc, F. Meunier, N. H. Mustafa, The discrete yet ubiquitous theorems of Carathodory, Helly, Sperner, Tucker, and Tverberg, Bull. Amer. Math. Soc. (N.S.), 56(2019) 415-511.
[8] A. F. Holmsen and R. Karasev, Colorful theorems for strong convexity, Proc. Amer. Math. Soc., 145(2017) 2713-2726.
[9] A. F. Holmsen, Large cliques in hypergraphs with forbidden substructures, Combinatorica, 40 (2020) 527-537.
[10] G. Kalai, Enumeration of Q-acyclic simplicial complexes, Israel J. Math., 45(1983) 337-351.
[11] G. Kalai and R. Meshulam, A topological colorful Helly Theorem, Adv. Math., 191(2005) 305311.
[12] G. Kalai and R. Meshulam, Intersections of Leray complexes and regularity of monomial ideals, J. Combin. Theory Ser. A, 113(2006) 1586-1592.
[13] G. Kalai and R. Meshulam, Leray numbers of projections and a topological Helly type theorem, Journal of Topology, 1(2008) 551-556.
[14] J. Oxley, Matroid theory. Second edition. Oxford Graduate Texts in Mathematics, 21. Oxford University Press, Oxford, 2011.
[15] S. Sarkar, A. Xue and P. Soberón, Quantitative combinatorial geometry for concave functions, J. Combin. Theory Ser. A, 182(2021), 105465.52 .
[16] E. H. Spanier, Algebraic topology. Corrected reprint. Springer-Verlag, New York-Berlin, 1981.
[17] V. A. Vassiliev, Topology of plane arrangements and their complements, Russian Math. Surveys, 56(2001) 365-401.
[18] G. Wegner, d-Collapsing and nerves of families of convex sets, Arch. Math. (Basel), 26(1975) 317-321.

[^0]: *Einstein Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel, and Efi Arazy School of Computer Science, IDC, Herzliya. e-mail: kalai@math.huji.ac.il . Supported by by ISF grant 1612/17.
 ${ }^{\dagger}$ Department of Mathematics, Technion, Haifa 32000, Israel. e-mail: meshulam@technion.ac.il . Supported by ISF grant 686/20.

