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Abstract

Let X,Y be simplicial complexes and let f : Y → X be a simplicial surjective map. We introduce
a notion of deficiency of f , denoted by mf (Y ), that measures the average local failure of f : Y → X
to be a covering map. We show, roughly speaking, that if mf (Y ) is small and and if the non-abelian
cosystolic expansion of X is large, then f is close to a genuine covering map. Our main result is a lower
bound on the 1-cosystolic expansion with G coefficients of geometric lattices, with an application to
near coverings of the 2-dimensional spherical building A3(Fq).

1 Introduction

Many central topological structures, e.g. vector bundles and covering spaces, are defined in terms of local
conditions. Classification theorems for such structures are often formulated in cohomological terms. For
example, real line bundles over a compact space X are classified by H1(X;Z2), while complex line bundles
over X are classified by H2(X;Z) (see, e.g., [17]). A natural challenge that arises is to formulate and
prove approximate (or stability) versions of such classification theorems. Roughly speaking, such results
would state that under suitable assumptions on X, if a structure satisfies all but a small fraction of the
local conditions, then it corresponds to a cochain that is close (in an appropriate sense) to a cocycle.

In this paper we establish a stability version of the well known classification of G-covering spaces
of a complex X by the first cohomology set H1(X;G), with an application to near coverings of the 2-
dimensional spherical building A3(Fq). Our first result (Theorem 1.7) provides a connection between the
average local deviation of a map from a covering map, its proximity (again, in a precise sense defined
below) to a genuine covering map, and its first expansion constant. The main technical result of this
paper (Theorem 3.1) gives a lower bound on the 1-expansion of the geometric lattices over an arbitrary
group G, with an application to expansion and cover-stability of the spherical building A3(Fq).

In the following three subsections we describe the combinatorial and topological ingredients that
appear in the formulation of our results. In Subsection 1.1 we define the deficiency of a simplicial map,
a notion that will serve as a measure of the local failure of the map to be a covering map. Subsection 1.2
is concerned with the 1-cohomology H1(X;G) of a complex X over a finite coefficient group G, and its
relation to G-coverings of X. A key element in this work is a notion of high-dimensional expansion that
came up independently in the study of random simplicial complexes [9, 14], and in Gromov’s remarkable
work on the topological overlap property [7]. In Subsection 1.3 we recall the definition of the specific
expansion constant needed here, namely the cosystolic 1-expansion of X with non-abelian coefficients
h1(X;G). Finally, in Subsection 1.4 we state our results.

1.1 Deficiency of a Simplicial Surjection

Let X be an (n − 1)-dimensional pure simplicial complex on the vertex set V . Let X(k) denote the set
of k-simplices of X, and let Xord(k) denote the set of ordered k-simplices of X. Let fk(X) = |X(k)|. The
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star and the link of a simplex τ ∈ X are given by

st(X, τ) = {σ ∈ X : σ ∪ τ ∈ X},

lk(X, τ) = {σ ∈ st(X, τ) : σ ∩ τ = ∅}.

Following [6], define a weight function cX on the simplices of X by

cX(σ) =
|{τ ∈ X(n − 1) : τ ⊃ σ}|(

n
|σ|

)
fn−1(X)

=
fn−|σ|−1(lk(X,σ))(

n
|σ|

)
fn−1(X)

.

Note that
∑

σ∈X(k) cX(σ) = 1 for 0 ≤ k ≤ n− 1, and that if τ1 ∈ X and τ2 ∈ lk(X, τ1) then

cX(τ1)clk(X,τ1)(τ2) =

(
|τ1|+ |τ2|

|τ1|

)−1

cX(τ1 ∪ τ2).

In particular, if v ∈ X(0) and e ∈ lk(X, v)(1) then

cX(v) · clk(X,v)(e) =
1

3
· cX(v ∪ e). (1)

Let Y be another simplicial complex and let p : Y → X be a surjective simplicial map. The pair (Y, p)
is a covering of X if for any u ∈ X(0) and ũ ∈ p−1(u), the induced mapping p : st(Y, ũ) → st(X,u) is
an isomorphism. Note that in this case, the associated mapping p : |Y | → |X| between the geometric
realizations of Y and X, is a covering in the usual topological sense as well. Consider now an arbitrary
surjective simplicial map f : Y → X between two pure simplicial complexes Y and X. For a vertex ũ of
Y with an image f(ũ) = u, let

Df (ũ) = {e ∈ lk(X,u)(1) : e 6∈ f(lk(Y, ũ))} .

Define the local deficiency of f at ũ by

µf (ũ) =
∑

e∈Df (ũ)

clk(X,u)(e).

The deficiency of the map f : Y → X is a weighted average of µf (ũ) over all ũ ∈ Y (0) given by

mf (Y ) =
∑

u∈X(0)

cX(u)

|f−1(u)|

∑

ũ∈f−1(u)

µf (ũ).

Remark 1.1. If f is a covering map, then clearly mf (Y ) = 0. In the sequel - see Definition 1.3 - we
will confine the discussion to maps f : Yφ → X where φ is a G-valued 1-cochain of X. For such maps,
mf (Yφ) = 0 iff f is a covering map, and mf (Yφ) may be viewed as a measure of the failure of f to be a
covering map, see Remark 1.4(ii).

1.2 Non-Abelian First Cohomology and Covering Maps

Let X be a finite simplicial complex and let G be a finite multiplicative group. Let C0(X;G) denote the
group of G-valued functions on X(0) with pointwise multiplication, and let

C1(X;G) =
{
φ : Xord(1) → G : φ(u, v) = φ(v, u)−1

}
.

The 0-coboundary operator d0 : C
0(X;G) → C1(X;G) be given by

d0α(u, v) = α(u)α(v)−1.

For φ ∈ C1(X;G) and (u, v, w) ∈ Xord(2) let

d1φ(u, v, w) = φ(u, v)φ(v,w)φ(w, u).
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Note that if d1φ(u1, u2, u3) = 1, then d1φ(uπ(1), uπ(2), uπ(3)) = 1 for all permutations π. The set of
G-valued 1-cocycles of X is given by

Z1(X;G) =
{
φ ∈ C1(X;G) : d1φ(u, v, w) = 1 for all (u, v, w) ∈ Xord(2)

}
.

Define an action of C0(X;G) on C1(X;G) as follows. For α ∈ C0(X;G) and φ ∈ C1(X;G) let

α.φ(u, v) = α(u)φ(u, v)α(v)−1 .

Note that d0α = α.1 and that Z1(X;G) is invariant under the action of C0(X;G). For φ ∈ C1(X;G) let
[φ] denote the orbit of φ under the action of C0(X;G). The first cohomology of X with coefficients in G
is the set of orbits

H1(X;G) =
{
[φ] : φ ∈ Z1(X;G)

}
.

Remark 1.2. (i) If G is abelian, then H1(X;G) is the usual 1-dimensional cohomology group of X with
G coefficients. For a general group G, the first cohomology H1(X;G) is only a set and need not have a
natural group structure.
(ii) Assume that X is connected and let π1(X,x0) denote the fundamental group of X with respect to
a base point x0. Define an equivalence relation ∼ on the set of homomorphisms Hom(π1(X,x0), G) by
ϕ1 ∼ ϕ2 if there exists a g ∈ G such that φ2(γ) = gφ1(γ)g

−1 for all γ ∈ π1(X,x0). Then H1(X;G) can
be identified with Hom(π1(X,x0), G)/ ∼. For more details, see Olum’s paper [15].

Definition 1.3. Let X be a simplicial complex and let G be a finite group with a left action on a finite
set S. For a 1-cochain φ ∈ C1(X;G), let Yφ = X×φS be the simplicial complex on the vertex set Yφ(0) =
{[u, s] : u ∈ X(0), s ∈ S}, whose k-simplices are τ =

{
[u0, s0], . . . , [uk, sk]

}
, where {u0, . . . , uk} ∈ X(k),

and si = φ(ui, uj)sj for all 0 ≤ i, j ≤ k. Let f : Yφ → X be the simplicial projection map given by
f([u, s]) = u.

Remark 1.4. (i) If α ∈ C0(X;G), then the map gα : Yα.φ → Yφ given by gα([v, s]) = [v, α(v)−1s] is a
simplicial isomorphism that satisfies f = fgα, i.e. Yα.φ ∼=X Yφ.
(ii) For ũ = [u, s] ∈ Yφ(0), the restricted map f : st(Y, ũ) → st(X,u) is an isomorphism iff µf (ũ) = 0.
We may thus regard the deficiency mf (Yφ) as a measure of the failure of f to be a covering map.

We next recall the classical connection between G-covering spaces of X and the cohomology set
H1(X;G). See Steenrod [17] for general spaces X, and Surowski [18] for the following simplicial version.

Theorem 1.5 ([18]). Let X be a connected complex. If φ ∈ Z1(X;G) then f : X ×φ S → X is a covering
map. Conversely, let f : Y → X be a simplicial covering map and let v0 ∈ X(0). Then there is an action
of G = π1(X, v0) on S = f−1(v0), and a φ ∈ Z1(X;G) such that Y ∼=X X ×φ S.

1.3 Cosystolic 1-Expansion

For φ ∈ C1(X;G) let
supp(φ) =

{
{u, v} ∈ X(1) : φ(u, v) 6= 1

}

and
supp(d1φ) =

{
{u, v, w} ∈ X(2) : d1φ(u, v, w) 6= 1

}
.

The norms of φ and of d1φ are given by

‖φ‖ =
∑

e∈supp(φ)

cX(e)

and
‖d1φ‖ =

∑

σ∈supp(d1φ)

cX(σ).
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The distance between φ,ψ ∈ C1(X;G) is

dist(φ,ψ) = ‖φψ−1‖.

The cosystolic norm of φ ∈ C1(X;G) is the distance of φ from Z1(X;G), i.e.

‖φ‖csy = min
{
‖φψ−1‖ : ψ ∈ Z1(X;G)

}
.

Note that if α ∈ C0(X;G), then α−1.1 ∈ Z1(X;G) and supp
(
φ(α−1.1)−1

)
= supp(α.φ). Hence

‖φ‖csy ≤ ‖α.φ‖. (2)

The cosystolic expansion of φ ∈ C1(X;G) \ Z1(X;G) is

h(φ) =
‖d1φ‖

‖φ‖csy
.

The cosystolic expansion of X is

h1(X;G) = min
{
h(φ) : φ ∈ C1(X;G) \ Z1(X;G)

}
.

Example 1.6 (Proposition 3.1 in [13], Proposition 6.7 in [8]). Let ∆n−1 denote the (n− 1)-simplex. then
for any group G

h1(∆n−1;G) ≥
n

n− 2
.

1.4 Deficiency, Near Coverings and Expansion

Let G be a finite group that acts on a finite set S. For g ∈ G let fix(g) = |{s ∈ S : gs = s}|. The fixity of
the action of G on S is FixG(S) = maxg 6=1 fix(g). The action of G is faithful if FixG(S) < |S|, and free if
FixG(S) = 0.

Let X be a complex with bounded below expansion h1(X;G) and let φ ∈ C1(X;G). The following
result shows, roughly speaking, that if the deficiency of the projection X ×φ S → X is small, then φ is
close to a 1-cocycle in H1(X;G).

Theorem 1.7. Let G act on a finite set S. Then for any φ ∈ C1(X;G) there exists a ψ ∈ Z1(X;G) such
that

dist(φ,ψ) ≤
mf (X ×φ S)(

1− FixG(S)
|S|

)
· h1(X;G)

. (3)

Let q be a prime power and let Fq denote the finite field with q elements. The spherical building
An(Fq) is the (n−1)-dimensional pure simplicial complex whose vertex set consists of all linear subspaces
0 6= U ( Fn+1

q , with maximal simplices {U1, . . . , Un} where 0 6= U1 ( U2 ( · · · ( Un ( Fn+1
q . Spherical

buildings such as An(Fq) play an significant role in a number of fields, including representation theory,
topological combinatorics and the emerging field of high dimensional expanders (see, e.g., [12, 16, 3, 10]).
The main result of this paper is the following lower bound on the cosystolic expansion of A3(Fq).

Theorem 1.8. For any finite group G

h1
(
A3(Fq);G

)
≥

1

9
.

Remark 1.9. (i) The case G = Z/2 of Theorem 1.8 is implicit (with a different constant) in Gromov’s
paper [7], see also Corollary 3.6 in [11] and Corollary 3.9 in [8]. The general non-abelian case requires
somewhat different ideas, and is derived here as a consequence of a lower bound (Theorem 3.1) on the
non-abelian 1-expansion of order complexes of geometric lattices.
(ii) Theorem 5.3 in [8] implies that h1

(
A3(Fq);G

)
≤ 1 + O(q−

1
2 ). It would be interesting to narrow the

gap between this upper bound and the lower bound given in Theorem 1.8.
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Combining Theorem 1.7 and Theorem 1.8 we obtain

Corollary 1.10. Let G act on a finite set S. Then for any φ ∈ C1(A3(Fq);G) there exists a ψ ∈
Z1(A3(Fq);G) such that

dist(φ,ψ) ≤
9mf (X ×φ S)(
1− FixG(S)

|S|

) .

In particular, if the action of G is free then

dist(φ,ψ) ≤ 9mf (X ×φ S).

Remark 1.11. The simple connectivity of A3(Fq) implies that if ψ ∈ Z1(X;G), then Yψ is isomorphic
to the trivial |S|-fold covering of A3(Fq).

The paper is organized as follows. In Section 2 we prove Theorem 1.7 that links between cover-stability
and 1-expansion. In Section 3 we study the expansion of geometric lattices (Theorem 3.1), and then use
a symmetry argument to deduce a lower bound on h1(A3(Fq);G) (Theorem 1.8) . We conclude in Section
4 with some comments and questions.

2 Cosystolic Expansion and Cover Stability

Proof of Theorem 1.7. Let φ ∈ C1(X;G) \ Z1(X;G). Recall that f : Yφ = X ×φ S → X is the
projection map f([u, s]) = u. Let [u, s] ∈ Yφ(0) and let e = {v1, v2} ∈ lk(X,u). Then e ∈ f (lk(Yφ, [u, s]))
iff there exist s1, s2 ∈ S such that {[u, s], [v1, s1], [v2, s2]} ∈ Yφ, i.e. iff s1 = φ(v1, u)s, s2 = φ(v2, u)s, and
s1 = φ(v1, v2)s2. Writing the last equality in terms of first two, we obtain

φ(v1, u)s = s1 = φ(v1, v2)s2 = φ(v1, v2)φ(v2, u)s,

and therefore
s = φ(u, v1)φ(v1, v2)φ(v2, u)s = d1φ(u, v1, v2)s.

It follows that
e = {v1, v2} ∈ Df ([u, s]) ⇐⇒ d1φ(u, v1, v2)s 6= s. (4)

Using Eqs. (4) and (1) respectively for steps (a) and (b) below, we compute

|S|mf (X ×φ S) =
∑

u∈X(0)

cX(u)
∑

ũ∈f−1(u)

µf (ũ)

=
∑

u∈X(0)

cX(u)
∑

s∈S

µf ([u, s])

=
∑

u∈X(0)

cX(u)
∑

s∈S

∑

e∈Df ([u,s])

clk(X,u)(e)

(a)
=

∑

u∈X(0)

cX(u)
∑

{v1,v2}∈lk(X,u)(1)

|{s : d1φ(u, v1, v2)s 6= s}| · clk(X,u)({v1, v2})

=
∑

u∈X(0)

cX(u)
∑

e∈lk(X,u)(1)

(
|S| − fix (d1φ(u ∪ e))

)
· clk(X,u)(e)

≥
(
|S| − FixG(S)

) ∑

u∈X(0)

∑

{e∈lk(X,u)(1):d1φ(u∪e)6=1}

cX(u)clk(X,u)(e)

(b)
=
(
|S| − FixG(S)

) ∑

u∈X(0)

∑

{e∈lk(X,u)(1):u∪e∈supp(d1φ)}

1

3
· cX(u ∪ e)

=
(
|S| − FixG(S)

)
‖d1φ‖.
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As h1(X;G) ≤ ‖d1φ‖
‖φ‖csy

, it follows that

min
{
dist(φ,ψ) : ψ ∈ Z1(X;G)

}
= ‖φ‖csy

≤
‖d1φ‖

h1(X;G)
≤

|S| ·mf (X ×φ S)(
|S| − FixG(S)

)
· h1(X;G)

=
mf (X ×φ S)(

1− FixG(S)
|S|

)
· h1(X;G)

.

�

3 The 1-Expansion of Geometric Lattices

Let (P,≤) be a finite poset. The order complex of P is the simplicial complex on the vertex set P whose
simplices are the chains a0 < · · · < ak of P . In the sequel we identify a poset with its order complex. A
poset (L,≤) is a lattice if any two elements x, y ∈ L have a unique minimal upper bound x ∨ y and a
unique maximal lower bound x∧ y. A lattice L with minimal element 0̂ and maximal element 1̂ is ranked,
with rank function rank(·), if rank(0̂) = 0 and rank(y) = rank(x) + 1 whenever y covers x (i.e., y is a
minimal element in {z : z > x}). L is a geometric lattice if rank(x) + rank(y) ≥ rank(x∨ y)+ rank(x∧ y)
for any x, y ∈ L, and any element in L is a join of atoms (i.e., rank 1 elements).

Let L be a geometric lattice with rank(1̂) = n ≥ 3. A classical result of Folkman [5] asserts that
L = L−{0̂, 1̂} is homotopy equivalent to a wedge of (n−2)-spheres. In particular, L is simply connected,
and hence H1(L;G) = {1} for any group G. Here we provide a lower bound for h1(L;G). Let S be a set
of linear orderings on the set of atoms A of L, equipped with a probability distribution µ. Let ≺s denote
the ordering associated with s ∈ S. For s ∈ S and v ∈ L \ {0̂} let b(s, v) = min{a ∈ A : a ≤ v} where
the minimum is taken with respect to ≺s. Note that b(s, 1̂) is the ≺s-minimal element of A. For s ∈ S
and v0 < v1 ∈ L, let a0 = b(s, v0), a1 = b(s, v1), a2 = b(s, 1̂). Clearly a2 �s a1 �s a0. Let Ys(v0v1) be
the 2-dimensional subcomplex of L depicted in Figure 1. For a fixed τ ∈ L(2), let δs(τ) be the random
variable on S given by

δs(τ) :=
∑

{v0v1∈L(1):τ∈Ys(v0v1)}

cX(v0v1)

cX(τ)
, (5)

and let δ(τ) = E[δs(τ)] =
∑

s∈S µ(s)δs(τ) denote its expectation. The next result may be viewed as a
non-commutative homotopical counterpart of the 2-dimensional case of Theorem 2.5 in [8].

Theorem 3.1.

h1(L;G) ≥

(
max
τ∈L(2)

δ(τ)

)−1

.

We will need the following simple fact.

Claim 3.2. Let G be a group and let K be a 2-dimensional simplicial complex such that H1(K;G) = {1}.
Suppose x0, . . . , xm−1, xm = x0 are the vertices of a 1-cycle in K. If φ ∈ C1(K;G) satisfies

φ(x0, x1) · φ(x1, x2) · · · φ(xm−1, x0) 6= 1 (6)

then there exists a 2-simplex (a, b, c) ∈ Kord(2) such that d1φ(a, b, c) 6= 1.

Proof. Suppose to the contrary that d1φ = 1. As H1(K;G) = {1} it follows that φ = d0α for some
α ∈ C0(K;G). Hence

φ(x0, x1) · φ(x1, x2) · · · φ(xm−1, x0) =
(
α(x0)α(x1)

−1
)
·
(
α(x1)α(x2)

−1
)
· · ·
(
α(xm−1)α(x0)

−1
)
= 1,

in contradiction with (6).
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a2

a0 ∨ a2

v0

v1

a0 ∨ a1 ∨ a2

a0 ∨ a1

a1 ∨ a2

a1

a0

αs(v0)

αs(v1)
−1

φ(v0, v1)

Figure 1: The subcomplex Ys(v0v1) and the cochain (αs).φ(v0, v1) = αs(v0)φ(v0, v1)αs(v1)
−1.

Proof of Theorem 3.1: Let φ ∈ C1(L;G). For s ∈ S, define αs ∈ C
0(L;G) by

αs(v) = φ
(
b(s, 1̂), b(s, 1̂) ∨ b(s, v)

)
· φ
(
b(s, 1̂) ∨ b(s, v), b(s, v)

)
· φ
(
b(s, v), v

)
.

Let v0 < v1 ∈ L and, as before, denote a0 = b(s, v0), a1 = b(s, v1), a2 = b(s, 1̂). Consider the 1-cycle in
Ys(uv) whose vertices are

(x0, . . . , x7) = (a2, a0 ∨ a2, a0, v0, v1, a1, a1 ∨ a2, a2).

Then (see Figure 1):

(αs).φ(v0, v1) = αs(v0)φ(v0, v1)αs(v1)
−1

= φ(x0, x1)φ(x1, x2) · · · φ(x5, x6)φ(x6, x0).
(7)

Since Ys(v0v1) is contractible, it follows from (7) and Claim 3.2 that
{
v0v1 ∈ L(1) : (αs).φ(v0, v1) 6= 1

}
⊂
{
v0v1 ∈ L(1) : supp(d1φ) ∩ Ys(v0v1) 6= ∅

}
. (8)

Using (2) and (8) respectively for steps (a) and (b) below, we obtain

‖φ‖csy
(a)

≤
∑

s∈S

µ(s)‖(αs).φ‖

=
∑

s∈S

µ(s)
∑

{cX(v0v1) : v0v1 ∈ L(1), (αs).φ(v0, v1) 6= 1}

(b)

≤
∑

s∈S

µ(s)
∑

{cX(v0v1) : v0v1 ∈ L(1), supp(d1φ) ∩ Ys(v0v1) 6= ∅}

≤
∑

s∈S

µ(s)
∑

τ∈supp(d1φ)

∑
{cX(v0v1) : v0v1 ∈ L(1), τ ∈ Ys(v0v1)}

=
∑

τ∈supp(d1φ)

cX(τ)
∑

s∈S

µ(s)
∑{

cX(v0v1)

cX(τ)
: v0v1 ∈ L(1), τ ∈ Ys(v0v1)

}

=
∑

τ∈supp(d1φ)

cX(τ)E[δs(τ)]

=
∑

τ∈supp(d1φ)

cX(τ)δ(τ) ≤ ‖d1φ‖ max
τ∈L(2)

δ(τ).

(9)
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For lattices L with sufficient symmetry (e.g. spherical buildings), Theorem 3.1 can be used to give explicit
lower bounds on h1(L,G).

Proof of Theorem 1.8: Let L be the lattice of all linear subspaces of F4
q ordered by inclusion. Then

L = A3(Fq). Let ≺ be an arbitrary fixed linear order on the set of atoms A. Let S be the group GL4(Fq)
with the natural action on L. Equip S with the uniform distribution. For s ∈ S let ≺s be the linear order
on A given by a ≺s a

′ if s−1a ≺ s−1a′. Let id denote the identity element of S.

Claim 3.3. Let s, t ∈ S, e ∈ L(1) and τ ∈ L(2). Then:
(i) b(s, sv) = sb(id, v) for any v ∈ L \ {0̂}.
(ii) Ys(se) = sYid(e).
(iii) tYs(e) = Yts(te).

Proof. (i) First note that b(id, v) ≤ v and therefore sb(id, v) ≤ sv. Moreover, if y ∈ A satisfies
y ≤ sv, then s−1y ≤ v. Hence s−1 (sb(id, v)) = b(id, v) 4 s−1y and so sb(id, v) 4s y. It follows that
sb(id, v) = b(s, sv).
(ii) Let e = v0v1. Writing v2 = 1̂, it follows by (i) that the vertex set of Ys(se) is

Ys(se)(0) = {sv0, sv1} ∪

{
∨

i∈I

b(s, svi) : ∅ 6= I ⊂ {0, 1, 2}

}

= {sv0, sv1} ∪

{
∨

i∈I

sb(id, vi) : ∅ 6= I ⊂ {0, 1, 2}

}

= sYid(e)(0).

As the action of S preserves incidences, it follows that Ys(se) = sYid(e).
(iii) Using (ii) in equalities (a) and (b) below, we obtain

tYs(e) = tYs
(
s(s−1e)

) (a)
= tsYid(s

−1e)

(b)
= Yts

(
(ts)s−1e

)
= Yts(te).

�

For τ ∈ L(2) let
R(τ) = {(s, e) ∈ S × L(1) : τ ∈ Ys(e)}.

As
c
L
(e)

c
L
(τ) =

q+1
3 , it follows that

δ(τ) =
1

|S|

∑

s∈S

δs(τ) =
1

|S|

∑

s∈S

∑

{e∈L(1):τ∈Ys(e)}

cX(e)

cX(τ)
=
q + 1

3|S|
|R(τ)|. (10)

Claim 3.3(iii) implies that for any t ∈ S the map (s, e) → (ts, te) is a bijection from R(τ) to R(tτ).
Together with (10), it follows that δ(τ) = δ(tτ). Next note that S is transitive on L(2) and thus δ is
constant, i.e. δ(τ) = γ for all τ ∈ L(2). Therefore

f2(L)γ =
∑

τ∈L(2)

δ(τ) =
∑

τ∈L(2)

1

|S|

∑

s∈S

δs(τ)

=
q + 1

3|S|
|{(s, e, τ) ∈ S × L(1) × L(2) : τ ∈ Ys(e)}|

=
q + 1

3|S|

∑

s∈S

∑

e∈L(1)

f2(Ys(e))

≤
q + 1

3|S|
· |S| · f1(L) · 9 = 3(q + 1)f1(L).
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Therefore

γ ≤
3(q + 1)f1(L)

f2(L)
= 9,

hence Theorem 1.8 follows from Theorem 3.1.

�

4 Concluding Remarks

In this paper we showed that if X has a bounded below 1-expansion over a finite group G, then X is
cover-stable in the sense that if the projection Yφ → X has small deficiency, then φ is close to a 1-
cocycle. Together with a lower bound on h1(A3(Fq);G), this implied that A3(Fq) is cover-stable. Our
work suggests some natural questions regarding topological or algebraic situations where only partial
information concerning local structure is available.

• Most lower bounds on cosystolic expansion obtained so far (see e.g. [14, 7, 4, 11, 8]) depend on
an averaging and symmetry technique that seems applicable only in fairly restricted situations.
It would be very useful to devise additional methods that could handle more general families of
complexes, e.g. bounded degree complexes.

• Our results are concerned with cosystolic 1-expansion with G coefficients. A related, but inequiv-
alent, notion of expansion that plays a key role in local to global results is spectral expansion.
Originated with Garland’s seminal work on the real cohomology of p-adic groups [6], spectral ex-
pansion has found numerous applications in areas ranging from groups with property (T) [2] and
hypergraph matching theory [1], to theoretical computer science [10]. It would be interesting to
establish cover-stability results based on spectral expansion. One reason is that in contrast with its
cosystolic/coboundary counterparts, spectral expansion can often be estimated efficiently.

• It would be interesting to formulate stability versions of other, non-discrete, topological classification
theorems. For example, as mentioned earlier, complex line bundles over compact X are parametrized
by H2(X;Z). Can one introduce a notion of cosystolic expansion on X, together with a continuous
version of the deficiency of a map and an appropriate measure of proximity of integral 2-cochains,
that would lead to an analogue of Theorem 1.7 for complex line bundles?
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