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1 Introduction to Representation Theory

Let G be a finite group and V' a finite dimensional complex vector space.

A representation of G on V' is a homomorphism p : G — GL(V'). The degree of p
is dim V. By identifying GL;(C) with C*, we can view a 1-dimensional representation
as a homomorphism y : G — C*.

Examples.

1. The trivial representation 1g of G on V is given by 1¢(g)(v) = v for all g € G and
veV.

2. The sign representation of the symmetric group S, is the homomorphism sgn :
S, — C*, where sgn(m) is the sign of m.

3. Let C, = (x) be the cyclic group of order n with a generator x. For k € Z, let
Xk : Cp = C* be given by xp(z) = exp(2=EL).

4. Let G =5,V ={x=(x1,...,2,) € C": > " x; = 0}. The natural representa-
tion of S, on V is given by p(0)(x) = (To-1(1)s - - - To—1(n))-

5. Let G act on the left on a finite set X. Let V = span{e, : © € X} be the complex vec-
tor spanned by the basis {e, : € X'}. The regular representation regs y of G' is given
on the basis elements by regg x(€x) = €gu- Thus regg x (D, cx U2€a) = D cx UaCyo-
For the case X = G and the action of G is by left multiplication, the regular represen-
tation 1s denoted by reg.

6. Let G = D, = (s,r : s> = 1" = 1,srs = r~') be the dihedral group. Let

w = exp (%) Let 10,11 be the 1-dimensional representations of D,, given by
rt | srt
o | 1] 1
Gy | 1|1
For 0 <k <mn—1let p; be the 2-dimensional representation given by

wk( 0 ’ 0 W_M
0wk 7pk(sr): Wkt 0 .

Odd n: Then {th, 1} U{py : 1 < k < 251} are all irreducible representations of D,,.
Even n: Let 199,13 be the 1-dimensional representations of D,, given by

1



TZ S’f‘g

e | (=1 ] (=1)°
1/}3 (_1)( (_1)€+1

Then {v; : 0 <i <3}y U{pr: 1<k < 5 —1} are all irreducible representations of D,,.

1.1 Basic Properties

Let (V,p) a representation of G. A subspace W C V is invariant if p(g)W = W for
all g € G. In this case (W, p) is a representation of G.

Claim 1.1. For any representation (V, p) of G there exists an inner product (-,-) on
V' such that {p(g)u, p(g)v) = (u,v) for all u,v € V and g € G.

Proof. Let (+,-) be an arbitrary inner product on V, and let (u,v) = (p(9)u, p(g)v).
Then for any h € G

(p(h)u, p(h)v) = (p(g)p(h)u, p(g)p(h)v)

geG

O

Claim 1.2. Let (V, p) a representation of G and let U C 'V be an invariant subspace.
Then there exists an tnvariant subspace W C V' such that V =U & W.

Proof. Let
W=U"={weV:(wu)=0foralluecU}.

Then U@ W =V and W is invariant. Indeed, if w € W, then (gw,u) = (w,g u) =0
for any v € U.

O

A representation (V) p) is irreducible if it does not have nontrivial (i.e. different from
0 and V) invariant subspaces.

Corollary 1.3. Any representation (V,p) is a direct sum V =V, @ --- ® Vi of irre-
ducible representations.

For two representation (Vi, p1), (Va, p2) of G, let Hom(V;, V5) denote the space of linear
maps from V; to V5, and let

Home(V4, Va) = {T' € Hom(Vi, Va) : Tpi(g) = pal)T}



denote the space of linear G-maps from V; to V5. Thus T' € Homg(Vy, Va) iff the
diagram

Vi - W
pi(9)] 1p2(9)
Vi 5 W

is commuting for every g € G. The representations (Vi, p1), (Va, p2) are isomorphic,
denoted by p; = ps, if there exists an isomorphism 7" € Homg(V;, V3).

Proposition 1.4 (Schur’s Lemma). For two irreducible representations (Vi, p1), (Va, p2)

of G:

dim Homeg (V4, V2) = { (1) ,/;1 ;gz’

Proof. Let T € Homg(V;, V3). Then ker T is a G-invariant subspace of V;. Indeed, if
uy € ker T then T'py(g)u; = pa(g)Tuy = 0, hence py(g)uy € ker T'. similarly, T'(V1) is
G-invariant subspace of Vs, as po(9)T' (V1) = Tp1(V1) = T'(V1). Hence, if T # 0 then
T(V}) # 0 and therefore T'(V;) = V5. Moreover, ker T' # Vi and hence ker T' = 0, i.e.
T is an isomorphism. Thus p; % po implies that Homg(V3, V2) = 0. On the other
hand, suppose that p; = p,. We may then assume that V), = Vo, = U and p; = py = p.
Let T'€ Homg (U, U) and let A € C be an eigenvalue of T'. Then ker(7" — AI) # 0 and
therefore ker(7'— A\I) = U, i.e. T = Al.

|

Corollary 1.5. If G is abelian and (V, p) is an irreducible representation of G, then
dimV =1.

Proof. Fix h € GG. Then for any g € G

p(h)p(g) = p(hg) = p(gh) = p(g)p(h).

Therefore p(h) € Homg(V, V). It follows by Schur’s Lemma that there exist a A, € C
such that p(h) = Apl. Therefore any 1-dimensional of V' is invariant. Hence dim V' =
1.

1.2 Operations on Representations

Let (Vi, p1), (Va, p2) be representations of G. The direct sum representation is (V) @

Vo, p1 @ p2), where (p1 @ p2)(g)(vi,v2) = (p1(g)v1, p2(g)v2). The tensor product repre-
sentation (V; ® V4, p1 ® py) where the action is given by

(p1 @ p2) (g)(v1 @ v2) = p1(g)v1 @ p2(g)v2



on decomposable elements v; ® v9, and extended by linearity to the whole of V; ® V5.
The dual of (V, p) is (V*, p*) where for g € G, ¢ € V* and v € V we define p*(g)p(v) =
#(p(g~1)v). The Hom representation of (Vi, p1), (Va, p2) is (Hom(Vy, V3), Hom(py, p2)
where for g € G, ¢ € V* and v; € V5 we define

Hom(p1, p2)(9)d(v1) = p2(g)¢(pr(g~")vr).

Remarks.
1. If py s the trivial representation of G on Vo = C then

(Hom(V3, Va), Hom(pr, pa)) = (V1" o).

2. define T : Vi* @ Vo — Hom(Vy, V3) by T'(¢p ® v9)(v1) = ¢p(v1)ve. Then

Hom(p, p2)(9)T(6 ® va2)(v1) = p2(9)T(d @ va2)(prlg™")v1)

=T(p1(9)¢ @ p2(g)v2)v1
=T (py ® p2(9))(¢ @ va)(v1).

It follows that the diagram

Vi@V, — Hom(Vi,Va)
Pt ® pa (g)l lHom(m, p2)(g)
Vi@V, — Hom(Vi,Vh)

for all g € G and therefore (Vi @ Va, pi @ p2) = (Hom(Vy, V2), Hom(py, p2)).

1.3 Characters

Let L(G) denote the space of complex valued functions on G. Let L.(G) C L(G
denote the subspace of class functions on G, i.e. all f € L(G) such that f(hgh™') =
f(g) forall g, h € G. The character of a representation (V, p) is the function x, € L(G)
given by x,(g) = trp(g). Here are some basic properties of x,.

L. x,(1) =dimV = degp.

2. xp € L.(G). Indeed,

Xp(hgh™') = tr(p(hgh™)) = tr(p(h)p(g)p(h) ") = tr(p(9)) = x,(9)-

3. Xp(971) = x,(g). Let (-,-) be a G-invariant inner product on V, and let vy, ..., v,



be an orthonormal basis of V. Then x,(g) = > i, {p(g9)vi, v;). It follows that

Xolgh) = Z<p(9‘1)v@-,vi> = Zm, p(g)vs)
=Y " {plg)vi, v:) = x»(9)

Examples.

1. xp(1) =dimV = deg p.

2. If p is 1-dimensional, then x,(g9) = p(g).

3. Let G act on X and let p be the permutation representation on V = span{e, : x €
X}, p(g)es = ege. Then

Xp(9) = |Fix(g)| = {z € X : gz = z}|.
Let (Vi, pi), i = 1,2 be two representations.

Claim 1.6. (i) Xp,0p,(9) = Xo1(9) + X02(9)- (1) Xprop2(9) = Xpi(9) * Xpu(9)- (i71)
Xo+(9) = Xo(9)- (10) Xttom(p1,02)(9) = Xp1 (9) * X2 (9)-

Proof. (i) and (ii) follow from the facts that if A;, Ay are two square matrices then
tr(A; @ As) = tr(Ay) + tr(Ay) and tr(A; ® Ay) = tr(A4;) - tr(Ag). For (iii), Let
B = {vy,...,v,} be an orthonormal basis of V' with respect to (-,-). Let B* =
{¢1,...,én} be a basis of V* dual to B, i.e. ¢;(vj) =0;;. Let A= (a;;) be the matrix
representing p(g—') with respect to B, i.e. p(g~')v; = >}, agjur. Then A’ is the
matrix representing p*(¢) with respect to B*. Indeed,

p*(9)0i(v;) = di(p(g~ "))

n n

- ¢z‘(; AkjVk) = 2 ar;i(vr) o

n

n
= Zakjéik = Ay = Z@ik¢k<vj)-
k=1 k=1

Combining (1) with the fact that p(g) € U(n) we obtain

Xpr(9) = trp(g™") = trp(g) ™" = trp(g)" = x,(9)-
O

Let V be a finite dimensional complex vector space and let U C V be a subspace. A
linear map P € Hom(V, U) is a projection onto U if Pu = u for all w € U and P? = P.
Recall the following

Claim 1.7. If P: U — V s a projection then trP = dim U .
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Proof. Note that ker PNU = 0 and ker P+ U =V, hence ker P® U = V. Let
By ={uy,...,u;} be a basis of U, and let By = {vy,..., v} be a basis of ker P. Then
I 0}

the matrix representing P according to the basis By U By of V' is M = [ 0 0

hence trP =trM =k =dimU.
O

Let (V, p) be a representation of G. In the sequel we will often abbreviate gv for p(g)v.
Let V¢ ={v eV :gv=uforall g€ G} be the fized subspace for the action of G.

Claim 1.8. The mapping P :V — V given by Pv = |—é,‘ deG gu is a projection of V'

onto VE.

Corollary 1.9.
e 1 1
dim V™ = trP = @ Z trp(g) = @ ZXp(g)'
geG geG
Define an inner product on L(G) by
1 -
(@:9) = 17 > d(9)v(g)-
geG

Claim 1.10. Let (Vi,p1), (Va, p2) be two irreducible representations of G. Then

0 p1 # p2.

Proof. First note that the fixed subspace Hom(Vy, V5)% of the representation Hom(py, p2)
on Hom(Vy, V3) is Homg(V4, V). Using Schur’s lemma we compute

L p1r = p2,
(s Xo) = { 1= 2)

—_— 1
(Xpu sz) = (Xp27 Xpl) = @ Z XPQ <g>Xp1 <g>
geG

1 1
= @ Z Xpt@p2 (g) = @ Z XHom(p17p2)(g)
geG

geG

- - L p1=po
= dim Hom(V;, V2)¥ = dim Homg (Vi, Va) = ’
im Hom(V}, V3) im Homg (V1, V5) { 0 12

|

Let {(W;, pi) }i_; be the irreducible representations of G and write x; = x,,. We have
shown that {x;}{_; is an orthonormal, and in particular independent family in L.(G).



Corollary 1.11. Let (V,p) be a representation of G, and let
be a decomposition of V into irreducible representations. Then
(i |
U= {1 <) <m:(Uj,p) = (Wi pi)H = (Xis Xp)-
In particular, ¢; is independent of the particular decomposition (3).
(i) (V,p) = (V' 0') iff Xp = X
(111) (V,p) is irreducible iff (x,, x,) = 1.

(iv) For 1 < i <t, the space L; = &{U; : (Uj,p) = (Wi, pi)} is independent of the
decomposition (3). A projection of V' onto L; is given by

R =2 S @)

| zeG

L; is called the isotypic component of V' corresponding to the W;.

1.4 The Fourier Transform

Let f € L(G). The Fourier Transform f(p) of f at a representation (V,p) of G is
given by
7o) = 3 f(@)p(x) € Bnd (V).

zeG

Let {(Vi, pi) : 1 <i <t} be the irreps of G and let d; = dim V;.

Claim 1.12 (Fourier inversion formula). For any z € G

1 < ~ .
f(@) =@;ditr(f<p@->m<x ). (4)



Proof.
ﬁ Z d;tr (J?(/)z')/)z'(l’*l))

= é Z ditr (Z fW)pily) - pz(f“))

yel@

= é D> ditr (Z / (y)pz(yx1)>

yel@

= é > d (Z f(y)xi(yxl)> (5)

yel@

= é Z f(y) (Z diXi(y$_1)>

yel@

= é > f) (Z mxi(yafl)>

yel@@

_ é 3" F )16 yer = f(2).

yeG

We identify L(G) with the group algebra C[G] by associating to f € L(G), the element
> wec f(x)z. Under this identification, the convolution of f,g € L(G) is given by
fxglx)= ZyeG f(y)g(y~tz) is mapped to the product

<Z f<x>x> . <Z f(y)y> .

zelG yeG

Claim 1.13. For f,g € L(G) and a representation (V, p)

Fxa(p) = Flp) - 9(p). (6)
Proof.

Frg(p) =D fg(@)p(x)

=) (Z f (y)g(y‘lfc)> pla)

zeG \yeG

=> fWly) (Z g(y‘lx)p(y‘lx)>

yel zelG

= (Z f(y)p(y)> (Z g(w)p(fc)> = f(p)-(p).

yeG zelG
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Define an inner product on [[._, End(V;) by

((S)ier, (Th)iy) = Z ditr(SiT}).

The Fourier Map F : C[G] — [[._, End(V;) is given by

F (Zf(w)ﬂf) = (Ftou), - T (o).

zeG

Claim 1.14. (i) The Fourier map is an isomorphism of algebras. (ii) Any ¢, € L(Q)
satisfy the Parseval identity

GI*(6,9) = (F(9), F(v)). (7)
Proof. (i) Let G : [[._, End(V;) — C[G] be given by

G(Ty,...,T)) |G|Z<Zdter )

zeG

Then GF = Id by Claim 1.12. As
t
dim C[G] = |G| = Zd2 dim [ [ End(V;)

Together with Claim 1.13 it follows that F'is an isomorphism of algebras.

(i)

= dtr ((Z ¢(x)pi(r)> : (Z w(y)pz(y)*»
i=1 zeG yelG
— S S o)t (o (w)pily))
i=1 z,yeG
= > o@)(y) dixi(xy‘1)>
z,yeG i=1
=G ) o(x)d(y) |G (9, 7)
z,yeG



1.5 Discrete Vector Bundles

Let X be a finite set. A discrete vector bundle over the base space X is a family of
pairwise disjoint complex vector spaces { £, },ecx. The total space of the bundle is £ =
Uzex Fy. Define m: E — X by 7(e) = z if e € E,. We will often refer to E as a vector
bundle over X. A section of E is amap s : X — E such that 7(s(z)) = xz, i.e. s sends
x to the fiber E,. Let ['(F) denote the set of all sections of E. The natural pointwise
addition (s; + s2)(xz) = s1(x) + so(z), and multiplication by scalar (cs)(z) = cs(x),
make I'(E) into a complex vector space of dimension dimI'(X) =" _ dim E,.

Suppose now that G is a finite group that acts both on X and on E. We say that
E is a G-vector bundle over X if the following holds:

e 7(g(e)) = g(m(e)) for any e € E and g € G. In other words, g maps F, into
Eyy.
e The map g: E, — E, is linear.
Given a G-vector bundle E over X, define a representation p of G on I'(E) as follows.
For s e I'(F) and = € X let

p(g)(s)(z) =g (s(g~'2)) .

Example 1.15. Let G act on a finite set X. For x € X let E, = {x} x C be a fized
one dimensional space, and let G acts on E by g(x,\) = (gx, \). In other words, the
composition C — E, — Eg, — C is the identity map. In this case, the representation
p on I'(E) is isomorphic to the permutation representation of G on X.

Example 1.16. Let X be a finite set in RY, and let G be a subgroup of the orthogonal
group O(d) that permutes the elements of X. For x € X, let E, = {x} x C¢, and
define the action of G on E by g(z,u) = (gx,gu). This type of action will later occur
in our discussion of molecular vibrations. Figure 2(a) depicts a section s € I'(E), and
Figure 2(b) depicts p(g)s(x), where g € U(2) is the F-rotation.

We next compute the character of p. For x € X let dim £, = d,, and let u,1, ..., Uy,
be an arbitrary basis of E,. For 1 <i < d, define a section s,; € ['(X) by

Uy y=2x,
0 otherwise.

Sm(y) = 5J:,yum' - {

The following statement is straightforward.
Claim 1.17. {s;;:x € X,1 <1 <d,} is a basis of T'(X).

We next compute the character x,. Let ¢ € G, v € X and 1 < ¢ < d,. Then
gug; € Ey, and hence there exist coefficients {ozm-,j(g)};lil such that

gUg; = Z Qg j (g)ugm,j-
J
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Figure 1: The action of G on I'(E)

Claim 1.18.

3:1:2 E amzy Sg:v,j-

Proof. Let y € z. Then

p(9)(s20)(y) = 9(s2i(97"y))
= Og-1y,aGUai = Og-1yq Z i (9)Ugaj

= Z i j (g) gm,yug:v,j)
= Z i j(9) Sga,

Corollary 1.19.

Xolo) = Y trlg: B = Bl

{zeX:gx=x}

Proof. By Claim 1.18

@)= D D awilg)= Y. trlg: B - El.

{zeX:gz=x} i {reX: gz=x}
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1.6 Induced Representations

One of the main tools for constructing representations is by using induction from
representations of subgroups. In this subsection we only consider the finite group
case, but we note that while technically more involved, the method of induction works
for infinite groups as well.

Let G be a finite group and let H < G be a subgroup. Let p : G — GL(V) be
a representation of G. The restriction of p to H is denoted by Res%(p). We now
introduce the dual operation of inducing a representation of GG from a representation
of H.

Let A : H— GL(W) be a complex finite dimensional representation of H. Define
a vector bundle W) := G x g W over the coset space X = G/H as follows. For g € G
let [g] = gH be the corresponding coset. Let ~ be the equivalence relation on G x W
given by (g,w) ~ (gh, \(h~"w) for all (g, h,w) € Gx H x W. Let Wy be the quotient
space (G x W)/ ~. Denote by [z, w] the equivalence class of (z,w) € G x W. The
projection map [g, w] — [g] = gH defines a vector bundle over G/H. Define an action
of G on G/H and on Wy by g(zH) = gxH. Define an action of G on G x W by
g(z,w) = (gz,w). Clearly, if (x1,w;) ~ (z2,ws), then g(z1,w;) ~ g(xe, ws). Thus we
get an action of G on W,. Note that this is not a trivial action on the fibers. Indeed,
let R = {g1,...,9m} be cosets representatives for H in G, and let define a vector
bundle £ = R x W. Let F' : E — W, be the isomorphism F(g;,w) = [g;, w]. The
action of G on W) gives an action of G on E by g(e) = F~'g(F(e)) for g € G. Let’s
describe this action explicitly. Suppose that e = (g;,w). Then gg; = g;h for some
1<j<mandhe H. Then

9(gi,w) = g(e) = F~'g(F(e))
= F~lglgi, w] = F~Y[gg, w]
= F'gjh,w] = F~'[g;, A(h)w]
= (g;, Mh)w) = (g;, \(g; 'gg:)w).

(10)

The induced representation Ind$\ is the representation p of G on I'(Wy), given by
p(g)s(x) = gs(g~'z) for v € X = G/H. Tt will often be convenient to work with the
following isomorphic version of I'(W)). Let C(G, W) denote the space of all functions
from G to W. Let

Cux(G, W) ={¢p € C(G,W) : ¢(xh) = p(h"")p(z) for all z € G, h € H}.

Let 7 denote the representation of G on V given by 1(g)¢(z) = ¢(¢ '), for g,z € G.
Define T': Cy (G, W) — I'(Wy) by T¢([z]) = [z, ¢(z)]. Note that T" is well defined,

i.e. if [x1] = [x9] then x5 = z1h for some h € H and thus
(22, $(@2)) = (w1h, §(21h)) = (w15, A(h™")d(1))

and hence (xg, ¢(x2)) ~ (z1, ¢(z1)).
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Claim 1.20. T is an isomorphism and the following diagram commutes:

Cux(G,W) — T(W)

n(g)l lp(g)

Cua(G.W) —= T(Wy)
Proof. Let ¢ € Cy (G, W) and let z € G. Then

p(9)To([z]) = g(To(g ' [z]))
=glg 'z, d(g " 2)] = [z, 0(9 " 2)]
= [z,n(g)¢(x)] = T (n(g)9) [7]

O

In view of Claim 1.20 we will identify I'(W)) with Cy A(G, W) and the representation
n with p = Ind\. Note that the degree of p is

Gl 1G]
degInd$\ = dim (W) = ~dim W = -deg \.

" [H]| |H]
For explicit computations, e.g. for finding actual matrix forms of the representation
it is often convenient to fix a set {gi,...,gm} of coset representatives of H in G, i.e.
G = U, g;H, where m = % For g € G, let 7(g,g;) denote the unique g; such
that gg; € g;H. For 1 < i < m and w € W, let ¢4 ,, be the unique element in
Cua(G, W) that satisfies ey, ,,(g;) = d;;w. Clearly if wy, ..., wq is a basis of W, then
{egiij 1<i<m,1<5< d} is a basis of C'y \(G, W). The induced representation

= Tnd%\ of G on Oy A (G, W) is given as follows. If 7(g, g;) = g;, then

p(g)egmw = egj,A(gflggi)w'

Example 1.21. Let A = 1 be the trivial representation of H on W = C. Then

= Indg)\ is the permutation representation of G on G/H. Indeed, Let g1, ..., gm be
coset representatives of H. Then {ey,1 : 1 < i < m} is a basis of Cy\(G,C). Let
g € G and let ©(g, g;) = g;. Then

p(g)egiJ(gk) = egi,1<g_1gk) = 0pj = €gj,1(gk)-

Example 1.22. Let G = D, = (s,r : s> = 1" = 1,srs = r~1) be the dihedral

group. Let w = exp (2’”). Let N = (r) and for k € Z,, let xi be the character of

N given by xx(rY) = w*. We compute pp = Ind$ xs. Following the general recipe as

above, let g1 = 1,92 = s be coset representatives for N. Then {e11,es1} is a basis of
Crx. (G, C).

€1,1 1
€s,1 011

13



Next note that

Therefore

€1,1 €s,1
p(rt) | xu(rHers | xe(r esq
p(srt) | xu(rfess | xu(r ern

It follows that the matrices representing p(g) with respect to the basis ey 1, €51 are given

by
Wkt 0 0 w ke
P(Te) = { 0 wke ] ) P(STE) = [ Wkt 0 } .

We next compute the character of the induced representation.
Claim 1.23. Let A be a representation of H and let p = Indg)\. Then for g € G
Xo(9) = Kl > ). (11)
{z€G:z—lgzecH}
Proof. By (9)
Xp(9) = Z trlg : By, — Eg,]

{1<i<m:n(g,9i)=g:}

= D tlMglgg) W = W]

{1<i<m:n(9,9:)=g:}

= > xaleteg)

{1<i<m:n(g,9i)=g:}

— ‘—[i” Z a(z ).

{zeG:z—1gzeH}
O

Proposition 1.24 (Frobenius Reciprocity). Let n: G — GL(U) be a representation
of G, and let X\ : H — GL(W) be a representation of H. Then

Homg (1, Ind$\) = Hompy (Res$n, A). (13)
In particular, writing p = Indg)\ we have
(XT]?XP)G = (XT]‘H?XA)H- (]_4)

Proof. Later.
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1.7 Representations of Semidirect Products

One useful application of induction concerns the representations of semidirect prod-
ucts. Let H be a group that acts on the left an abelian group N. The semidirect
product H x N is the group whose elements are H x N, with the product given by

(hl,nl) . (hg,ng) = (hlhg,nl + hl(ng)) .

Encoding (h,n) by the matrix ( g 711 ) the product rule in H x N becomes

hl nq hg N9 - hth n1+h1(n2)
0 1 0 1 a 0 1 ’

Furthermore, (h,n)™' = (b=, —h~'(n)) and (h,0)(1,n)(h,0)"' = (1, h(n)).

Example 1.25 (The Dihedral Group). Let S = {1,s} the cyclic group of order 2.
Then S acts on Zy,, by s(k) = (=1)%k. The semidirect product S X Z,, is isomorphic to
the dihedral group D, = (s,r: s> =" = 1,srs = r~1) via the map f : (s, k) — r*-s-.
Indeed,

f( 861, kl) . (862, kg)) = f (8€1+€2, kl + (—1)61]{?2)

7,,kl-i-(—l)elkgsgl-i—sg — Tk:1$51 X (Selr(_l)d]@sq) 5€2

= pkiga . phager — F(sU ky) - f(s2, ko).

Example 1.26 (The metabelian group of order pq). Let p, q be primes numbers such
that p divides ¢ — 1. Let A be a multiplicative generator of Zy,. Let r = qp%l and let
a = \'. There is a unique nonabelian group D, , of order pq. It has two generators
a,b and has the following presentation

D,,={a,b:a’ =b"=1, aba™' = b%).

D, is isomorphic to the semidirect product C, x Z, where C,, = (a) acts on Z, be
a(m) = am. The map f : C, x Zy — D,, is given by f(a* ) = b'a* is the required
1somorphism.

Example 1.27 (The Finite Affine Group). Let p be prime and let F,, be field with p
elements. Let

AfE(F,) = {[ i l{ } aeFibe Fp} C GLy(F,).

Aff(F,) is isomorphic to the semidirect product Fy x ¥, where the action of F, on
F, is given by a(b) = ab. The map f : F; x F, — Aff(F,) given by (a,b) — [ g (1) ]
1$ the required isomorphism.
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Example 1.28 (The Finite Heisenberg Group). Let

1
H(p) = 0 : a,b,ceF,
0

O~ Q
_ SO

Let the cyclic group C, = (s : s* = 1) act on Ff) by s*(b,c) = (b,c+ ab). The mapping
f:Cpyx F2 — H(p) given by

f (Sav (b7 C)) =

o O =
O = 2
_ S0

1 an isomorphism.
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We now discuss the representation theory of semidirect products. Let the group H
act on the abelian group N and let G = H x N be the associated semidirect product.
Let N denote the character group of N. Then H acts on N by

h(¢)(n) = ¢(h~"(n)).

Let ¢4, ..., ¢, be representatives of the orbits of N under H, anlet K; = Staby(¢;) <
H be the stabilizer of ¢;. Let \;; : K; = GL(W;;) be all irreducible representations
of K;, where dim W;; = d;; and 1 < j <r;. Let \j; x ¢; : K; x N — GL(W;) be given
by (Aij % @) (k,n) = ¢i(n) Ay (k). Let piy = Ind§,, v (Aij X ).

Proposition 1.29.
(1) All p;; are distinct and irreducible.

(1) Irr(G) ={p;; : 1 <i<m, 1<j<n}.

Proof. (i) Let (ho,n9) € H x N. Fix ¢ € N, K = Stabgy(¢) and an irreducible
representation A : K — W. Let p = Ind%, v (A X ¢). Then for (hg,ng) € G

[E— 1 —
Xp(h07n0) = K N Z X)\K¢ ((h’n) l(ho,no)(h, TL))
| | . | | (h,n)~Y(ho,n0)(h,n)EK X N

1
= Xows (B hoh, —h™ ' (n) + K™ (ng) + h™ ' ho(n))

K] -IN] (hn)~(ho,n0)(h,n) EK x N
v 0,10 ,n X
= TV Xoaws (R hoh, h™ (no))

(h,n)_l (ho ,No (h,n)Ele N

= RN Do A o) (1 ho)

:|1?| S h(@)(no)xa (h hoh) -

h=lhoheK

Suppose now that ¢, 9y € N are two characters of N , such that either ¢; = ¢, or
that ¢; and ¢ are in different orbits of H. For ¢ = 1,2 let K; = Stabg¢; and let
i+ K; — GL(W;) be an irreducible representation of K;. Let p; = Ind%,xN (i X ;).
Then

|G| (XPI7X/72) = Z Xpl(hmnO)ng(hOanO)

(ho,m0)
1 ~ —— —
= 7|K B Z Z Xou (B hoh) X, (ho M hohs) Zh1(¢1)(”o)h2(¢2)(”o)
1 21 h kY hohi€Ky o

hythoho€Ko

N I
- ﬁ > ) Ghonmaten X (b1 hoh) Xy (hy Thohs)

ho h7'hohi€K1
hy thoha €Ky

17



If o1 # ¢o then by assumption ¢; are ¢, are in different orbits of H, and hence
Ohi(é1),ha(62) = 0 for all hy, hy € H and therefore (x,,, x,,) = 0. Otherwise ¢ = ¢y = ¢
and K| = Ky = K. Therefore

|G‘ (XPNsz) =
N — T 7 14 1N
B \|K\|2 Z Z Ohy (). (9) X (B " hoha) X, (B ' hoha)

ho hT'hohieK
hy 'hoho€K

N \%'QZ ST ST o (h hoh) o (Rk) " Tho(Rk))

ho h—lhoheK keK

N
= ||K: Z Z X)\l h ho )X)\Q(h 1h0h)

ho h=lhoheK

N - I
= % > Xou (R hoh) Xy (R~ Thoh)
{(ho,h)eHxH:h—thohe K}

= ﬁ Z X <k>X)\2 (k)

(k,h)eK x H

= |G|(X)\1>X)\2)K = |G|5)\1,>\2-

ii) The degree of nd%. Aii X @) is 1 ‘dz , and
K;xN J J

| 1<
>3 (fFe ) Y Y = Y
2 2 \jiejt) =MHF L 22 = 2
Z'ﬁljl ~ |H|-IN| = (€]
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Example 1.30 (Representations of the finite affine group). Recall that G = Aff(F,) =

H x N where H = F,, N = F, and H act on N by a(b) = ab for a € H,b € N.
Let N = {on Z;é be the character group of N, where ¢p(n) = w*™, w = exp(%). H
acts with two orbits on N, namely {po} and {¢p}o_1. Then Ko = Staby(do) = H
and K, = Stabg(¢1) = {1}. The characters of Ko = H = F are given as follows.
Let & = exp(%) and let 0 be a multiplicative generator of ¥,. For 0 < m < p — 2
define ¥, (0") = &™. Then H = {2, The resulting induced representations

N = Ind%}xN (Y X ¢g) = U X Qg are given by

(3 2]) o

We next compute p = Ind%x]\f (1% ¢y) = IndSéy. For h € H write h = [ g (1] } €

G. The elements of H = {h : h € H} are cosets representatives for N in G, and

{e,;vl:heH} is a basis of Cn ¢, (G, C). Let g = [g Zl)} cG and h € H. Then

i == ([51][55])=[7 1]

and

Hence

p(g)eﬁ,1 = ¢ ((ah)_lb)eghvl.

2 Small Oscillations and Symmetry

In this section we describe an application of representation theory to the dynamics
of mass-spring systems. In subsection 2.1 we recall the Euler-Lagrange equation for
critical paths of the action functional. The Hamilton principle and its application to
small oscillations are discussed in subsections 2.2 and 2.3. In subsection 2.4 we focus
on mass-spring system, derive their equations of motion and study some examples. In
subsection 7?7 we introduce vector bundles over finite spaces, and discuss some of their
representation theoretic aspects. Finally, in subsection 7?7 we describe a representation
theoretic method that substantially simplifies the determination of the normal modes
of a mass-spring system.

2.1 The Euler-Lagrange Equation

Let F': R x R™ x R"™ be a smooth function. Let pg, p1 € R™ be fixed points, and let
to < t1 € R be fixed times. Consider the set of smooth paths

Pttol,fol = {7 : [t07t1] — R": 7(t0> = p077<t1> = pl}
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The action functional associated to F' is the map A : Pttolfol — R given by

t1
Ae) = [ P4
t
Suppose v is a minimum of A:

A(y) =min {A®F): 7 € PP} (15)

to,po

Let
h e Stt; = {h : [to,tl] — R": h(to) = h(tg) = 0},

and let A € R. The path v + Ak belongs to P/**'. define g, : (—1,1) — R by

to,po *

gn(A) = A(y + Ah). the assumption (15) implies that g;,(\) has a minimum in A = 0
and therefore %92(0) = 0. We say that v € P'?' is a critical path for the action A if

X t0,po
991 (0) = 0 for all h € S}
Proposition 2.1. Ifv € P%fol is critical then it satisfies the Fuler-Lagrange equation:
oF d (OF
— (,7(t),¥()) = = | — (&, (&), (¢ . 1
S 0,30 = (G a5 (16)
Proof. .
1 .
(0 = A+ ) = [ F (69004 M@ 30 + Mb@) . (1)
t=to
Differentiating (17) by A we obtain
dgn
ZIh ) =
)
hoToF , OF . :
— (t,y(t) + Ah(t), Y (t) + Ah(t) ) - h(t — (t,y(t) + AR(t), Y (L) + Ah(t) ) - h(t)| dt.
15 (0 0500+ 3060 by + G (104 701 5(0) + 3hi0) -0
Therefore
d
-t
(18)

- [ |5 @)1+ 5 a0 - o)

=ty

Evaluating the second terms on the right hand side of (18) using integration by parts,
we obtain:

/ O3 - e

—t, OV
= |5 ermswn] - [ G (G eansm) a9

- [ 2 (5 wowam) -noa

=to
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Combining (18) and (19) we get

o=[“E%mwmwm—%(%ﬁn@nMQ]MWt (20)

—to
As (20) holds for all h € S}, it follows that

oF , d <8F

e RIORTOEP A

- 4 (5 5.

O

We next formulate an invariance property of the Euler-Lagrange equation. Suppose
f="f,--, fa) : R" = R" is a diffeomorphism of R". Let Df(x) be the differential
of f,i.e.

Oh ... Oh
ox1 Ozn
Df(x)=| :
Ofn ... Ofn
ox1 Oxn

Given a function G = G(u,v) : R" x R" — R, define F' = F(z,v) : R" x R" — R,
by F(x,v) = G(f(x), Df(x)v).

Claim 2.2. Let q : [to,t1] — R", and let h: [ty,t1] — R"™ be given by h(t) = f(q(t)).
Then

2 w000 = 3 (o .40 1)
s oG d (0G
0.0 = 5 (G i), (22)

Proof. For notational convenience, we’ll only give a proof for n = 1. The gen-
eral case is similar. Suppose then that G = G(y,u) : R* — R, and let F(z,v) =
G(f(x), f'(x)v). Then

OF oG oG

oz (& v) = 5, (@), f@) - (@) + 5= (f (), f@)o) - [ (z)o
and OF oG
o )= 2% (1(a). o) - £ (0).
Substituting = = ¢(t) and v = ¢(¢) and noting that f'(q(t))q(t) = h(t), it follows that
2 (ate).4(0)
oG : oG : (23)

= a_y(h(t)’ h(t)) - f(a(@)) + 5 - (h(t). A()) - f*(a(2))d(?)
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and
O ate),(0)) = 5 (h(e) (1) - £ a) (24)

Differentiating (24) we obtain

& (Gato.ae)

= 4 (GE 0. i) - a0 + S0, 0) - a(0)i0)

Subtracting (25) from (23) we get

%i@(t),g(t)) - % <g—f<q<t),cj<t)))

= (Lo b0 - 3 (S wwhan) ) - siatoy

As f'(q(t)) # 0, this completes the proof of the Claim.

(25)

2.2 A Little Mechanics

Consider a mechanical system whose configuration space is an open subset 2 C R™.
For example, suppose we have N particles whose dynamics is determined by a certain
force field. The location of each particle is specified by 3 coordinates, so the configu-
ration space is (a subset of) R*. Let T(z,v) be the kinetic energy and let V (¢, x) be
the potential energy of the system. The Lagrangian of the system is

L(t,z,v) =T(x,v) = V(t,x).

The Hamilton Principle asserts that if ¢ € Pg,’;’(} is a time evolution of the system,
then ¢ is a critical path of the action

Ao = | " Lt a(t), (0.

=to
In particular, ¢ satisfies the Euler-Lagrange equation

o tat.d0) = (5 ta.a0) ). (20)

Example 2.3 (Newton’s Second Law). The second law F = ma is a special case of
Hamilton principle. Indeed, consider a particle of mass m that moves under a con-
servative force field F' = —VV, where V() = V (21,29, x3) is the potential function.
The kinetic energy is T(x,v) = im|v|?, hence L(z,v) = sm|v|* — V(z). Now

g—i(x,v) =—-VV =F,
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and

It follows that p
Fla(t)) = - md(1)) = mi(?).

Example 2.4 (The Harmonic Oscillator).

Y ovd

{ cos ¢

Figure 2: Simple pendulum

Example 2.5 (The simple pendulum). Here (2(t),y(t)) = (¢sin ¢(t), £ cos ¢(t)). There-

fore [v(t)|2 = &(t)2 + y(t)2 = 24(t)2. Thus the kinetic energy is T(¢) = sml?¢?. The
potential energy is V(¢) = mgh = mgl(1 — cos ¢). The Lagrangian is therefore
1 .
L=T-V = §m€2¢>2 —mgl(1l — cos ).

The Euler-Lagrange equation is:

. 0L d (OL\ = -
—mgésmqﬁ—a—(b—dt (8¢) = ml=¢. (27)
Therefore
T g sin ¢

2.3 Small Oscillations - General Theory

Consider a mechanical system with configuration space R™. Let T = 1 (M(z)v,v)
denote the kinetic energy of the system, where M (x) is a symmetric positive definite
matrix that depends on the configuration x alone (and not on t). Let V = P(xz)
denote the potential energy of the system. The Lagrangian of the system is

L(z,v)=T—-V == (M(z)v,v) — P(x).

(NN
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Suppose now that gy € R" is a stable equilibrium of the system. In particular:
(i) The force field at qq is zero, i.e.

oP oP
0=VP == e, . 28
(0 = (G- ) o)) 29
(ii) The stability implies that the Hessian of P at gq
327?(%) T affa];n (40)
K= : I (29)
s t(q0) - 5 ()
is positive semidefinite. Next note that
(M(qo + )v,v) = (M(go)v,v) + O(|z] - [v]*) (30)
and by the Taylor approximation and (28)
1
Plgo + ) = P(o) + 5 (K, 2) + O(|a]’). (31)

Writing M = M(qp) it follows that
1 1 9 9
L(go + z,v) = 5(Mv,v) = S(Kw,z) = P(g0) + O(|z] - (|2" + [v[).
For small |z|, |v| we will therefore replace L£(qy + x,v) by the linearized Lagrangian
1 1
L(z,v) = §(Mv,v) — §(Kx,x).

Claim 2.6. A critical path q(t) of the action functional [ L(q(t),q(t))dt satisfies

Mij=—Kq. (32)
Proof. Note that %%(z,v) = —Kz and %&(z,v) = Mv. It follows by the Euler-
Lagrange equation that
oL d (0L
g 4 (9L,
¢= 500 =— (av (q,q))
d
=—(Mq)=M
O
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Let H= M-3KM~%. Then H is again symmetric positive semidefinite. Let w?, . .. w?

be the eigenvalues of H, where w; appears with multiplicity m,. Let U; = {u € R" :
Hu = w?u}. Then R" = U; @ --- @ U, is an orthogonal decomposition. Note that if
u € U; then M~2K (M~ 2u) = Hu = w?u, and hence

K (M*%u> = wizM%u =wiM <M*%u) .
It follows that V; = M~ 2U; satisfies V; = {v € R™ : Kv = w?Mv} and that R™ =

Vi@ - - @V, The elements of V; are called normal modes of the system, and they
give rise to the basic solutions of (32).

Claim 2.7. Let € R and let v € V.

(i) If w; # 0 then q(t) = sin(w;t + B)v satisfies (32).

(11) If w; = 0 then q(t) = (t + B)v satisfies (32).

(111) Any solution of (32) is a linear combination of the solutions given in (i) and (ii).

Proof. (i) If w; # 0 then for ¢(t) = sin(w;t + 5)v
M(t) = —w? sin(wit + B)Mv = —sin(w;t + B)Kv = —Kq(t). (33)
(ii) If w; = 0 then for ¢(t) = (t + B)v
Mi(t) =0=—(t + B)Kv = —Kq(t). (34)

(iii) Later.

Remark: Instead of finding the eigenvalues and eigenvectors of H, it is sometimes
more convenient to find directly the w? that satisfy det(K — w?M) = 0 and then to
compute V; = ker(K — w?M).

2.4 Mass-Spring Systems

Consider N point masses my, ..., my in R% where m; is located at p; € R%. Let
([N], E) be a graph that specifies which pairs are connected by a spring. For {«, 5} €
E, let k.3 be the corresponding spring constant. The kinetic energy of the system is

N
1 2
T(v) = 5 Zzl m;v; (35)
and the potential energy is
1
P(z) =5 Y kag (|(pa+2a) = (s + 25)| = |Pa — psl)” (36)

{a,B}€F
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We assume that x = 0 is a stable equilibrium of the system, i.e. with the masses in
locations py, ..., pn, the springs are relaxed. For 1 < a < N, let po, = (Pats - - -, Pad)-
The Nd x Nd matrices M and K are given by the following

Proposition 2.8. The matriz M is a block matriv M = (Mag), 5, where My 5 =
da,sMalq. The matriz K is a block matriz K = (Kag)" 51 where K,z is the d x d
matrix given by

( ka a o ¢
3 +(p zo»y)(p2 Mg,
~eD (o) [Pa = P
Kaﬁ — k? _ _ t (37)
TR {aB)el,
L 0 otherwise.

Proof. The statement concerning M is clear. We proceed to compute K = Hess(P)(0).
We first consider the case of two masses a, § in locations p, # ps with spring constant
kaop. The potential function for this pair is given by

ka
Pag(a, ) = =5 (| (ba + a) = (b5 + ) | = [pa — pal)”
Note that for fixed 0 # u € R"
(u-2)
(lu+ 2] = ul)* = ———+ 0 (]2*). (38)

Applying (38) with u = p, — pg and z = z, — x5 we obtain

kap  ((Pa = pp) - (T — 5))*
2 [Pa — ps?

Paﬁ(xav 1’5) =

_ kaglza,xs] [ (po —0p)(Pa —18)"  —(Pa — Ps)(Pa — pp)" } ' { To } (39)
2lpa — psl> | —(Pa —Ps)(Pa — )" (Pa — P8)(Pa — Pp)’ g
Using (39) for all pairs (o, ) it follows that
1
P(z) = 52" K+ O(|«f)

and hence Hess(P)(0) = K.
]

Using Proposition 2.8 and Claim 2.7 one can, in principle, determine the motion of
mass-spring systems. We give two small examples.
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(MINNAAN I AANNAN(m) @W@

k1 k1
(a) System with d =1 (b) System with d =2
Figure 3

Example 2.9. Consider the system of three collinear masses depicted in Figure 3(a).
By Proposition 2.8, the matrices M and K are given by

m 0 0 ki +ke —ki  —ko
M = 0 myo 0 s K= —k?l 2k1 —k?l
0 0 m —ky =k ki + Ky
To find the eigenvalues w?, we solve
kl + kg - me —kl —/{72
det(K — (,UQM) = det —kl 2]{Z1 — m0w2 —]{Zl = 0.
—k’g —k'l kl + ka - mw2

The solutions are:

(i) w? = 0 with normal mode vi = (1,1,1). The corresponding solution of (32) is
q1(t) = (t+ B)vq, i.e. the system moves uniformly.

i) w2 = 2k 4 Bowith normal mode vy = (1, =22, 1), and ¢o(t) = sin(wst + 5)vs.
2 mo m mo
Thus the two m’s move in one direction, and mgy moves in the other direction.

(iii) w3 = k”j’” with normal mode vy = (1,0, —1), and q3(t) = sin(wst + [)vs. Here
the two m’s move in opposite directions, while mq is stationary.

Example 2.10. Consider the system of three masses located at the vertices of an

equilateral triangle depicted in Figure 3(b). By Proposition 2.8, the matrices M and
K are given by M = mls and

5 V3 4 0 -1 —/3]
V3 3 0 0 —v3 -3
Kokl -4 0 5 —V3 -1 V3
4 0 0 —v3 3 V3 =3
-1 =3 -1 V3 2 0
-3 =3 V3 =3 0 6

To find the w? we solve det(K — w?M) = 0. The solutions are:
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(a) Translation mode (b) Rotation mode

Figure 4: w? =0
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Figure 5: w? = == - vibratory mode

(1) wi =0. Then V; = {v € R% : Kv = 0} is a 3-dimensional spanned by the

(i)

vectors
uy = (1,0,1,0,1,0) , uy = (0,1,0,1,0,1) , uz = (—1,v3,—1,—/3,2,0).

The corresponding solutions of (32), namely ¢:(t) = (¢t + B)v where v € Vi,
describe two kinds of uniform motions. If v € Vip = span{ui,us} then all
masses move in the same direction in the plane - see Figure j(a). For v €
Vir = span{us}, the masses rotate around the center of the triangle - see Figure

4(b).

w3 = % Then Vo = {v € RS : (K — %M)v = 0} is a 2-dimensional space

spanned by the vectors
Uy = (\/57 _17 _\/57 _17 07 2) , Uy = <_\/§7 _17 07 27 \/57 _1>

The wvibratory modes corresponding to uy,us are depicted in Figure 5 (a) and

().
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__ 3k

Figure 6: w3 = 2% - vibratory mode

(iii) wi = 2= Then Vs = {v € R : (K — %£M)v = 0} is a 1-dimensional space
spanned by u = (—v/3,—1,v/3,—1,0,2). The corresponding vibratory mode is
depicted in Figure 6.

2.5 Mass-Spring Systems with Symmetry

The computation of normal modes using eigenvalues as above can sometimes be simpli-
fied considerably using representation theory. In Example 1.16 we associated with a fi-
nite X C R? a discrete vector bundle £ = U,¢ x E,, where E, = {2} x C? with the nat-
ural projection map E, — x. Suppose now that G C Aut(X) = {g € O(d) : ¢X = X}.
The action of G on E defined by g(z,v) = (g, gv), gives rise to a representation p on
['(E) given by
p(9)(s)(x) = gs(g™"'x).

For g € G let Fix(g) = {x € X : gv = x}. Then by Corollary 1.19, the character x,
of p satisfies

Xol9)= Y trlg: Bx — E,] =|Fix(g)| - t2(g). (40)

{z:gz=x}

The subspace I'r(F) C I'(F) of translation sections is defined by
Ir(E)={sel(F):s(x) =s(y) forall z,y € X}.

Clearly, I'r(E) is a d-dimensional G-invariant subspace of I'(E). Denote by pr the
restriction of p to I'r(£). Then

Xpr(9) = tr(g). (41)
The subspace I'r(E) C I'(E) of rotation sections is defined by
Fr(X)={se(F):slinear ,z- sz =0 for all z € X}.

Clearly, I'r(X) is a G-invariant subspace of I'(E).
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Consider a spring-mass system in R?, ie. aset X = {p,}"_;, C R? with masses
m(pa) = Mg and spring constants k(p,,ps) = ke for 1 < o, < n. The small
oscillations dynamics of the system is driven by the Euler-Lagrange equation

M(t) = —Kq(t), (42)

where M, K are given in Proposition 2.8 A symmetry of the system is a T € O(d)
such that TX = X, m(Tp,) = m, and k(Tp,, Tps) = kap. Let G denote the group
of symmetries of the system. Recall that V; = ker (K — w?M) is the space of normal
modes corresponding to w?. Let I'(E) = @!_,V; the direct sum decomposition of I'(E)
into normal modes subspaces.

Claim 2.11. V; is invariant under G.

Proof. Let T € G and v € V;. If w; # 0 then ¢(t) = sin(w;t)v satisfies (42). Clearly
h(t) = Tq(t) also satisfies (42), and therefore

— sin(w;t)w; MTv = M (= sin(w;t)w; Tv)
= Mh(t) = —Kh(t) = — sin(w;t) KTv.
It follows that K(Tv) = w?M(Tv) and hence Tw € V;. The case w; = 0 is similar.
]

Let {W;}’_, be the irreducible representations of G. Let I'(E) = @©)_, L; where Lj; is
the isotypic component of I'(E) corresponding to W;.

Corollary 2.12. If L; is irreducible, then L; C V; for some i.
This suggests the following approach to determining at least some of the normal modes:

e Determine x, using (40).

e Decompose x, = 22:1 m;x; where {x;}!_; are irreducible characters of G, and

o Let I'(E) = @)_,W; where W is the isotypic component of T'(E) corresponding
to the character x;. Determine W; by using the projection P; : I'(E) — W;
given by

Pys =ML S anlo)s. (43)

| geG

o If m; =1, then W; is contained in some normal mode V;. We can then recover
w? and the full V;. Otherwise, a subspace of W; is subspace of a normal mode
and finding it may require additional considerations.

We now revisit Example 2.10 using symmetry.

30



Example 2.13. The symmetry group of the equilateral triangle is G = S3. The group
of rotational symmetries 1s Gr = C3. Let py, pa, p3 denote respectively the trivial, sign
and standard representations, and let x; = X,,. The character table of S is

1] (12) ] (123)
Yil1] 1 1
Yo | 1| =1 | 1
Ysl2] 0 | -1

We next compute x, and x,, using (40) and (41).

11(12) ] (123)
X, | 6] 0 0
Xpr 2] 0 | —1

It follows that x, = x1+Xx2+2x3 and x,, = x3. Using the notations of Example 2.10,
we have that I'r(E) = Vi r is the space of translational normal modes. Next consider
the rotational normal modes. Clearly I'r(E) is the 1-dimensional space generated by
the rotation Rz. As p(r)Rz = Rz and p(s)Rz = —Rx, it follows that I'p(E) is
isomorphic to the sign representation. Therefore the sum of the vibratory components
in the decomposition of U'(E) has character

Xp — Xpr — Xpr = (X1 + X2 +2X3) — X3 — X2 = X1 + X3

Let vy, v9,v3 be the three vertices of an equilateral triangle with center 0, i.e. vy + vy +
vg = 0. We first determine the normal mode corresponding to x1. Let t = (12) be the
reflection that switches vy and vy. By (43), the normal mode corresponding to x1 is
the image of T'(E) under the linear transformation

A= plg) = p(1)+ p(r) + p(r®) + p(t) + p(tr) + p(tr?).

gESs
Let s € I'(E), and write (s(v1), s(v2), s(v3)) = (u1, ug, us). Then

(As(vy), As(vg), As(vs)) = (uy, ug, ug) + (rus, rug, rus) + (7’2u2, r2u3,7’2u1)

+ (tug, tuy, tus) + (truy, trus, trus) + (trus, trius, triu,).
In particular, for (s(vy),s(va), s(vs)) = (v1,0,0) we obtain

(As(v1), As(vy), As(vs)) = (v1,0,0) + (0,7vy,0) + (0,0, r%0;)
+ (0, tv1,0) + (trv1,0,0) + (0,0, trv;)
= ((I +tryvy, (r + tyvy, (r* + tr*)v1) = 2(v1, va, v3).

Thus the normal mode for x1 is spanned by the section s € I'(E) given by
(s(v1), 5(v2), s(v3)) = (v1,v2, v3).
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This s of course the space V3 we computed in Fxample 2.10. Finally, we find the
wibrational normal mode Vy corresponding to xs. Let W be the 4-dimensional isotypic
component of I'(E) corresponding to x3. We already know that one copy of xs3 is
Lr(E) = Vir. Therefore W = Vo @ Vir and (why?) Vo L Vip. By (43), W C T'(E)
given by the image of I'(E) under the linear transformation

B =Y xs(g9)pg) =21 — p(r) — p(r*).

geG

One can then compute W and then Vy = Vi, N W. In more detail, let s € T'(E), and
write (s(v1), s(va), s(vs3)) = (uy, us, us). Then

(Bs(v1), Bs(vs), Bs(vs)) = 2(uy, ug, us) — (rus, ruy, rug) — (riug, rus, r’u;)

= (2uy — rus — r’uy, 2uy — ruy — r’us, 2uz — TUy — T2U).
In particular, for s given by (s(vy), s(v2), s(v3)) = (2v1 + ve, —(2v1 + v2),0) we obtain
(Bs(v1), Bs(vy), Bs(vz)) = 3(vy,vs, v9)
and for s’ given by (s'(vy), s'(v2), ' (v3)) = (—v1 + V9, v1 — v9,0)) we obtain
(Bs'(vy1), Bs'(v9), Bs'(v3)) = 3(va, vy, v3).

Then Vy = span{s, s'}, which of course coincides with the computation in Example
2.10. Note that we have determined the normal modes with no eigenvalue computation.
Finally, to obtain the vibration frequencies w corresponding to normal mode s, we
simply compute Hs = w?s where H = M 2KM 2.

32



3 Quantum Systems

A closed quantum system is represented by a complex Hilbert space H. We will assume,
for the purposes of this section, that H is finite dimensional. At some points we will
however comment on the physically more common case where H is infinite dimensional,
e.g. H = L*(R?). A state of the system is a 1-dimensional linear subspace of H, i.e.
[¢)] = span{t} where 0 # ¢ € H. A superposition of states [¢1],..., [tx] is a state of
the form [Zle a;Y;]. It is assumed that there is a bijective correspondence between
physical quantity (energy, coordinates, momentum, etc.) and the space of self-adjoint
operators on H, i.e. linear operators f : H — H such that f = f*. We thus identify
such f as an observable. Fix a observable f on H. Let Ay,...,A\; be the distinct
eigenvalues of f with eigenspaces Hz(\1), ..., Hs(A¢). Note that the A;’s are real and
the H(\;)’s are orthogonal. Let p; : H — H(\;) denote the orthogonal projection
of H onto Hs(X\;). Let ¢ € H such that [¢)| = 1. A measurement of [)] for the
physical property that corresponds to f is a (non-deterministic) procedure that with

probability [pri|* = (¢, prt)) will

(a) Give the value \; for the measurement.
(b) Change the state [¢] into [pgt)] immediately after the measurement.

Remarks:
e Note that S, _,pr = I and >_,_, \epx = f. In particular
Z pt]? = Z (&, prtd) = (¢, 9) = 1.

e If f has n = dimH distinct eigenvalues Ay, ..., A, with unit length eigenvectors
1, ..., 1y, then H;(Ay) = span{¢y} and a measurement of the observable f
will output the value )\, and the state [1] with probability |pp|? = (¥, prt).
More generally, for B C R let Pg = )] (ke Ph- Then the probability that
the output of the measurement of f on ¢ will be in B is

(1, Ppib). (44)

o If f g are self-adjoint, then so are f2, f — «a for any a € R and —i[f,g] =
—i(fg—9gf)-

The expectation of an observable f with respect to the normalized state ¥ (i.e. || = 1)

is defined by

w—ZAwm ( (Zm) >=<w,fw>-
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The dispersion of f in 1) is

Ay = U = 0 = (7 = (Do) 0.0)
= S (P06 = (D ®) =10 — (1)l (45)

= /P = ()

The Lie bracket of two linear operators f,g on H is [f,g9] = fg — gf.

Proposition 3.1 (Heisenberg Uncertainty Principle). For any observables f, g

1

Afy-ADgy > = |([f, gl )] . (46)

2
Proof: Let fi = f — (f)y and g1 = g — (g)y. Clearly, [f1, 1] = [f, g]. It follows that

[([f, 9], ) = [([f1: 1]¥, )| = (L9190, 0) — (g1 f1¢), )]
< |[(frig19, V)| + [(91f10, ¥)] (47)
= (g1, i) + [(f1vh, 1))
<2[fip| - |gib| = 2Afp - Agy.
O

Example 3.2 (Particle on a Line). Here the relevant Hilbert space H is L*(R).
Analysing some aspects of this system requires the use of the theory of distributions
which is beyond the scope of this course. The arguments below should therefore be
regarded as merely suggestive and not rigorous. The position observable is the oper-
ator T gwen by T (xr) = x(x). One may view any xo as an eigenvalue of T with
(generalized) eigenfunction 6(x — xo) (which may be thought of as the wave function
of particle located at xq). It follows that if A C R then the projection Pz 4 of H on the
subspace of wave functions with position supported in A satisfies Py a1 = 14v. Thus,
if |¢| =1 then on measuring T on 1, the probability of obtaining a value in A is

(v, Pr,at) ZAw(x)Pa,Aw(w)dxZ/RlA(l“)I@/)(l“)IQdHUZ/eAI@D(x)IQdﬂf-

The function [(x)|? is thus the probability density of the position of the particle. The
expectation of T in the normalized state 1) is

@)= w.30) = |

S

2 (a)|d.
R
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By (45), the dispersion of T with respect to ¢ is
Ay = [(Z — <A> )]
= /(@ — @)y, 70 — (@)
[F0[2 — <a:>¢, (48)

- \/ [ taptotoras - ( [ 6Rx|w<x>|2)2.
Az, < \/ / PP, (49)

The momentum operator p is given by p(z) = —il)'(x). The eigenvalues of p are
p € R with eigenfunctions ,(z) = \/— exp (’m). Thus 1, is the wave function of a

particle with constant momentum p. Let f denote the Fourier transform of a function
feL*R), ie.

In particular

- 1 .
f(&) = \/—2_7r ngﬂx) exp(—ix§)dx

The projgection Ps g of H on the space of wave functions with momentum supported in
B C R satisfies

Py pY = (1, Yp)bp()dp

pEB

1 1 ipt ip:c)
= — tyexp| —— | dt |exp | — | d.
\/27rh/peg (\/27Th teRQ/J() p( h) ) p( h g
1 ~ /D ipx)
= — = )exp | — | dp.
orh /peBw (h) p< h P
Thus, if || = 1 then on measuring p on 1, the probability of obtaining a value in B
18
Fspy) = / Y(x
pT
e <f/ o () )
h z€R 27 JpeB h
(8
= LG

D)y == /peR ’d}( )
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and

i dp)Q. (50)

o= i L G (Lo P

In particular
R 1
Apy <[ % / p?
h’ peER

—_= h / p2
peER

It can be checked that [Z,p] = ihl. Hence, if || =1 then

h
Az, Apy > .

2

dp

¢ (3)

dp.

(51)
b(p)

Using (49) and (51) we obtain the Fourier theoretic version of the uncertainty inequal-
1ty

(52)

N | —

|zl - ]l =

The time evolution of a quantum system H depends on the energy observable or
Hamiltonian of the system H, and can be viewed in two equivalent ways. Let 1y be
a state such that |¢y| = 1 and let fy be an observable. In the Schridinger picture, fo
remains constant, while 1)y develops in time, and the resulting curve of states {1; }ier
satisfies the Schrodinger equation

 diy
h—— = Hu)y. 53
g = o (53)
In other words,
i
1y = exp (—ﬁHt> Yo. (54)

Remark: Note that if « € R and H is self-adjoint, then exp(iaH ) is unitary. Indeed,

exp(iaH) - (exp(iaH))" = exp(iaH) - exp(—iacH™)
= exp(iaH) - exp(—iaH) = 1.

In particular, eXp(—%H t) is unitary.

We next describe the Heisenberg picture of quantum evolution. Here the state 1y
does not change, but the observable f; does and the resulting curve of observables f;

should satisfy
dfy

—ih— =[H, f]. (55)

We next show that the two views of quantum evolutions are essentially equivalent.
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Proposition 3.3. Let U(t) be a curve of unitary operators on H. Let 1y be a
state such that |1y = 1 and let fo be an observable. Let 1y = U(t)ihy and let
fi=U@)" foU(t). Then:

(i) The expectation of fo in the state 1y is equal to the expectation of f; in the state
Yo:
(fodve = (ft)uo-

(ii) The following conditions are equivalent:
(a) For any initial state 1y, the curve vy = U(t)iy satisfies (53).
(b) For any initial observable fo, the curve f, = U(t)™ foU(t) satisfies (55).

Proof. For (i) note that

(fo)u, = (W, forr) = (U)o, foU(t)1o)
= (%0, U(t) ™" foU (t)1b0) = (o, fitho) = {fe)o-

Proof of (ii). Condition (a) is clearly equivalent to ihl/(t) = HU(t). On the other
hand, note that
dfy

= U OO (57)

Condition (b) is therefore equivalent to —ih[f;, U (t)_l.U (t)] = [H, fi] for all initial
observables fo. Hence ihU(t)"'U(t) = H, and again ihU(t) = HU(t).

(56)

|

Example 3.4 (The Quantum Harmonic Oscillator). In Example 2.4 we discussed the

classical harmonic oscillator whose Hamiltonian is H.(z,p) = % + %12 The general

solution of the Hamilton equations is z(t) = Acos(wt + «), where w = \/g The

corresponding quantum system is H = L*(R) with the quantized Hamiltonian

~9 ~2
~ p kx
H=H = 4 —
(#.P) 2m + 2
whose action of 1 € H is given by
h? d*)  ka?
H)=———" + — )
v 2m dx? + 2 ¥(z)

It can be shown that the spectrum of H is A, = hw(n+ 1) for integers n > 0.

Consider now n disjoint quantum systems Hi,...,H,. Our classical intuition
may lead us to think that the Hilbert space H corresponding to the unified system
is Hy @ - @ H,. It turns out that in fact H is a subspace of Qi | H; = Hi ®
-+ ® H,. For simplicity, in the sequel we'll assume that H = );_, H;. The unified
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system H contains decomposable states, i.e. v = P; ® - - ® 1, with 1, € H,;, that
correspond to our intuition. However, the vast majority of states in ‘H are entangled,
i.e. not decomposable. Manipulation of such states is a key ingredient in quantum
computation. The existence (indeed prevalence) of entangled states is a source of a
number of highly non-intuitive phenomena. The states of the Hilbert space C? are
called qubits.

Example 3.5 (The Einstein-Podolosky-Rosen Paradox). Let Hy = Ho = C? with the
standard basis ey = (1,0),e2 = (0,1). Let H = Hy ® Ha be the system corresponding
to two qubits. Consider the normalized EPR state

1
w:ﬁ(€1®€1+€2®€2)€7{.

Let f be the self-adjoint operator on H; given by the matriz A = Lo ] . Suppose

00
that the qubit of Hy is held by Alice and the qubit of Ho is held by Bob, and they
are located far apart. If Alice measure the observable f on her qubit, then what she
actually does is measuring f @ I of . Now f ® I has two eigenvalues Ay = 1 and
Ay = 0, with eigenspaces H (A1) = span{e1} @ Ho and Hs(X2) = span{es} ® Ho. The
projections py and ps are given by p; = €1T ce1 @1 and py = eg ceo ® 1. It follows that
for both i = 1,2, the probability of collapsing ¢ to e; @ e; is (¢, p;w)) = % It follows
that if Bob measures f on his qubit immediately after Alice, the result will be identical
to Alice’s. This is somewhat disturbing, because it means that Alice was able to convey

the value of her qubit to Bob, essentially instantaneously.

Example 3.6 (GHZ Pseudo-telepathy Game).
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Example 3.7 (Bell’s Inequality). For an angle o let A, be the observable on H =
C? ® C? given by

cosa  sino
A, = { } |

sinoy — cos«

Ay has eigenvalues £1. Let

¢:%(€1®€2—€2®€1)€’H

and let X,p be the outcome of A, ® Ag on ¢. X,p is a £1 valued random variable
whose expected value 1s

E[Xap] = (¢, (Aa ® Ag)9) =
1
5(61 ® ey — e ® €1, Age1 @ Ages — Apes ® Ager) =

—cos(a — ).

Letpi(a, B) = Pr[Xos = 1] and p_(«, 5) = Pr[Xas = —1]. Thenpy(«, B)+p—(a, ) =
1 and by the above py(a, B) — p_(a, ) = —cos(a — f3), hence

b (0, f) = 1+COS2(04—5) '

Theorem 3.8 (Bell). There do not exist random variables Y,', Y with +1 values such
that Xo5 =Y, - Yg for all a, 5.

Proof. Suppose to the contrary that Xz =Y, - Y62 for any o, 8. In particular
p-(a, ) = Pr[Y # Y]]

and
Pr[Y;} # Y7 = Pr[Xgp = —1] = 1.

It follows that for any «, 53,
PrY) # Y]]+ Pr[Yy # Y]+ Pr[Y] # V7] =

PrlY) =Y | +Pr[Y; =Y]]+Pr[Y) =Y ] > L.

but choosing o =0, 8 = %’r, v = 4?” we obtain

PrY) # Y7 +Pr[Yy # Y]+ Pr[Y] #V7] =3 ——3 ==

a contradiction.
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4 Spacetimes

In the following subsections we briefly describe three notions of spacetimes: Newton’s,
Galilei’s and Minkowski’s.

4.1 Newton Spacetime

Let V be a real linear space and let E/ be a set. Suppose that the additive group of V
acts on E on the right, and denote the action of v € V on p € FE by p + v.

Definition 4.1. The pair A = (E, V) is an affine space if the action is simple transi-

tive, i.e. for any p,p’ € E there exists a unique v d:efp’ —p eV such thatp+v=7p.
The dimension of A is dim V.

Definition 4.2. Newton (1,d)-Spacetime is a 4-tuple (A, t,7,h) where A = (E,V)
is an affine (d + 1)-space, t € V., 7 € V* such that 7(t) = 1 and h(-,-) is an inner
product on S = 7710). Let p: V — S be the projection corresponding to the direct
sum decomposition V = span{t} ® S. Let O(S) denote the orthogonal group of S with
respect to h(-,-).

Definition 4.3. An automorphism of (A, t, 7, h) is a bijective map f : A — A such
that the following conditions holds:

(i) For any a € Ajv € V, the vector vs(v) = f(a+v) — f(a) is independent of a,
and the mapping vy is an element of GL(V).

(i) 150 = t
(i1i) The restriction of v¢ to S is an element of O(S5).

Definition 4.4. The Newton Group N (V) is the semidirect product O(S) x V', where
the action of the orthogonal group O(S) on V is given by

¢(v) = v —p(v) + o(p(v)).
Note that

dim V' —1 A +d+2
dim N (V) =dimO(S) +dimV = ( 1m12/ )+d+1:%_

Fix an element 0 € A. An element 1 = (¢, u) € O(S) x V = N (V) gives rise to a map
fn i A — A given by

fo(a) =0+ (o(p(a—o0))+7(a—o)t+u). (58)

Claim 4.5. (i) f, € Aut ((A,t,7.h)). (i) Any element of Aut ((A,t,7,h)) is of the
form f,, for some 6 € N'(V).
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Proof. (i) Let a € A and v € V. By (69)

V5, (0) = fyla+v) = fy(a)
= (@(pla+v—0))+7(a+v—0)t) = (¢(p(a—o0))+7(a—0)t)
= (d(pla+v—0)) = ¢(p(a—o0))) + (r(a+v—o0)t—7(a—0))
= o(p(v)) + 7(v)t
It readily follows from (59) that vy (t) = t and that the restriction of vy, to S is
¢ € O(9). (ii) Exercise.

(59)

|

Definition 4.6. A Newtonian Reference Frame (abbreviated N -frame) is a pair (o, B),
where 0 € A and B = [eq,...,eq4] is an ordered h-orthonormal basis of S. The coor-
dinates assigned to an event a € A by (0, B) is the vector (xq, ..., z4) € R¥ where
a=o0+xt+ 2?21 xie;. To 1S the time coordinate of a and (z1,...,x4) are the spa-
tial coordinates of 0. An Newtonian Inertial Observer (abbreviated N -observer) is a
parametrized line v : R — A given by v(0) = o + 0(t + v) where v € S.

Let (o0, B),(0/, B") be two N-frames, where B = [ey,...,e4] and B’ = [€},...,€}].
Let T' € O(d) denote the transition matrix between B and B’', i.e. [e1,...,e4T =

[€),...,€¢)]. Let z = (2, ..., 24) such that 0 —o’ = zot+ 3% | zie;. Let & = (zo, ..., z4)
be the coordinates of a in (0, B) and let 2’ = (xy,...,2,) be the coordinates of a in
(o/, B').
Claim 4.7.
1 0
= l 0 7! ] (x + z). (60)
Proof.
d d
a=o0+xot+ inei = o’+x6t+2x;e;.
i=1 i=1
therefore
T+ 2
(x0+zo)t+[€1 €d] :
Tq+ 24
(61)
x/
1
:l‘6t+ [ €1 -+ €q ]T
Ty

Apply 7 to (64) we obtain z(, = xo + 2 and

1+ 2
T—l

Tq+ 24
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Definition 4.8. A Newtonian Particle (abbreviated N -particle) of mass m > 0 is a
pair (m,y) where v : (a,b) — A is differentiable and satisfies 7 (%(6)) = 1 for all 6.
The following are some mechanical attributes of the particle: Velocity is v = p(%),
Acceleration is a = p(¥), Momentumis = muv, Force on the particle is F = w,
Kinetic Energy of the particle is KE = im|v|*>. The particle is inertial if 5(0) = 0,
i.e. if there exist o € A and v € S such that v(0) = o + 6(t +v) for all 6.

Remarks. (i) In Newton spacetime, the time interval between two events a,b € A
is independent of the reference frame. Indeed, let a,b € A, and let (o0, B), (o', B") be
two N -frames. Let x = (xq,...,24),y = (Yo,-..,ya) be respectively the coordinates
of a,b according to (0, B). Let ' = (xg,...,2)), vy = (Y}, ...,y,) be respectively the
coordinates of a,b according to (o', B'). By (60)

y - = “} qu](y_x)

and therefore y\, — xy = yo — xo.

(i1) An N -particle (m,~y) is at rest with respect to a N-frame (o, B), if the coordi-
nates vector x(0) = (zo(0),...,x4(0)) of v(0) in (0, B) satisfies (x1(0),...,xq4(0)) =
(c1,...,¢q) for all 0. Let y(0) = (yo(0),...,ya(0)) be the coordinates vector of v(0)
relative to another N'-frame (o', B') Then by (60)

y1(0) z1(0) + 2 c+ =
. e Til . e Til

ya(0) za(0) + 2 ca+ 24
and so the particle is at rest also relative to (o', B"). Thus, in Newton spacetime there

1s an absolute notion of rest.

4.2 (Galilei Spacetime

Definition 4.9. Galilei (1, d)-Spacetime is a 3-tuple (A, 7,h) where A = (E,V) is an
affine (d + 1)-space, 0 # 7 € V*, and h(-,-) is an inner product on S = 771(0).

Definition 4.10. An automorphism of (A, 7, h) is a bijective map f : A — A such
that the following conditions hold:

(i) For any a € Ajv € V, the vector vs(v) = f(a+v) — f(a) is independent of a,
and is an element of GL(V).

(11) T(ys(v)) = 1(v) for allv e V.

(111) The restriction of vy to S is an element of O(S).
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Let
GV)={peGL(V) 1o =745 € O(S)}.

Fixing a basis [e, . . ., 4] where [e1, ..., e4] is an orthonormal basis of S and 7(eg) = 1,
the matrices representing elements of G(V) are of the form { ; % } where a € R?

and T' € O(d).

Definition 4.11. The Galilei Group G(V) is the semidirect product G(V) x V with
the natural action of G(V') on V.

Note that

dim G(V) = dim G(V) +dim V = (d + (;i)) +(d+1) = (d;Q).

Fix an element 0 € A. An element 1 = (¢,u) € G(V) x V = G(V) gives rise to a map
fn i A — A given by
fo(a@) =0+ ¢(a—o0)+u (62)

Claim 4.12. (i) f, € Aut ((A, 7, h)). (i) Any element of Aut ((A, 7, h)) is of the form
Iy for some 6 € G(V).

Proof. (i) Similar to the proof of Claim 4.5(i). (ii) Exercise.
O

Definition 4.13. A Galilien Reference Frame (abbreviated G-frame) is a pair (o, B),

where 0 € A and B = |ey,...,eq) is an ordered basis of V' such that T(ey) = 1 and
le1,...,eq| is an orthnormal basis of S. The coordinates assigned to an event a € A
by (0, B) is the vector (xq,...,74) € R where a = o + 3.0 @ie;. w0 is the time
coordinate of a and (xy,...,x4) are the spatial coordinates of o.

Remark. An G-frame can be equivalently specified by giving an inertial particle to-
gether with an orthonormal basis of S.

Let (0, B), (o', B') be two G-frames, where B = [eg, €1, ..., ¢4 and B’ = [ef, €], ..., ¢€}].
Let M € GL(R1) denote the transition matrix between B and B, i.e. [eq, ..., eq M =

ep,...,e,]. Note that M is of the form M = Lo where o € R? and T' € O(9).
0 d o

T
Let z = (20, ..., zq4) such that 0 — o’ = Z?:o z;ej. Let x = (2o, ...,2q) be the coordi-
nates of a in (0, B) and let 2’ = (zy, ..., z}) be the coordinates of a in (o', B').
Claim 4.14.
_ 1 0
v =M = | gh, g | (63
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Proof.

therefore
1 0
N I e A | D P

implying (63).
O

Definition 4.15. A Galilien Particle (abbreviated G-particle) of mass m > 0 is a pair
(m,~) where v : (a,b) — A is differentiable and satisfies 7 (4(0)) = 1 for all t. The
particle is inertial if ¥(0) = 0, i.e. if there exist 0 € A and u € 771(1) such that
v(0) = 0+ Ou for all 6.

Remarks. (i) In Galilei spacetime, the time interval between two events a,b € A is
independent of the reference frame. Indeed, let a,b € A, and let (0, B), (o', B") be
two N -frames. Let x = (xq,...,24),y = (Yo,...,ya) be respectively the coordinates
of a,b according to (0, B). Let ' = (xf,...,24),y = (Y, ... y,) be respectively the
coordinates of a,b according to (o', B'). By (63)

VAP ST P

and therefore y, — x, = yo — xo. This also implies that if two events a,b are simulta-
neous, i.e. T(b —a) =0, then their spatial distance does not depend on the reference
frame.

(i1) Let (m,~y) be a G-particle with coordinates (xo(6),...,xq4(0)) in a G-frame (o0, B).
Then xo(8) = XA+ 6 for some constant \.

(iii) A G-particle (m,~y) is at rest with respect to a G-frame (o, B), if the coordi-
nates vector x(0) = (xo(0),...,x4(0)) of v(0) in (0, B) satisfies (x1(0),...,xq4(0)) =

(c1,...,¢q) for all 0. In contrast with the Newtonian case, in Galilei spacetime there
is no notion of absolute rest. Indeed, suppose (m,~y) is at rest relative to (0, B) where
B = [eg,...,eq) and let B" = [e], ..., ¢} where ej = eq +u for some 0 # u € S and

ei =e; forl <i<d. Letu= Zle ae;. Then the transition matriz between B and

B is M = [ i (1) }, where o = (o, ..., aq)T. Let y(0) = (yo(0),...,ya(0)) be the
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coordinates vector of y(0) relative to the N -frame (0, B"). Then by (63)

o (0)
- 1 0 21(0) 4 a1o(0)
o) =arteo) = | LY o) - |
z4(0) + aqxo(0)
A+ 0 A 1
(Cl + Oél)\) + 0619 c1 + Oél)\ (&5}
(Cd -+ Ozd)\) + ade Cq + Ozd)\ (%]

4.3 Minkowski Spacetime

We first discuss Lorentz vector spaces. Let V' be an n-dimensional real vector space
with a scalar product, i.e. symmetric bilinear nondegenerate form (-,-). For v € V

let [v] = [{v,v)|/2. A basis ej,...,e, of V is orthonormal if {e;, e;) = ¢;0;; where
€ € {:tl}
Claim 4.16. (i) Any orthonormal set {ei, ..., e} can be extended to an orthonormal

basis of V. (ii) The index [{1 <i < n:¢ = —1}| is independent of the orthonormal
basis. (i) v=">""_ €(v,e;)e; for any vector v € V.

Definition 4.17. A Lorentz vector space is a real vector space of dimension n > 2
with scalar product (-,-) of index 1. The vectors v € V' are classified as follows:

o Timelike: (v,v) < 0.
e Null: v# 0 and (v,v) =0.
e Spacelike: (v,v) >0 orv = 0.

Claim 4.18. If v € V is timelike, then v' is spacelike, V = Rv @ v*, and the
restriction of (-,-) to v* is an inner product.

Let F = {u €V : (u,u) < 0} be the set of timelike vectors. Define a relation ~ on F
by v ~ w if (v, w) < 0.

Claim 4.19. ~ is an equivalence relation.

Proof. Reflexivity and symmetry are clear. For transitivity, assume that u ~ v and
u ~ w. We may assume that |u| = 1. write v = au + v and w = bu + w’ where
v w' € ut. {u,v) < 0implies that @ > 0 and (u,w) < 0 implies that b > 0. Moreover
(v,v) < 0 implies that a*> > (v/,v') and (w,w) < 0 implies that v* > (w’,w'). As ut
is an inner product space it follows that |(v/, w')| < [v/] - |w'| < |ab] = ab. Therefore

(v,w) < —ab+ V', W) < |V, w')| — |ab] < 0.
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For u € F let C'(u) denote the ~-equivalence class of u. Clearly C'(—u) = —C'(u) and
C(u)UC(—u) = F.

Claim 4.20. (i) Reverse Cauchy-Schwarz inequality:
[(u, 0)[ > |ul - |v| (65)

for any u,v € F, with equality iff u = Av. (ii) Reverse triangle inequality: If u,v,w €
V satisfy v —u,w—v € F and C(v—u) = C(w —wv), then |w—u| > |v —u|+ |w —v].
(111) If C(u) = C(v) then there exists a unique number o > 0, called the hyperbolic
angle between u and v) such that

{u, v)

Jul - o]

= cosh a. (66)

(iv) C(u) is an open convex cone.
Proof. (i) Write v = au + v’ where v' € u*. Then 0 > (v, v) = a®(u,u) + [v'|?. Hence
(u,v)* = a®(u,u)® = (u,u) ((v,v) = |V'|*) > (u,u) - (v,v).
(ii) Let uy = v — w and v; = w — v. Then
—|w —ul* = (w — u,w —u) = (uy +v,u; +v1)

= (uy,ur) + 2(uy, v1) + (vi,01) = = (Jua|* + 2[(ug, v1)| + |01 ]?)
< = (Jua* + 2| - [or] + or )
= — (Jua] + Jo])*

(iii) The map o — cosha maps R injectively onto Rs;. Hence, if C(u) = C(v)
then (66) follows from the reverse Cauchy-Schwarz inequality — éﬁfﬁi | > 1.
(iv) Let v,w € C(u) and o, 8 > 0. Then

{au + Bv, au + o) = o (u, u) + 2a8(u,v) + B*(v,v)
< 0?{u, ) — 20flul - Jo] + B{v,v)

= — (|uf? + 2aBul - o] + B2|v])
= —(alu| + B|v])* < 0.

Definition 4.21. Let V' be a Lorentz vector space. The Lorentz Group of V' is
L(V)={g € GL(V) : {gu, gv) = (u,v) for all u,v € V'}

The Restricted Lorentz Group of V' is the connected component L°(V') of the identity
element of L, i.e.

L(V)={ge L(V):detg=1, gC(v) = C(v) for v € F}.
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Let D be the diagonal matrix diag(—1,1,...,1) € GL(R*1).
O(1,d) = {A € GL(R*™): A'DA = D}
and
O(1,d) ={A € O(1,d) : det A =1, Agy > 1}.Let

Let B = [eg, . ..,eq) be an orthonormal basis of V. Let ¢ € GL(V') an let A be the
matrix representing g according to the basis B.

Claim 4.22. (i) g€ L(V) iff Ac O(1,d). (1) g e L°(V) iff O(1,d)°.
Proof. Let a; = (ag;, . .., aq4)" be the i-th column of A. Then

(ger, ger) <§ Aik€i, § a]z€]> = E aikajZ<€i7€j>
/[:7.7

d
Z Qi Qip = AtDA)

1=0

Now g € L(V) iff (ge, ges) = €xdpe for all k,£. On the other hand, A € O(1,d) iff
(A'DA),, = Dy = €0y for all k,¢. Hence (i) follows from (67). For (ii) note that
(geo, €9) = —Apo and

(67)

— 1= (eg, e0) = {geo, geo) = —Ady + Z A (68)

Therefore, if g € L°(V') then —Agy = (geo, €9) < 0, hence Agy > 1 by (68). The other
direction is similar.

For o« € R let

[ cosha sinha 0
L{a) = < sinh v cosh a ) €0(1,1)

and

L(a) = ( L(OO‘) Ido_l ) € O(1,d)".

Definition 4.23. Minkowski (1, d)-Spacetime is a pair (A,n) where A = (E,V) is
an affine (d+ 1)-space, and n(u,v) = (u,v) is a Lorentz scalar product on V. A time
orientation on V' is a choice of v € F and the resulting future cone C(v).

In the following we fix v € F and define the future cone by C*t = C(v).

Definition 4.24. An automorphism of (A, n) is a bijective map f : A — A such that
For any a € A, the map v : V =V given by v¢(v) = f(a+v) — f(a) is an element

of L°(V).
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Definition 4.25. The Poincaré Group P(V) is the semidirect product L°(V) x V with
the natural action of L°(V) on V.

Note that

d+1 d—+2
dim P(V) = dim L°(V) + dim V = ( ;F )+<d+1): ( —QF )
Fix an element 0 € A. An element A = (¢,u) € L(V) x V= P(V) gives rise to a
map fy: A — A given by

fala) =04 ¢(a—o0) + u. (69)

Claim 4.26. (i) f\ € Aut ((A,n)). (ii) Any element of Aut (A,n)) is of the form f
for some A € P(V).

Proof. (i) Similar to the proof of Claim 4.5(i). (ii) Exercise.
O

Definition 4.27. A Special-Relativistic Reference Frame (abbreviated R-frame) is
a pair (0, B), where 0 € A and B = |eg, ..., eq) is an orthonormal basis of V', i.e.
(e, ej) = d;j€; where (e, ...,eq) = (—1,1,...,1). We further assume that eq € C*.
The coordinates assigned to an event a € A by (o0, B) is the vector (zq, . . ., 1q) € R4
where a = 0+Z?:0 x;€;. T is the time coordinate of a and (xq,...,x4) are the spatial
coordinates of a.

Definition 4.28. A Special-Relativistic Material Particle (abbreviated R-particle) of
rest mass mo > 0 is a pair (mg,7y) where v : (a,b) — A satisfies ¥(0) € Ct and
(%(0),%(0)) = =1 for all 0. The parameter 0 is the proper time of the particle. The
particle is free if ¥(0) = 0, i.e. if there exist 0 € A and t € C" such that (t,t) = —1
and y(0) = o+ 0t for all 0. Such ~y is also called a free observer. A Lightlike Particle
is ay: (a,b) = A such that v(0) = a + v, where v is lightlike and future directed,
ie. 0£veCT\CT.

Let z = (xo,...,%4),y = (Yo,---,yq) be coordinates assigned to distinct events a,
# b € A respectively by a reference frame (o0, B).

Claim 4.29. Let v ="0b—a. We consider the following cases.

(i) v is null. Then (yo — x0)* = Z?Zl(yi — x;)%. Furthermore, then sign of yo — o
is independent of the frame. In physical terms: all frames agree that the events a,b
occur on a worldline of a lightlike particle, and on which of the events occurred first.
(11) v is timelike. Then there exists a frame (0, B) such that x; = y; for all 1 <i <d.
In physical terms: There exists a frame for which a and b occupy the same spatial
location.

(11i) v is spacelike. Then for any ty € R there exists a frame (0, B) such that yo— o =
to. In physical terms: Any number can be realized as the time separation of a and b.
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Proof. Let (0, B) be a reference frame where B = [eq, ..., eq]. Let a =0+ Z?:o xie;
and b =0+ Z?:o yie;. Then v = Z?:o(yi — ;)e;.
(i) If v is null then

0= (v,v) = <Z(yz — i), Z(yz - xi)€i> = (yo — 20)” — Z(yz — ;)%

=0 =0 =1

Moreover, if v is future directed, i.e. v € C*, then a limit argument shows that so
is gv for every g € L°(V). Hence the sign of yy — z¢ is independent of the reference
frame.

(ii) Suppose v is timelike. Let ey = r» and complete ¢y to an orthonormal basis
B = [eg,...,eq]. Clearly y — x = (|v|,0,...,0).

(iii) Suppose v is spacelike. Let e; = ‘—g‘ and complete e; to an orthonormal ba-
sis B = [eg,...,eq]. Then y —x = (0,[v],0,...,0). Therefore L(a)(y — z) =
|v|(sinh cr, cosh a, 0, ..., 0), hence by choosing the appropriate reference frame, the
time coordinate of y — x can attain any real value.

|

Claim 4.30. Let (mq,v) be a material particle  : (O,é) — A, where v(0) = a and

v(0) =b. Thenv="b—a€c Ct and
0 < |v]. (70)
Equality occurs iff v(0) = a + 0%

vl

Proof. As C" is a convex cone and () € C* for all 6 € [0, 6], it follows that

0
v= / ¥(0)do € C*.
6=0

For any 6 € [0, ], the reverse Cauchy-Schwarz inequality (65) implies that

—(3(0),v) = [(3(8), )| = [3(O)] - [v] = [o].

Hence

0

0
o =) == [ (00000 [ jolas = o -,

=0
and therefore 6 < |v].
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Remark. In physical terms, Claim 4.30 says that if b —a € C™T, then among all
material particles that experience both a and b, the free particle will record the maximal
proper time between the events. For example, fix a frame (0, B) where B = [eg, . .., eq4].
Let 0 < X\ < 1 and consider the material particles (mg, 1), (Mg, v2) where

PR 0<f<1
M7 o+ B 0929 1< <2,

and

Y2(0) = 0 + e
for 0 <60 < JﬁT Both particles experience o and o + \/% The first particle’s
journey takes 2 time units, while the second particle’s journey takes \/%

Definition 4.31. Let (mg, ) be an R-particle. The relativistic Velocity, Momentum,
and Force are given respectively by v(0) = (), p(0) = mo¥(0), and f(0) = W.
Let (mg,7y) be an R-particle. Given a reference frame (0, B) where B = ey, ..., €4
write y(0) = o + Z?:o x;(0)e;. The classical velocity, momentum and force of the
particle with respect to the frame are defined as follows. The classical velocity is

d 0
ve(0) = ; '0<(9>) e;.

8.

8

Note that #(6) = (1 — |v.(8)|?) 2, and that
0(0) = io(0) (0 + 0.(6))
Let m(0) = moio(@). The classical momentum is
pe(0) = m(0)v.(6).

Thus
p(0) = m(0)eg + pe(0).

The classical force is
~dpc

- d.ﬁL’O.

fe(0)

Thus
f(0) = 1i(0)eo + do(6) fe(6).
Now (v(#),v(6)) = —1 implies that

(£(6),v(6)) = (rm(0)eq + d0(0) fo(6), E0(0) (€0 + ve(H)))
a0 (0) (= (0) + 20 (0)(fe(0), ve(0))) -
It follows that 1(0) = 2¢(0)(fe(0),v.(0)). Therefore
F(0) = 30(6) ({£e(6), ve(D))eo + fo(0))- (71)

20
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5 Differential Forms - A Brief Introduction

Let Ay = conv{e, ..., e} be the standard k-simplex, where ¢y = 0 and ey, ..., e are
the first k& unit vectors in R>®. For 0 <1 < k+ 1, let ¢ : A, — Agy1 be the affine

map given by
N €;j 0< 7 <y,
eles) = { ejy1 < j<k.

Let I* = [0,1]*, be the standard unit k-cube. For € € {0,1},1 <4 < k + 1 define
Gie : Iy — Ii+q be the affine map

Gie(x1, .. x) = (X1, .o, i1, €, T4, o, Tg).

Let M C R™ be an open set. A singular k-simplex (k-cube) in M is a smooth map
T : Ay - M (T : I, - M). Let Sp(M) (Cx(M)) denote respectively the free
R-modules generated by the singular k-simplices (k-cubes). The differential Oyyq :
Sk+1(M) — Sk(M) is given by

k+1
1T = Z(—l)iT 0 €.
The differential 041 : Crr1(M) — Cr(M) is given by

k+1 1

Op1 T = Z Z(_l)HET O Pjc-

1=0 =0

Let U be an open set in R*. For a differential form

W= Z ar(xy, ... xp)dxy, A~ ANdxy, c OF(M)

I={i1<<ip}

and a smooth map 7' = (T1,...,T,,) : U — M, define

/Tw_

Theorem 5.1 (Change of Variables). Let M C R", N C R™ be open and let f :
M — N be a smooth map. Then for any ¢ € Cr(M) and w € QF(N)

Theorem 5.2 (Stokes Formula for singular cubical chains). For any w € QF(M) and

cE CkJrl(M)
/dkw :/ w. (73)
c Okt1c

ol

TG,
/ 1(T(u)) Lo, )( ) duy - - - duy.
uelU

U Lo u
I={i1<--<ip} b k)



Proof. It suffices to establish (77) for M = R**! and for T = Id € C;;(M), where
Id : ¥t — M is the identity map Id(x) = x. Indeed, if N is open in R", w € QF(N)
and T : I**' — N, then

/dkw:/ dkw
T Told

— /Id T*(dyw) = [ dp(T"w)

(74)
:/ T*w:/ w
O 11d T (Ojoy11d)

- / w= / @,
O 41 (TId) O T

We now check the case T'=1d : "' — M = R*"! and w € QF(R¥). By linearity, we
may assume that w = a(zq,...,zp)dey A Adx; A -+ - A dzgyr. On one hand

—

—

k+1
/de—/ d:pj/\dxl/\ “Adzi A AN dxgy
—1 d{L‘l N - dl‘k_H (75)

= (-1)"

8:6Z
1
= <_1)Z Z/ <_1)Ea(u17 sy U1, €, UGy - - 7uk)du1 e duk
e=0 (u1 ..... uk)efk
On the other hand
E+1 1
W= ]+e/
/<9k+11d ; ; dre
ktl 1 8<(¢’,e)17"'7@7"'7(¢’,6)k+1>
D 3 e L
j=1 e=0 uelk 0 (Ul, e ,uk)
1
— ( 1)’+5/ a(uq, Ui1y €, Ujy -+ oy Ug)duy - - - dug
e—0 u=(uq,...,u)€I*

Comparing (75) and (76) we obtain
/ dpw = / w
1d gy 11d

Corollary 5.3 (Stokes Formula for singular simplicial chains). For any w € QF(M)

and ¢ € Sg11(M)
/dkw :/ w. (77)
c Okt1c

o2

|



Suppose (-, ) is a scalar product on an n-dimensional V', and let B = [eq,...,¢,]
be a fixed orthonormal basis of V. Let dxy,...dx, be the dual basis of Q"(V), and
let w = dxy A--- ANdx,. Let M be open in V. Define the Hodge duality map
x = *y 0 QF(M) — QF(M) as the C°(M)-linear map given on basis elements by
(dz) A (dxy) = (xdx;,dxy)T. For example, if V' is the 4-dimensional Lorentz space,
then *(dxg A dxy) = —dzy A dzs. The codifferential d* : QF(M) — QF=1(M) is defined
by d* = xdx.

For basic k-form w = dx;, A-- - Adx;, € QF(M) and a basic vector field A = % eTM
let

9 _
iNw=Y (=1 <— da:il> dai, N Ndzg, N -+ AN dx,

)
8.’,13']‘

~
> |l >
=

(_1)£+15j,i4€jdxi1 ARERNA d/x; A ANd, .

/=1

Extend this definition by linearity over C*(M) to general forms w € QF(M), A € TM.

5.1 Maxwell Equations

Throughout this section we work in 4-Minkowsky space, i.e. d = 4. Let B =
[eo, ..., e3] be a fixed orthonormal basis of V' and identify =z = (x,...,x3) with
S wiei. Consider a unit charge that travels with a path (f). Let f.(d) denote
the classical force acting on this test charge. The Lorentz force formula states that

fe(0) = E(7(0)) + ve(0) x B(v(0)) (78)

where E(z) = 30| Ei(z)e; is the electric field and and B(z) = 3.7, Bi(z)e; is the
magnetic field. We next reconstruct the actual force f(6). By (78)

(fe(8),0e(0)) = (E(y(0)) + ve(0) x B(7(6)), ve(0))

= (E(7(0)),v.(0)). (79)

Hence, by (71)

F(8) = @0(0) ((fe(0), ve(0))eo + fe(0))
= @0(0) ((E(7(0)), ve(0))eo + E(7(0)) + v(6) x B(v(6)))

For z € V define a linear mapping F : V — V as follows. For v = (vo,...,v3) €V let

F(z)(v) = <Z E,(x)v,) eo + voE(x) + (Z viei> x B(x). (81)

i=1

(80)

Then



Let F(-,-) be the bilinear form on V' x V given by F(u,v) = (u, F(x)v). Let

0 —-E, —F, —F4
E, 0 By —B,
E, -Bs 0 B
E; By —-B, 0

F=F(z)= (83)

Then
F(u,v) = (u, ]}(x)v)

3
= <U7 (Z v i, vo By 4 09 By — v3 By, vo By + v3By — 01 B3, vo s + v1 By — U231> >
i=1

=u'Fu.

Let S = span{ey, e, e3}. Note that for 1 < j < 3, the Hodge duality operator xg
satisfies xgdx; = dxy, A dxy, where (4, k, () are a cyclic shift of (1,2, 3). In the sequel,
we identify F with the 2-form

1
3 Z F odxy N\ dzy = ZE dx; A dxy + ZB (xgdz;).
.

7j=1

F is called the FElectromagnetic Tensor. The assumption that the Lorentz formula
holds in each reference frame implies that F is globally defined, namely if F’ is the
2-form constructed according to the reference frame [ef, ..., e5], then F = F'.

Claim 5.4.

dF = Z (— + V x E) (xgdxj) N\ dxo + (div B)dxy A dxg A dos. (84)
8.T0 j

d*F = Z ((v x B); — gfo) dx; — (div E)d. (85)

Proof. Note that xdx, Adxy = —dxo ANdxs, xdxeo Ndrg = —drs Adr, and xdrs Adxg =

—dx1 A dxy. Furthermore xdxo A drxs = dxi A dxg, *dxs N\ dry = dxy N drg and
xdr1 N\ dxy = dxs N dxg. hence

3
*F = —(Ell‘g AN dl‘g + Egdl‘g AN dl‘l + Egd[L‘l A dl‘g) + Z Bldl‘l A d[L‘Q.

i=1
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Let J denote the electric current vector field and let p denote the charge density. The
Maxwell’s equations are the following relations between F, B, J and p.

div B = 0, (86)
OB
E=_—_
V x 5 (87)
div E = 4mp, (88)
E
VxB:%—t+4ﬂJ. (89)

Remarks. Fq. (86) asserts that there are no magnetic charges. Eq. (87) is Faraday’s
Law. Eq. (88) is Gauss Law. Eq. (89) is Ampere-Mazwell Law.

Let ,
jb — —pdl‘o + ijdl‘k

k=1
Claim 5.4 implies that

(divB:O & VxE:—%—f) ~— dF =0

and

OFE
(divE:47rp & VXB:§+4WJ) — d'F=4nJ"
Using the fact that the 2-form F is globally defined, we will now show that (86) implies
(87), and that (88) implies (89). We start with the first case. A flat M in a Lorentz
space V' is spacelike if it is a translate of a spacelike linear subspace of V.

Proposition 5.5. Let M be an open set in an n-dimensional Lorentz vector space V.

Let 0 <k <n—1andlet 0 # w € Q¥(M). Then there erists a spacelike hyperplane

H C V' such that the inclusion igny - H N M — M satisfies i5yqpw 7 0.

Proof. Choose an orthonormal basis [e1, . . ., e,] of V and let w(z) = Zle([n]) ar(z)dz;.
k

We consider two cases:

(i) as(z) # 0 for some I € (["}2{1}). Let H = p + span{e;} 5, and define ¢ from a

small neighborhood of 0 € R"™ to M by ¢(y2,...,yn) = p+ > oyi€;. Then H is

spacelike and

P iy = Q'w = Z ar (P + Z?/z‘%) dyr # 0.
i—2

[e([n]\k{l})
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(ii) as(x) =0 for all I € (Mk{l}). Then there exist Iy = {1 =iy,i2...,1} and p € M
such that ay,(p) # 0. Let m & Iy and let H = p + span{e; + 2e,,,€9,...,€m, ..., €n}.
Define ¢ from a small neighborhood of 0 € R"*! to M by

¢(y17"'7%7"'7lyn):p+y1(61+26m)+ Z Yi€;.
Then

PTipnpw = P'w = Zal <p +yi(er + 2en) + Z yi6i> dyr # 0.

lel 2<i#£m

O

Corollary 5.6. Ifdiv B = 0 in every reference frame, then dF = 0 and hence Vx FE =

OB
—5a, In every reference frame.

Proof. Let M be a spacelike hyperplane in V' and write M = w+U where w € V and
U is a spacelike linear hyperplane. Let [eq, e1, €2, €3] be a reference frame of V such that
U = span{ey, ey, e3}. Then there exists a T' € R such that M = Tey+span{ey, ez, e3}.
Let (xg, 1,2, x3) be the coordinates corresponding to the above frame. Eq. (84)
implies that ¢3,dF = div Bdzy A dzs A dxs = 0. Proposition 5.7 now implies that
dF = 0.

We now show that (88) implies (89).

Proposition 5.7. Let M be an open subset of an n-dimensional Lorentz vector space
V. Let 1 <k<nandlet()+#we€ Qk(V) Then there exists a timelike vector v such
that i(v)w # 0.

Proof. Choose an orthonormal basis [ey, . . ., e,] of V and let w(z) = Zle(["]) ar(z)dzry.
k

We consider two cases:

(i) as(x) # 0 for some 1 € I € ([Z]). Then

ile])w = — Za;d:pj\{l} # 0.

lel

(i) ar(z) = 0 for all I € ([Z}) such that 1 € I. Choose Iy = {i1,12...,ix} C [n] \ {1}
and p € M such that a;,(p) # 0. Then 2e; + 2¢;, is timelike and

i(2e1 + e )w = i(e;, )w = Za;(az)i(eil)daz[ # 0.

e
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Corollary 5.8. Ifdiv E = 47p in every reference frame, then d*F = 47 J° and hence
VxB= g_:zi + 4mJ in every reference frame.

v

Proof. Let 0 # v be a timelike vector. Let [eg, e1, €2, €3] be a frame such that ey = o

Eq. (85) implies that

3
d'F—4rJ" =y <(v x B); — % — 47TJ]») dr; — (div E — 47p)dzg

X
i=1 0

The assumption that div £ = 47p in this frame implies that
i(v) (d*F — 4rJ") = —|v|(div E — 47p) = 0. (90)

As (90) holds for any timelike v, it follows by Proposition 5.7 that d*F = 477" and
therefore also

Vsza—E+47TJ.
8l‘0

6 Relativistic Wave Equations

As we saw earlier, a closed quantum system is associated with a Hilbert space H,
where the points of the projective space P(H) are in one to one correspondence with
the states of the system. An automorphism of the system is a bijective mapping

¢ : P(H) — P(H) such that if 0 # u,v € H and «’ € ¢([u]), v" € ¢([v]), then
|(w, )] (', 0)]

ful - o /] - o]

Theorem 6.1 (Wigner). Any such automorphism ¢ is of the form o([u]) = [Au]
where A : H — H is either unitary or anti-unitary.

Let 7: G — Aut(P(H)) be a representation of a connected Lie group G on P(H).
Theorem 6.1 implies that there exists a mapping p : G — U(H) and a function
a: G x G — R such that 7(g)([u]) = [p(g)(u)] and

'o(g1)p(g2)- (91)

for all g1, 92 € G. Such p is called a projective unitary representation of G on H. A
quantum system H is an elementary relativistic free particle, if H is an irreducible pro-
jective unitary representation of G, i.e. if there are no 0 # H, ; ‘H that are invariant
under G. At this point we should specify G and study its projective representations.
As a first step, let G = P be the Poincaré group, i.e. the group of symmetries of
spacetime. We first recall the definition of P and some of its properties.

pg1gs) = €092
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6.1 Geometry of the Lorentz and Poincaré Groups

In the present chapter we switch the sign convention to (+ — ——). Thus Minkowski
space is M = R'? is R* with the indefinite quadratic form (+ — ——) metric, i.e. if
x = (20, 1,22, 73),Y = (Yo, Y1, Y2, y3) then

3
(2,y) = oyo — Z ZilYi-
i=1

Let ||z||> = (z,2) = 22 — 32 22 Let = diag(l,—1,—1,—1) € GL(R"). The

=11

Lorentz group L = O(1,3) is defined by

L={B e GLR"Y : | Bz|?® = ||z||* for all z € R'}

= {B e GL(R") : B"yB = 1}. (92)

The Proper Lorentz Group is the connected component of I € L:
L’ ={B = (Bjj)};_g € L: By > 1,det B =1}.
Claim 6.2.
(i) L° is diffeomorphic to R® x SO(3).
(ii) SO(3) is diffeomorphic to RP3.
(1ii) SL(2,C) is diffeomorphic to S® x R3.

Proof. (i) Let H = {z = (20,...,23) € R" : (z,2) =1, 19 > 1}. The map
x — (71, T2, 23) is a diffeomorphism of H and R?. Define 7 : LY — H by 7(B) = Bey.
Then 7 is onto: any vy € H can be completed to an orthnormal basis v, vy, v9, v3 such
that B = [vg, vy, 2, v3] € LY. Then

L (vo) = {B~ H Sx] :AeSO(3)}.

Hence LY is an SO(3)-bundle over H = R3. As H is contractible it follows that L° is
diffeomorphic to SO(3) x R3.

(i) Let B3(m) C R? be the closed ball of radius 7. Define f : B3(w) — SO(3), by
f(0) =TI and for 0 # u € B3(r) let f(u) be the rotation with angle |u| around the ray
RT - u. Tt is clear that f is injective on the interior of B3(r), while f(u) = f(—u) for
|u| = 7. Thus f induces a diffeomorphism RP? — SO(3).

(iii) The map 7 : SL(2,C) — C? — {(0,0)} given by

([ea)= 1]
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is a PFB with fibre C. It has a global section s : C* — {(0,0} — SL(2, C) given by

S<[a]):[a _j]
c c ¢
~
where v = |a|? + |c|?. Tt follows that
SL(2,C) = (C* - {(0,0)}) x C = 5 x R’.

|

Let H(2,C) denote the space of complex Hermitian 2 x 2 matrices. We identify R'?
with H (2, C) via the map

To+x3 T1— 1T9
Ty +1iry To — T3

x = (xo, T1, T2, T3) = T =
Note that det z = (x,z). Define a homomorphism ¢ : SL(2,C) — GL(H(2,C)) by
O(A)(x) = AzA"
Then for any A € SL(2,C) and z € H(2,C)
(0(A)(2), 9(A)(z)) = det ¢(A)(z) = det (AzA") = detz = (z, ).
This, together with the connectivity of SL(2,C), imply that ¢(A) € L°.
Proposition 6.3.
(a) ¢ maps SL(2,C) onto L°, with ker ¢ = {+I}.
(b) ¢ maps SU(2) C SL(2,C) onto SO(3) C L° with ker ¢ = {£I}.

Remark: By Claim 6.2, SL(2,C) = 5% x R?. Hence SL(2,C) is the universal cover
of LY. Similarly, SU(2) = S? is the universal cover of SO(3) = RP3.

The Poincaré Group is the semidirect product P = L% x R'3. As defined earlier, an
elementary relativistic free particle is an irreducible projective representation of of P.
In the next sections we will study some of these representations.
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6.2 Tempered Distributions - a Brief Summary

Definition 6.4. The Schwartz Space S(R"™) consists of all C*° complez valued func-
tions f on R™ such that ||2°D*f|. < oo for all o, 8. For example P(z)e " ¢
S(R™) for any polynomial P(z) and a > 0. A Tempered Distribution is an element
of S'(R™), the space of continuous linear functionals on S(R™). ILe. a linear map
T :S(R") — C such that there exist m,n and C' that satisfy

|T(f)| < CSup|a\§m,|ﬁ\§n||xﬁDaf”oo
for all f € S(R™).

Examples.

1. If g is a polynomially bounded measurable function, i.e. (1+ |z|*)Ng(x) € L'(R")
for some N, then the functional T, given by Ty(f) = [ f(x)g(x)dz is in S'(R™).

2. If pu is a measure on R™ such that [ (1+ |z*)"Ndu(x) < oo for some N, then the
Junctional T), given by T,,(f) = [, f(x)du(x) is in S'(R™).

Definition 6.5. Let T € S'(R") and 1 < k < n. The differential 0,7 is given by
KT (f) = =T (0f)-

Examples.
1. Ifg € S(Rn) then 6kTg = Takg.
2. Let f = 1jp.«) be the Heaviside function. Then 0T = 0.

Let (-, -) be the scalar product in R" given by (z,y) = > }_, €x2xYs.

Definition 6.6. The Fourier Transform of f € S(R") is the function F(f) € S(R™)
given by

W) = Gy | ) o
Claim 6.7. Let f € S(R™). Then
7 (55 ) )= o (),

OF(f)
opP

(93)

(p) = (=1)"'"F (2" f) (p).

Definition 6.8. The Fourier Transform of T' € S'(R") is the map on S(R™) given by
F(T)(g) =T(F(g)) for all g € S(R™).

Claim 6.9. IfT € S'(R"™) then F(T') € S'(R™).
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6.3 Projective Representations of P

Let G = SL(2,C) x R, Tt follows from Proposition 6.3 that G is a universal cover
of P.

Theorem 6.10 (Bargmann-Wigner). Let n : P — U(H) be a unitary projective
representation. Then there exists a unitary representation p : G — U(H) such that

[p(9)u] = n(9(9))[u] for allg € G and 0 # u € H.

The notion of induced representation described in Subsection 1.6 for finite groups,
can be extended to certain families of infinite groups. Let G be a locally compact
second countable group, and let H be a closed subgroup. Let A : H — U(W) be
unitary representation of H. Suppose that X = G/H carries a G-invariant measure
p. Let g =gH € X. Let Cy (G, W) denote the space of Borel maps s : G — W such
that

s(gh) = Ah™")s(g) (94)
for all g € G, h € H and such that
sl = [ Js(o)Pduta) < . (9
r=gHeX

Note that (94) and the unitarity of A imply that |s(g1)| = [s(g2)| if 1H = ¢2H,
hence the integral in (95) is well defined. The Induced Representation n = Ind§\ :
G — U(Cy.(G,W)) is given by n(g)s(¢’) = s(g'¢) for all g,¢ € G. If W is
finite dimensional then Cy (G, W) can be identified with a space of sections of a
certain vector bundle as follows. Let ~ be the equivalence relation on G x W given
by (g,w) ~ (gh, \(h~)w) for all (g,h,w) € G x H x W. Let W) be the quotient
space (G x W)/ ~. Denote by [z,w] the equivalence class of (x,w) € G x W. The
projection map [g, w] — [g] = gH defines a vector bundle over X = G/H. Define an

action of G on G/H and on Wy by g(zH) = gzH. Define an action of G on G x W
by g(z,w) = (gz,w). Clearly, if (z1,w1) ~ (22,w2), then g(z1,w1) ~ g(z2, ws).
Thus we get an action of G on W,. This action gives rise to a representation p of
G on the space I'(W)) of square integrable sections of W), given on a o € I'(W)) by
p(9)o(z) = go(gz). T : Cy\(G,W) — T(W)) by Té([z]) = [z, ¢(x)]. Note that T
is well defined, i.e. if [z1] = [z5] then x5 = x1h for some h € H and thus
(22, d(2)) = (w1h, d(21h)) = (217, A(A™) (1))
and hence (xg, ¢(x2)) ~ (z1, ¢(21)).

Claim 6.11. T is an isomorphism and the following diagram commutes:

Cux(G,W) — T(W)

n(g)l lp(g)

Cyr(G, W) - T(Wy)
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Proof. Let ¢ € Cy (G, W) and let z € G. Then

p(9)To([z]) = g(To(g ' [2]))
=glg 'z, 09 ') =[x, ¢(g )]
= [z,n(g9)p(x)] = T (n(9)9) [z]

|

In view of Claim 6.11 we will identify I'(W)) with Cy A(G, W) and the representation
n with p = Ind§\.

We now describe a situation where the space of sections I'(WW)) can be replaced by a
simpler space. Suppose G acts on a space X and H = Stabg(zg) for some xy € X.
Let A : H — U(W) is a unitary representation of H and suppose there exists a (not
necessarily unitary) representation 7 : G — GL(W) such that 7(h) = A(h) for all
h € H. Define ¢ : W), — X x W by

¥ (lg, w]) = (920, 7(9)w). (96)
Note that ¢ is well defined vector bundle isomorphism. Recall that G acts on W)
by ¢'[g,w] = [¢'g,w]. Define an action of G on X x W by ¢'(z,w) = (¢'z,7(g")w).
Then v is G-equivariant. we will identify I'(M x W) with the space C'(M, W) of all
tempered W-valued distributions on M. Let ¥ : [(W)) = Cy (G, W) — T'(M x W)
be given by V¢(azrg) = 7(a)p(a). Note that U is well defined: if a’zy = axy then
a' = ah for some h € H and therefore

7(a')p(d') = T(ah)p(ah) = (r(a)A(h)) (A(h~")d(a)) = T(a)d(a).

The above reduction will play a key role in deriving the Dirac equation in Subsection
6.4.

The method of constructing the irreducible representations of semi-direct products,
described in subsection 1.7 for the case of finite groups extends to certain Lie groups,
in particular to G = H x N, where H = SL(2,C) and N = R"®. The character group
R!3 consists of all continuous maps R — C* and will be identified with R"? as fol-
lows: An element p € R"? gives rise to the character x, given by x,(z) = exp(i(p, z)).
It follows that the action of SL(2, C) is given by A(x,) = Xa@). We next compute the
orbits of SL(2,C) on R"3 and the corresponding stabilizers. Let m? = (p, p) = det p.
Clearly, any orbit is contained in a level set of m?. For example, fix m > 0 and

consider the orbit of
| m 0
P=1 0 m|
Then A is in the stabilizer of p iff
m 0 « | m 0
Al owa=10n)

ie. iff AA* = I, namely A € SU(2). In general we have the following orbits and their
stabilizers.
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Orbit Representative | Stabilizer

Xp={peRY :(p,p)=m*>0, po>0} [73 7?1] SU(2)

Xh={peRY:(p,p)=m*>0, po <0} [_m 0} SU(2)

Xy ={peR": (p,p)=0, po>0} [3 8] E(2)

Xo ={peRY:(p,p)=0, po <0} [_02 8} E(2)
{0} [ 8 8 ] SLy(C)

Vo= {p € RY : (p,p) = —m? > 0 } [ iy ] SLa(R)

where

E(2):H‘f ebw} : GER,beC}.

6.4 Massive Particles

In this section we consider representations that arise from the orbits X}, where m > 0.

The stabilizer K = SU(2) has for each s € {0,3,1,3,...} a 2s 4+ 1-dimensional rep-

resentation on the space V; of homogenous polynomials in C[zq, 23] of degree 2s. Tt
follows that for each half integer s and m > 0 we get an irreducible unitary represen-
tation of (G, where m corresponds to the rest mass of the particle, and s to its spin.

We first construct an invariant measure u on X,-. Fix a > 0. For a > a let
D, ={p=(po,p) € RxR*:a < pj— |Ip|l* < a,po > 0}.

For f € S(R'?) let
Fifa)= [ty
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and let J,(f) = %. Clearly F(Af,a) = F(f,a) and hence
Jo(Af) = Ja(f) (97)
for all A € L°. Let ¢ : [a,a] x R® — D, be defined by
o(u.p) = ((u+ [pI*)?,p).

Then

o= [ [ ) pip i

((u+ lplP)? ,p) dp
:/ / du
u=a J pcR3 U"—”p” )

1
i | f ((a+lIp|*)?,p) dp
T et 20at )
Fix m > 0. Viewing J,,» as a positive linear functional on S(R'?), there exists a
measure dy,, on R such that

It follows that

Teh)= [ s

Thus

/R Hrnte = /R f <(7:<m+2 +pp)2’>t)) ® (98)

Eq. (98) and (97) imply respectively that du . is supported on X ;I and is L° invariant.
We claim that the functional 7+ on S(R"?) is in S'(R"?). Indeed, (98) implies that

fpeRl,P,(l + 30 ) Ndut (p) < oo for any N > 5/2.

Spin s = 0: The Klein-Gordon Equation

Here A is the trivial representation and therefore the bundle W) is the trivial line
bundle over Xt and T'(W,) = L*( X}, 1} ). We next obtain a more concrete realization
of this representation. Let

o 0 9
dx2 0z  9a2 O

0 =

Let f € L*(X,5, ). Then ((p,p) — m?)fdu} = 0. Applying the Fourier transform

and using (93), it follows that the distribution 1) = f/d,u\+ satisfies the Klein-Gordon
equation

(O 4+ m?) ¢ = 0. (99)
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Spin s = %: The Dirac Equation

101 10— |10

D= 10| > 271 o] BT o -1
Then o7 = 1 for all 1 < k < 3 and oyo, = —0yoy, for all 1 < k # ¢ < 3. Define the
Dirac matrices by

Recall that the adjoint of a matrix A = l CCL Z ] is adj(A) = [ d _ab ] Let

0 [2 0 — 0k
= = < k<
Yo {12 0 ] and g [O'k 0 ] for 1 <k <3.

Then 72 = ¢ for all 0 < k < 3 and vy = —yy, for all 0 < k # £ < 3. Let

p = (po, p1, P2, p3) € RY3. For a matrix P € My(C) let v(P) = l ]2 adJéP) ] . Then
s 0 adj(p)
> o= l 0 ] =(p)- (100)
k=0 b

The representation A\ of H = SU(2) corresponding to s = % is just its standard

representation on W = C?, i.e. \(A)w = Aw for all w € WW. Consider the direct sum
representation A @ X on W @& W = C* given by

A B N)(A)(wy, ws) = (Awy, Awy),

1.e.

A0
(A@)\)(A)—{O A}'
Let 7 be the representation of G = SL(2,C) on W @ W given by

r(A) = { S ] .

Note that
YAPA") = r(A)y(P)r(A)~ (101)
for all A, P € SL(2,C), and
T(A) = (A D N)(A)
for all A € SU(2). We next embed I'(W)) in I' (W @ W)ga):

T(Wy) 2 {p=(d1,02) : G > WDW : ¢i(gh) = ANh )g(g) fori = 1,2 & ¢ = o}
~{sicowaw s on = a0 & ([ 0| )o=mo)

0 m

m 0
0 m

:{¢er((WeBW)A@A)27(l Dczﬁ:mczﬁ}cF«W@W)x@A)-
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Using the method of Subsection 6.3 with xy = [ rg ], we observe that the iso-
morphism
is given by

W <A [ oy ] A*) — 7(A)b(A)
for A € SL(2,C). Tt follows that
U (A { ey ] A*) — 7(A)p(A)

¢

|
|

et (a0 | a) ey

sl 2])(ol 214)

} A* =pand ¥¢ = f, it follows that

0
m
0
m

) (4)
) F(A) T (A)p(A) (102)

Writing A l Tg T(r)z
v(p)f(p) =mf(p). (103)

Multiplying (103) on the left by ~(p) we obtain

((p,p) —m®) f(p) = 0.

It follows that f(p)du!, may be viewed as a tempered distribution on R"?. Using
(103), it follows that u = F (f(p)du,),) satisfies the Dirac Equation:

3

) Z VRO = mu. (104)
k=0

Abbreviating @ = Zzzo exYkOr, the Dirac equation reads idu = mu. Note that
(‘2?2 = [12, hence again the Dirac equation implies the Klein-Gordon equation.
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7 Introduction to Quantum Computing

7.1 Classical and Quantum Circuits

A classical circuit is a directed graph with n input bits x4, ..., z, and m output bits
Y1, - - -, Ym, where in each internal vertex v there is a Boolean function, taking as inputs
the bits coming from the edges directed into v, and outputing the result to the edges
directed from v. It is assumed that the in-degree of each vertex is bounded, say by 2,
i.e. we allow Boolean functions with at most 2 inputs. See Figure 7 for an example of
a classical circuit. The complexity of the circuit is the number of gates, i.e. internal
vertices.

Figure 7: Classical circuit

We now define quantum circuits. Recall that a qubit is a state in C%. Let ¢y =
(1,0),e; = (0,1) be the standard basis of C%. For € = (eq,...,¢€,) € {0,1}" let e, =
e, @ - -®e.,. An d-qubit quantum gateis a unitary transformation in U(H®?) = U(2%).
There are of course just two classical unary gates: Id(¢) = € and —(¢) = 1 —e. On the
other hand, all elements U(2) are quantum unary gates. Two commonly used unary
01

10 ] , and the Hadamard gate

operators are the counterpart of negation o% = l

1 1
1
H_\/i 1 —1

if the projection of Ue,. on the i-coordinate is e, for any ¢« & I. A quantum circuit
with n-qubits input is a sequence of unitary operators (Uy,...,U,,) in U(H®") such
that each U; depends on a bounded number, say at most 3, of the coordinates. The
complexity of the circuit is the number m of operators involved.

. An operator U € U(H®™) depends on the coordinate set I C [n],

7.2 Generalized Toffoli Gates
The controlled not function CNOT:{0,1}? — {0, 1}? is defined by

T, x1 =0,
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The Toffoli function CONOT : {0,1}* — {0, 1}? is defined by
(21, 72, 73) 1129 = 0,
CCNOT(SL’l, Ta, .Tg) =

(.Tl,.TQ, 1— 1’3) T1T9 = 1.

Both CNOT and CCNOT are permutation on their domains, and hence can be re-
garded as quantum gates. More generally, for U € U(H), we define the generalized
Toffoli gate A¥(U) to be the quantum (k + 1)-gate whose action on the basis elements
{ec:e=(e1,...,ex1) € {0,1}F} is given by
/\]‘“(U)eE =€, ® Qe UL e,
B e, €1 e, =0, (105)
e ® - ®e, ®Ue,, € =1

Example 7.1. Let X,Y € U(H) such that
1 0

S I R R

Figure 8 depicts a realization of the Toffoli gate N*(ic®) as a product of 4 unitary
2-ary gates, A(Y 1), A(X™H, A(Y) and AN(X).

XYXlY ! =io” = { 0 1 ] .

For example:

Py o - X9

N

Figure 8: A%(i0®) as a product of four 2-ary gates

Claim 7.2. The generalized Toffoli gate A*(ic®) can be realized as a product of O(k?)
unary and 2-ary gates.

Proof: see exercise 22.

7.3 Grover’s Algorithm

Let N = 2" and let w € {0,1}". Suppose that f : {0,1}" — {0,1} such that
f(w) =1, and f(e) = 0 for € # w. Finding w classically requires N queries of f.
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Grover’s algorithm is a quantum algorithm that determines w with high probability
by executing O(v/N) operations. We need some preliminaries. Let % = C? and let
H € U(H) be the Hadamard operator. Let U, € U(H®" ® H) be given by

Us(ec ®ej) = ec @ €y ()

We view U, as the oracle for f. In the classical setting, we can ask the oracle whether
e = w and get a yes or no answer. In the quantum setting, the oracle provides us with
a black box that computes the operator U,. We are of course not allowed to look into
this black box, never the less it is crucial that the oracle constructs it with at most
2-ary gates whose number is polynomial in the size of the input. Let w = (w1, ..., w,),
and let

A _ (O_z)l—wl R ® (O_x)l—wn ® ]

Then
U,=A-N"(c%) - A.

Note that knowing w, the oracle can construct A as a product of n unary operators.
Moreover, A"(c”) is a product of O(n?) 2-ary operators. Let

1
= H®e¢y = — Z Ce-
\/N ec{0,1}"

Let v, = e, ® Hey, vy, = ¢ ® Hey, and W = span{v,, vy }. Then
Uyv, = U,(e, ® Heq)

=U, <ew ® %(60 - 61)) (106)

=e,®—=(e1 —ey) = —e, ® Hey = —u,,.

V2

Furthermore

Uwv¢ = Uw(@/) (%9 H61)

ec{0,1}n (107)
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Thus W is invariant under U,,, and the matrix representing U, with respect to the
basis {uv,,, vy} is

A, = { _01 _{iﬁ } . (108)

Geometrically, A, is the reflection in the plane W in the axis spanned by

1 1
S S — _
U.—Uw—m§€e®H61—m( vw+\/ﬁv¢>.
Indeed, by (108) A v, = —v,, and
Vw Vw
Uy Uy
02 |, 02 |,
Aypu
— Au (0
Figure 9: A, and A,
1
AUJU = ﬁAw (_Uw + \/NU¢)
1 2
= ——(w W(——w )) 109
7 <v + \/NU + vy (109)
1
— (v + VNvy) = .
Next, let Uy € U(H®" ® H) be given by
Uy = @os ~ Dol
Then
Uypv, = Uy(e, @ Hey)
(110)

2 2
=—e,®He; + =y ®Hey = —v, + —=0
VA VN
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and

Upvy = Uy(Y @ Hey) = ¢ @ Hey = vy, (111)
Thus W is invariant under Uy, and the matrix representing U, with respect to the
basis {vy,, vy} is
-1 0
S
VN

Geometrically, Ay is the reflection in the axis spanned by vy. Indeed, Ayvy = vy and

2 1 2 1
v¢-A¢vw:v¢-<—vw+ﬁv¢>:—\/NJF\/N:\/N:vw-vw.

The Grover operatoris G = UyU,. Thus G is the anti-clockwise rotation in the plane
W with angle 6, where g is the angle between vy, and v. Note that sing = (U, Vy) =

\/—%, hence # = 2 arcsin ﬁ Let
s 1
k=|——=|.
53]

Grover’s Algorithm:
e Generate ) = H®"¢y ® He;.
e Compute G*1.

e Measure G*y according to the orthonormal basis {e. : € € {0,1}"}, outputing
some e..

Proposition 7.3.

4
p := Pr[ Grover’s algorithm outputs e,] > 1 — ~

Proof. ¢ = cos (g) v + sin (g) V. It follows that

o —com (1 2) o) o s ( (k4 D).

Note that

hence



Therefore

')

w|>1

ot ({1+2)5) o -
— cos? 0 = cos” (2 (7))
(1 — 2sin? <arcsm <\/IN ))

9 2
_(1-2) o2
(1-%) =%

We next discuss the complexity of Grover’s algorithm.

Sl

(112)

Proposition 7.4. The Grover algorithm can be implement with O(n*v/'N) quantum
gates.

Proof. The first step, i.e. the generation of v is carried out by n + 1 application of
the unary gate H. Each iteration of Grover gate G' = U,U,, requires one call for the
oracle operator U,,, and an application of Uy, = (2¢¢* — I) ® I. Now

20" — I =2 (H®"eq) (H*"ey)" — I = H®" (2epef; — I) H".

It remains to show that the operator 2epef; — I can be represented as a product of
O(n?) unitary operators that depend on a bounded number of coordinates. Consider
the generalized Toffoli gate T' = A""1(c%) € U(H®"), i.e

Tec=eq @ @€,y @ Cepteroens-
Define Q, R, S € U(H®") by Q = (6®)®", R = I®""Y ® H and
S=Q-R-T-R-0Q.

Claim 7.5.
S =1 —2epeg. (113)

Proof. It suffices to check (113) on all e, for € = (€1,...,¢,) € {0,1}". Now
RQ<66) = €l—¢ X €l—en_1 ® Helfen-

It follows that if (ey,...,€,-1) # (0,...,0) then TRQ( ¢)
QRRQe. = e.. On the other hand, if (e1,...,€, 1) =0:=

= ( ¢) and hence Se, =
(0,...,0) then

S@gen = QRT (RQ@QEn)
= QRT (e1® Hey—,)

= (—1)176" QRRQGQ,en
= (=)' "ege, -

(114)
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Now @ and R are unary operators, and in Claim 7.2 it is shown that the Toffoli gate
T is a product of O(n?) unitary operators that depend on at most 2 coordinates.

|

7.4 The Classical Fourier Transform

Let GG be a finite group and let py, ..., p; denote the unitary irreducible representations
of G. We view p, as a homomorphism from G to U(V;), where V; = C%. Let
L(G) denote the linear space of complex valued functions on G. The convolution of

f,9 € L(G) is given by [ # g(z) = Sy f(1)9(y~'x). The mapping L(G) — C[G]
given by f — > _. f(z)z is an isomorphism of the algebra of functions from G' to C
with convolution, with the group algebra C[G|. The Fourier Transform of a function

f € L(G) is the function f on the set of unitary representations of G, that maps a
representation p : G — V,, to the endomorphism

f(p) =Y J(@)p(x) € End(V,). (115)

zeG

Claim 7.6 (Fourier Inversion Formula). For any x € G
1 « -
f(a) = i D ditr (Foom=). (116)
i=1
Proof.

e Z ditr (Flp)pi(a™))

= é D> ditr <<Z f(y)pi(y)> Pi($_1)>

L - (117)
=G Zdi > fwalyr™)
=3 g S dotur™) = f(a).
O

Claim 7.7. The mapping F : C[G] — [[,_, End(V4) given by

F = (Fo,, Fon)

is an isomorphism of algebras.
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Proof: The map F is clearly linear. Furthermore, if f =3 _. f(z)z,9=>" ., 9(x)x €
C[G], then for any representation p of G

Tglp) = (f *g(x))p(x)

zeG

=3 ey w)py)ply'x)

zeG yelG@ (118)

= (Z f(y)p(y)> : (Z Q(Z)P(Z)>
yelG zeG

= f(p)-3(p).
Claim 116 shows that F is injective. As
t
dim C[G] = |G| = ZdQ dim [ [ End(V4),
k=1

it follows that F is onto. By (116), the inverse Fourier transform is given by

FH AL, ... A)(x) = |_C1§'|Zditr (Aipi(z™)) . (119)

Define an inner product on C[G] by

=) fla)g(x)

zelG

Define an inner product on H2:1 End(V}) by

((Ay,...,A),(By,...,B)) = é > " ditr(AcBy).

Claim 7.8 (Parseval Formula). For any f,g € C[G]

(f,9) = (F(f), F(9))- (120)

Let p be a representation of G on a space V, and let V¢ = {v € V : p(g)v =
v for all g € G}. Let Py : V — VY denote the projection. The formula for projection
into isotypic subspaces implies that ) _. p(z) = |G|- Pyc. Let H be a subgroup of
G. The restriction of p to H is denoted by res%p. Let 14 denote the indicator function
of aset A C G. Then .

Ta(p) = S pla) = |H| - Pos. (121)

zeH
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Example 7.9 (Fourier Transform on Finite Abelian Groups). Let G be a finite abelian
group. Let G be the group of characters of G. By (115), the Fourier transform of
f € L(G) is the function fe L(G) given by f(x) = > e [(@)x(x). For a subgroup
H<Glet H-={yeG:x(h)=1forall h € H}. Then by (122)

Lr(x) = H| - 12 (x). (122)

7.5 The Hidden Subgroup Problem

Let G be a finite group and let K be a subgroup of G. Suppose there is a Hilbert
space H and an oracle that computes a function f from G to the unit sphere of H
such that f(g1) = f(g2) if 1 K = g2 K, and f(g1) L f(go) otherwise.

The Hidden Subgroup Problem: Compute a generating set for G.

We will first consider the simplest case G = F}. A subgroup K < G is a linear
subspace. Let d = dim K, then dim G/K = n — d. Suppose m = 2°=9_If we ask a
classical oracle for the value of f(g1),..., f(gm) for random elements ¢y, ..., g, then
with probability 1 — o(1), g1 + K, ..., gm + K will be distinct and hence we will not
be able to determine even a single element of K. The quantum situation is different,
and in fact there is a simple polynomial time quantum algorithm that determines K.
We may assume that f: G — {0,1}"¢ that satisfies f(z) = f(y) iff x —y € K. The
quantum oracle is the unitary operator U on (C?)®" @ (C?)®"=9) given by

Ulec ®ex) = e ® exyf(o)-
Simon’s Algorithm: Initialize S = (). Repeat 2n times the following steps:

Generate ) = H®"ey € (C?)®™.

Compute ¢ = U (¢ ® €).
Compute ¢ = (H®" @ [¢("=D) ¢,

Measure the left coordinate of ¢ according to the standard basis {e. : € € F5}
of (C?2)®", outputing some e,.

o S+ SU{e}.

Proposition 7.10.
Pr [S spans KL] >1-— 2—71
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Proof. Let G = Uf;d (9; + K) be the decomposition of G into cosets of K. We
proceed to compute the final state of each iteration.

1 1
¢:U(,¢)®€Q):U \/—NZGE®69 :\/—Nzee@)ef(e). (123)

eeFy ecFy

Hence

_ 1 n
= (H®n®]®(n d))¢: —N Z (H® 65) @ €f(e)

ecFy

N % > \/Lﬁ Y (=D | ®ep

ceFy AEFY
1 = 1
== > | = 2 (D ey | @y
\/N i=1 eeK \/N )\ng
1 2n7d (124)
=391 DORIERN 0 SEIAY ) s
i=1 \ \eF? ceK
2d 2n7d
T on ( > (—1)%'%) ® (i)
=1 \\eK<L
2n7d

1 1
=== a8 | =2 ()" e
2n7d 2nfd py

AEKL

It follows that measuring the left coordinate of ¢, we obtain a uniformly distributed
random element of K. It follows that

(27 1) -2 — 2

Pr [S spans Kﬂ =

22n(n—d)
(22n _ 2n7d71)n7d 1 n
n
>1——.
= on

|

We now turn to the HSP for general finite abelian groups. The approach is similar
to Simon’s algorithm. Let GG be a finite abelian group of order N, and let K be the
hidden subgroup. The oracle has a function f : G — G such that f(g1) = f(go) if
g1+ K =g+ K, and f(g1) # f(g2) otherwise. Let ¢1,..., gy and let xq,..., xn be
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arbitrary fixed numbering of the elements of G and @, respectively. Let H be an N-
dimensional complex Hilbert space with orthonormal basis {ey,...,ex}. If g = g;, let
g =¢;. If x = x;, let x = e;. The oracle provide us with a black box unitary operator
Ux € UH®H) given by Ux(g®@h) = g®h + f(g). This operator can be realized by

an efficient quantum circuit (details later). The Quantum Fourier Transform is the
operator F' € U(H) given on the basis vectors by

F(g) = %ﬁ S x(9)x.

xe@

HSP Algorithm for abelian G : Initialize S = (). Repeat r = 2log, N times the
following steps:

Generate ¢ = = > ; g.
Compute ¢ = Uk (¢ ® 0).

Compute ¢ = (F @ I™) ¢.

Measure the left coordinate of ¢ according to the standard basis {x : x € @} of
H, outputing some y.

o S+ SU{x}

Proposition 7.11.

1
Pr [S generates Kl] >1- N

Proof. Let m = % and let G = J", (g; + K) be the decomposition of G into posets
of K. We compute the final state of each iteration.

gb:UK(@/)@Q):LNZg@M.

geG

7



Hence

p=(FaIe
=(F®f")<\/%22®ﬁ>
geG
1 1
= — Y x(9x | ® fl9)
> m%w =%
=233 (Mo e £(0)
XE@gEG

- %Z >3 (xloi+hx e f(s0) Y
_ % 3 (Z X(h)) X ® (Z x(%)@)

Xeé\ heK

= % > x® (Z x(gi)f(gi)>

XEK+

:% Z X® (%ZX(%)M)

xeK-+

It follows that on measuring the left coordinate of , we obtain a uniformly distributed
random element of K+. Therefore

K+ 1
LSO

Pr[S tes K+ >1—
r[ generates }_ or N

7.6 Shor’s Factoring Algorithm

The efficient quantum algorithm for factoring, due to Shor, depends on a certain
special case of the abelian HSP that we now describe. Let N be an positive integer,
and let Z}, denote the multiplicative group of invertible elements in the ring Zy. For
an element a € Z%;, let ordy(a) denote the order of a in Z%, i.e. the minimal r» > 1
such that " = 1(mod N). Let

Ay ={a€Zy :ordy(a) =riseven & as # —1(mod N)} .
Claim 7.12. Suppose N = pq. Then:
(i) Pr[An] > 3.
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(i1) If a € Ay then
D = {ged(a® —1,N),ged(a® +1,N)} = {p,q}.
Proof. (i) Later.

(i) @ € Ay implies that B C {1,p,q}. However, if say p € B then a" — 1 =
(ag — 1) (ag + 1) is coprime to p, a contradiction.

O

Claim 7.12 facilitates a simple probabilistic factoring algorithm for N = pgq, provided
that we can efficiently find the order of an element:

e Choose a random element 1 <a < N — 1.

e Compute d = ged(a, N). If 1 < d then d = p or d = ¢ and we halt. Otherwise:
e Compute ordy(a) = 1.

o If ris odd or az = —1(mod N), go to the first step. Otherwise:

[ ]

{ged(az —1,N),ged(a? + 1, N)} = {p.q}.
Repeating the basic iteration s times, the algorithm succeeds with probability at least

1 —27% in factoring N.

We now show that finding the order of an element a modulo N can be achieved
by a variation on the abelian HSP. We first recall the following classical fact. Let k
be fixed. For n > 1 let

Dk<n) = ‘{((11, - '7ak> € [n]k : ng<a17' - ,CLk) = 1}|
Claim 7.13.

-1
.. . Di(n) ~1 1 —(k=1)
llyllr_l)g)lf e =((k) = Z—k >1-2 :

=17

Quantum algorithm for finding r = ordy(a).

Choose an integer M such that M ~ N2?. Let G = Zj; and let K = rZ); be the
hidden subgroup. Let f : Zy — Zj be given by f(x) = a*(mod N). For the sequel
we assume that M is divisible by r. We of course cannot guarantee this a priori, but
it turns out that choosing M ~ N? gives a sufficiently good approximation for r. Now
run the hidden subgroup algorithm for Zj,; and the above function f. The algorithm
outputs a uniformly chosen set {ay, ..., ax} in the subgroup rZ,,;. By Claim 7.13, the
probability that ged(ay, ..., ay) = ris > 1 — 27 k-1,
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