Exam in Algebraic Topology 1.2.22

This is a closed-book exam. Please write clearly and answer all five questions.
Notation: $S^{n}=\left\{x \in \mathbb{R}^{n+1}:|x|=1\right\}$ denotes the n-dimensional unit sphere in \mathbb{R}^{n+1}.
For two simplicial complexes K and L and a continuous map $f:|K| \rightarrow|L|$, denote by f_{*} the induced map $f_{*}: H_{k}(K) \rightarrow H_{k}(L)$.
The order complex $\Delta(P)$ of a poset (P, \leq) is the simplicial complex on the vertex set P whose simplices are all increasing chains of P.
For an oriented k-simplex σ in a simplicial complex K, denote by σ^{*} the k-cochain that satisfies $\sigma^{*}(\sigma)=1$, and $\sigma^{*}(\tau)=0$ for any oriented k-simplex τ that is not a permutation of σ.
For $i=1,2$ let X_{i} be a simplicial complex on the vertex set V_{i}. Assume that $V_{1} \cap V_{2}=\emptyset$. The join $X_{1} * X_{2}$ is the simplicial complex on the vertex set $V_{1} \cup V_{2}$ whose simplices are all unions $\sigma_{1} \cup \sigma_{2}$ where $\sigma_{1} \in X_{1}, \sigma_{2} \in X_{2}$. Note: If X_{2} is a cone, then so is $X_{1} * X_{2}$.

1. (a) (5 points) Let Y_{1}, Y_{2} be two subcomplexes of Y such that $Y=Y_{1} \cup Y_{2}$. Write down the Mayer-Vietoris exact sequence associated with the pair $\left(Y_{1}, Y_{2}\right)$.
(b) (15 points) Let X be a simplicial complex, and let $\partial \Delta_{2}$ be the boundary complex of the 2 -simplex (i.e. $\partial \Delta_{2}$ is the boundary of a triangle). Assume that the vertex sets of X and Δ_{2} are disjoint. Compute the homology of the join $X * \partial \Delta_{2}$ in terms of the homology of X.
2. Let $0 \leq k<n$. Let $A_{n, k}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in S^{n}: x_{k+1}=\cdots=x_{n}=0\right\}$. Note that A is a k-dimensional sphere. Let $X_{n, k}$ be the space obtained from S^{n} by identifying all points of $A_{n, k}$ to one point (i.e. $X_{n, k}$ is the quotient space S^{n} / \sim, where $x \sim y$ for all $x, y \in A_{n, k}$, and $x \nsim y$ for all x, y such that $x \neq y$ and $\left.\{x, y\} \not \subset A_{n, k}\right)$.
(a) (4 points) Let $Z \subset Y$ be simplicial complexes. Write down the long exact sequence for the pair (Y, Z).
(b) (4 points) Draw (roughly) $X_{1,0}, X_{2,0}, X_{2,1}$.
(c) (12 points) Compute the homology of $X_{n, k}$ for all $0 \leq k<n$.
3. (a) (5 points) Define the notion of a simplicial n-dimensional homology manifold.
(b) (15 points) Suppose that K is a connected simplicial n-dimensional homology manifold. Prove that for any two n-dimensional simplices $\sigma, \tau \in K$, there exists a sequence of n-dimensional simplices $\sigma_{1}, \cdots, \sigma_{m}$ such that $\sigma_{1}=\sigma, \sigma_{m}=\tau$ and $\left|\sigma_{i} \cap \sigma_{i-1}\right|=n$ for all $2 \leq i \leq m$.

Figure 1: A 2-dimensional complex K
4. Let K denote the 2-dimensional complex depicted above. Let σ be the oriented 2-simplex $\sigma=[d, e, f] \in K$.
(a) (5 points) Find a block dissection of K with one 2-dimensional block, two 1dimensional blocks and one 0-dimensional block.
(b) (5 points) Compute the homology of K with integer coefficients using the block dissection from (a).
(c) (5 points) Does there exist a $u \in C^{1}(K ; \mathbb{Z})$ whose 1-coboundary $\delta_{1} u$ satisfies $\delta_{1} u=\sigma^{*}$? If your answer is positive, find such u.
(d) (5 points) Does there exist a $v \in C^{1}(K ; \mathbb{Z})$ whose 1-coboundary $\delta_{1} v$ satisfies $\delta_{1} v=2 \sigma^{*}$? If your answer is positive, find such v.
5. (a) (5 points) Formulate the Acyclic Carrier Theorem.
(b) (5 points) Let $\left(P, \leq_{P}\right),\left(Q, \leq_{Q}\right)$ be two posets and let $f, g: P \rightarrow Q$ be two nondecreasing maps, i.e. $f(x) \leq f(y), g(x) \leq g(y)$ for every $x \leq y \in P$. Prove that if $f(x) \leq g(x)$ for all $x \in P$, then $f_{*}=g_{*}$.
(c) (10 points) Suppose (L, \leq) is a lattice, i.e. for any two elements $x, y \in L$ there exist elements $x \wedge y, x \vee y \in L$ such that $x \wedge y$ is the unique maximal element of $\{z \in L: z \leq x, z \leq y\}$ and $x \vee y$ is the unique minimal element in $\{z \in L: z \geq x, z \geq y\}$. Any lattice has unique minimal element $\widehat{0}$ and a unique maximal element $\widehat{1}$. Let $\widehat{L}=L \backslash\{\widehat{0}, \widehat{1}\}$. The minimal elements of \widehat{L} are called the atoms of L, and the maximal elements of \widehat{L} are called the coatoms of L.
Prove that if there exists an atom $x \in L$ such that $x \leq y$ for every coatom y of L, then $\Delta(\widehat{L})$ is acyclic.

