Maximal Generalized Rank in Graphical Matrix Spaces

Alexander Guterman * Roy Meshulam ${ }^{\dagger}$ Igor Spiridonov ${ }^{\ddagger}$

August 15, 2023

Abstract

Let $M_{n}(\mathbb{F})$ be the space of $n \times n$ matrices over a field \mathbb{F}. For a subset $\mathcal{B} \subset[n]^{2}$ let $M_{\mathcal{B}}(\mathbb{F})=\left\{A \in M_{n}(\mathbb{F}): A(i, j)=0\right.$ for $\left.(i, j) \notin \mathcal{B}\right\}$. Let $\nu_{b}(\mathcal{B})$ denote the matching number of the n by n bipartite graph determined by \mathcal{B}. For $S \subset M_{n}(\mathbb{F})$ let $\rho(S)=$ $\max \{\operatorname{rk}(A): A \in S\}$. Li, Qiao, Wigderson, Wigderson and Zhang (arXiv:2206.04815, 2022) have recently proved the following characterization of the maximal dimension of bounded rank subspaces of $M_{\mathcal{B}}(\mathbb{F})$.

Theorem (Li, Qiao, Wigderson, Wigderson, Zhang). For any $\mathcal{B} \subset[n]^{2}$

$$
\begin{equation*}
\max \left\{\operatorname{dim} W: W \leq M_{\mathcal{B}}(\mathbb{F}), \rho(W) \leq k\right\}=\max \left\{\left|\mathcal{B}^{\prime}\right|: \mathcal{B}^{\prime} \subset \mathcal{B}, \nu_{b}\left(\mathcal{B}^{\prime}\right) \leq k\right\} . \tag{1}
\end{equation*}
$$

The main results of this note are two extensions of (1). Let \mathbb{S}_{n} denote the symmetric group on $[n]$. For $\omega: \coprod_{n=1}^{\infty} \mathbb{S}_{n} \rightarrow \mathbb{F}^{*}=\mathbb{F} \backslash\{0\}$ define a function D_{ω} on each $M_{n}(\mathbb{F})$ by $D_{\omega}(A)=\sum_{\sigma \in \mathbb{S}_{n}} \omega(\sigma) \prod_{i=1}^{n} A(i, \sigma(i))$. Let $\mathrm{rk}_{\omega}(A)$ be the maximal k such that there exists a $k \times k$ submatrix B of A with $D_{\omega}(B) \neq 0$. For $S \subset M_{n}(\mathbb{F})$ let $\rho_{\omega}(S)=$ $\max \left\{\operatorname{rk}_{\omega}(A): A \in S\right\}$. The first extension of (1) concerns general weight functions.
Theorem. For any ω as above and $\mathcal{B} \subset[n]^{2}$

$$
\max \left\{\operatorname{dim} W: W \leq M_{\mathcal{B}}(\mathbb{F}), \quad \rho_{\omega}(W) \leq k\right\}=\max \left\{\left|\mathcal{B}^{\prime}\right|: \mathcal{B}^{\prime} \subset \mathcal{B}, \nu_{b}\left(\mathcal{B}^{\prime}\right) \leq k\right\}
$$

Let $A_{n}(\mathbb{F})$ denote the space of alternating matrices in $M_{n}(\mathbb{F})$. For a graph $\mathcal{G} \subset\binom{[n]}{2}$ let $A_{\mathcal{G}}(\mathbb{F})=\left\{A \in A_{n}(\mathbb{F}): A(i, j)=0\right.$ if $\left.\{i, j\} \notin \mathcal{G}\right\}$. Let $\nu(\mathcal{G})$ denote the matching number of \mathcal{G}. The second extension of (1) concerns general graphs.
Theorem. For any $\mathcal{G} \subset\binom{[n]}{2}$

$$
\max \left\{\operatorname{dim} U: U \leq A_{\mathcal{G}}(\mathbb{F}), \rho(U) \leq 2 k\right\}=\max \left\{\left|\mathcal{G}^{\prime}\right|: \mathcal{G}^{\prime} \subset \mathcal{G}, \nu\left(\mathcal{G}^{\prime}\right) \leq k\right\}
$$

[^0]
1 Introduction

Let $M_{n}(\mathbb{F})$ denote the space of $n \times n$ matrices over a field \mathbb{F}. For $A \in M_{n}(\mathbb{F})$ and subsets $\emptyset \neq I=\left\{i_{1}, \ldots, i_{k}\right\}, J=\left\{j_{1}, \ldots, j_{k}\right\} \subset[n]:=\{1, \ldots, n\}$ such that $i_{1}<\cdots<i_{k}$ and $j_{1}<\cdots<j_{k}$ let $B=A[I \mid J] \in M_{k}(\mathbb{F})$ be given by $B(\alpha, \beta)=A\left(i_{\alpha}, j_{\beta}\right)$ for $1 \leq \alpha, \beta \leq k$. For a vector space W we write $V \leq W$ if V is a linear subspace of W. Let $\binom{[n]}{k}$ denote the family of all k-element subsets of $[n]$. For column vectors $u_{1}, u_{2} \in \mathbb{F}^{n}$ let $u_{1} \otimes u_{2}=u_{1} \cdot u_{2}^{t} \in$ $M_{n}(\mathbb{F})$. The tensor product of two linear subspaces $U_{1}, U_{2} \leq \mathbb{F}^{n}$ is given by $U_{1} \otimes U_{2}=$ $\operatorname{span}\left\{u_{1} \otimes u_{2}: u_{1} \in U_{1}, u_{2} \in U_{2}\right\}$. For a subset $S \subset M_{n}(\mathbb{F})$ let $\rho(S)=\max \{\operatorname{rk}(A): A \in S\}$ denote the maximal rank of a matrix in S. The following result was proved by Flanders [4] under the assumption $|\mathbb{F}| \geq k+1$, and in [8] for all fields.

Theorem $1.1([4,8])$. Let $W \leq M_{n}(\mathbb{F})$ be a linear subspace such that $\rho(W) \leq k$. Then: (i) $\operatorname{dim} W \leq k n$. (ii) $\operatorname{dim} W=k n$ iff $W=U \otimes \mathbb{F}^{n}$ or $W=\mathbb{F}^{n} \otimes U$ for some k-dimensional linear subspace $U \leq \mathbb{F}^{n}$.

For $i \in[n]$ let e_{i} denote the i-th unit vector in \mathbb{F}^{n}. For a subset $\mathcal{B} \subset[n]^{2}$ let

$$
M_{\mathcal{B}}(\mathbb{F})=\operatorname{span}\left\{e_{i} \otimes e_{j}:(i, j) \in \mathcal{B}\right\}
$$

A bipartite matching in \mathcal{B} is a subset $\mathcal{B}_{0} \subset \mathcal{B}$ such that if $(i, j) \neq\left(i^{\prime}, j^{\prime}\right) \in \mathcal{B}_{0}$ then $i \neq i^{\prime}$ and $j \neq j^{\prime}$. The bipartite matching number of \mathcal{B} is

$$
\nu_{b}(\mathcal{B}):=\max \left\{\left|\mathcal{B}_{0}\right|: \mathcal{B}_{0} \text { is a bipartite matching in } \mathcal{B}\right\}
$$

Li, Qiao, Wigderson, Wigderson and Zhang [6] have recently established the following
Theorem $1.2([6])$. For any $\mathcal{B} \subset[n]^{2}$

$$
\begin{equation*}
\max \left\{\operatorname{dim} W: W \leq M_{\mathcal{B}}(\mathbb{F}), \rho(W) \leq k\right\}=\max \left\{\left|\mathcal{B}^{\prime}\right|: \mathcal{B}^{\prime} \subset \mathcal{B}, \nu_{b}\left(\mathcal{B}^{\prime}\right) \leq k\right\} \tag{2}
\end{equation*}
$$

Remark 1.3. When $\mathcal{B}=[n]^{2}$ Theorem 1.2 specializes to Theorem 1.1(i). Indeed, Kőnig's Theorem (see e.g. Theorem 3.1.11 in [10]) implies that $\max \left\{\left|\mathcal{B}^{\prime}\right|: \mathcal{B}^{\prime} \subset[n]^{2}, \nu_{b}\left(\mathcal{B}^{\prime}\right) \leq k\right\}=$ $k n$.

In this paper we give some extensions of Theorems 1.1 and 1.2. Let \mathbb{S}_{n} denote the symmetric group on $[n]$. For a weight function $\omega: \coprod_{n=1}^{\infty} \mathbb{S}_{n} \rightarrow \mathbb{F}^{*}=\mathbb{F} \backslash\{0\}$ let $D_{\omega}: \coprod_{n=1}^{\infty} M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ be defined on $A=(A(i, j))_{i, j=1}^{n} \in M_{n}(\mathbb{F})$ by

$$
D_{\omega}(A)=\sum_{\sigma \in \mathbb{S}_{n}} \omega(\sigma) \prod_{i=1}^{n} A(i, \sigma(i))
$$

Remark 1.4. The functions D_{ω} were considered by de Seguins Pazzis under the name of Schur matrix functionals. See his paper [2] for an in-depth study of the linear preservers of various D_{ω} 's.

The $\omega-\operatorname{rank} \operatorname{rk}_{\omega}(A)$ of a matrix $A \in M_{n}(\mathbb{F})$ is the maximal k such that there exist $I, J \in\binom{[n]}{k}$ such that $D_{\omega}(A[I \mid J]) \neq 0$. For $S \subset M_{n}(\mathbb{F})$ let $\rho_{\omega}(S)=\max \left\{\operatorname{rk}_{\omega}(A): A \in S\right\}$. Note that for the sign function $D_{\mathrm{sgn}}(A)=\operatorname{det} A$ and $\operatorname{rk}_{\mathrm{sgn}}(A)=\operatorname{rk}(A)$. Let $\mathbb{1}$ be the constant function $\mathbb{1}(\sigma) \equiv 1$. Then $D_{\mathbb{1}}(A)=\operatorname{per} A$ is the permanent of A, and $\operatorname{prk}(A):=\operatorname{rk}_{\mathbb{1}}(A)$ is the permanental rank of A. See [5] for applications of permanental rank to linear preserver problems. Our first result is an extension of Theorem 1.2 to general weight functions.

Theorem 1.5. For any $\omega: \coprod_{n=1}^{\infty} \mathbb{S}_{n} \rightarrow \mathbb{F}^{*}$ and any $\mathcal{B} \subset[n]^{2}$

$$
\begin{equation*}
\max \left\{\operatorname{dim} W: W \leq M_{\mathcal{B}}(\mathbb{F}), \rho_{\omega}(W) \leq k\right\}=\max \left\{\left|\mathcal{B}^{\prime}\right|: \mathcal{B}^{\prime} \subset \mathcal{B}, \nu_{b}\left(\mathcal{B}^{\prime}\right) \leq k\right\} \tag{3}
\end{equation*}
$$

Remark 1.6. As with Theorems 1.1 and 1.2, Theorem 1.5 holds for spaces of rectangular matrices as well. This can be shown e.g. by embedding a subspace of $m \times n$ matrices with $m \leq n$ into $M_{n}(\mathbb{F})$ and then using the present square version of the theorem.

Specializing Theorem 1.5 to $\mathcal{B}=[n]^{2}$ and $\omega=\mathbb{1}$ we obtain the following permanental counterpart of Theorem 1.1(i).

Corollary 1.7. Let $W \leq M_{n}(\mathbb{F})$ be a linear subspace such that $\operatorname{prk}(A) \leq k$ for all $A \in W$. Then $\operatorname{dim} W \leq k n$.

For the fields of characteristic 2 , we have det $=$ per and thus the equality cases in Corollary 1.7 are those given in Theorem 1.1(ii). For $(k, n)=(1,2)$ it can be checked that the only 2-dimensional subspaces $W \leq M_{2}(\mathbb{F})$ such that $\operatorname{dim} W=2$ and $\rho_{\mathbb{1}}(W)=1$ are W_{u} and its transpose, where for $0 \neq u=(a, b) \in \mathbb{F}^{2}$

$$
W_{u}=\left\{\left(\begin{array}{rc}
a x & a y \\
-b x & b y
\end{array}\right): x, y \in \mathbb{F}\right\} .
$$

In general we have the following
Theorem 1.8. Suppose that char $\mathbb{F} \neq 2, k \leq n$ and $n \geq 3$. Then $W \leq M_{n}(\mathbb{F})$ satisfies $\rho_{\mathbb{1}}(W)=k$ and $\operatorname{dim} W=k n$ iff $W=\operatorname{span}\left\{e_{i}\right\}_{i \in I} \otimes \mathbb{F}^{n}$ or $W=\mathbb{F}^{n} \otimes \operatorname{span}\left\{e_{i}\right\}_{i \in I}$ for some $I \in\binom{[n]}{k}$.

A matrix $A=(A(i, j))_{i, j=1}^{n} \in M_{n}(\mathbb{F})$ is alternating if $A=-A^{t}$ and $A(i, i)=0$ for $1 \leq i \leq n$. Let $A_{n}(\mathbb{F})$ denote the space of alternating matrices in $M_{n}(\mathbb{F})$. Recall that $\operatorname{rk}(A)$ is even for all $A \in A_{n}(\mathbb{F})$, and that $\operatorname{rk}(A)=2 k$ iff there exists a subset $I \in\binom{[n]}{2 k}$ such that the principal submatrix $A[I \mid I]$ is nonsingular. For $u, v \in \mathbb{F}^{n}$ let $u \wedge v=u \otimes v-v \otimes u \in A_{n}(\mathbb{F})$. For a subset $\mathcal{G} \subset\binom{[n]}{2}$ let

$$
A_{\mathcal{G}}(\mathbb{F})=\operatorname{span}\left\{e_{i} \wedge e_{j}:\{i, j\} \in \mathcal{G}\right\}
$$

A matching in \mathcal{G} is a subset $\mathcal{G}_{0} \subset \mathcal{G}$ such that $f \cap f^{\prime}=\emptyset$ for all $f \neq f^{\prime} \in \mathcal{G}_{0}$. The matching number of \mathcal{G} is

$$
\nu(\mathcal{G}):=\max \left\{\left|\mathcal{G}_{0}\right|: \mathcal{G}_{0} \text { is a matching in } \mathcal{G}\right\}
$$

Our final result is an extension of Theorem 1.2 to spaces of alternating matrices supported on general graphs.

Theorem 1.9. For any $\mathcal{G} \subset K_{n}:=\binom{[n]}{2}$

$$
\begin{equation*}
\max \left\{\operatorname{dim} U: U \leq A_{\mathcal{G}}(\mathbb{F}), \rho(U) \leq 2 k\right\}=\max \left\{\left|\mathcal{G}^{\prime}\right|: \mathcal{G}^{\prime} \subset \mathcal{G}, \nu\left(\mathcal{G}^{\prime}\right) \leq k\right\} \tag{4}
\end{equation*}
$$

Remark 1.10. Theorem 1.9 implies Theorem 1.2. Indeed, given $\mathcal{B} \subset[n]^{2}$ let \mathcal{G} denote the bipartite graph with sides $\{1, \ldots, n\}$ and $\{n+1, \ldots, 2 n\}$ corresponding to \mathcal{B}, i.e.

$$
\mathcal{G}=\{\{i, j+n\}:(i, j) \in \mathcal{B}\} \subset\binom{[2 n]}{2}
$$

It is straightforward to check that

$$
\max \left\{\operatorname{dim} W: W \leq M_{\mathcal{B}}(\mathbb{F}), \rho(W) \leq k\right\}=\max \left\{\operatorname{dim} U: U \leq A_{\mathcal{G}}(\mathbb{F}), \rho(U) \leq 2 k\right\}
$$

and

$$
\max \left\{\left|\mathcal{B}^{\prime}\right|: \mathcal{B}^{\prime} \subset \mathcal{B}, \nu_{b}\left(\mathcal{B}^{\prime}\right) \leq k\right\}=\max \left\{\left|\mathcal{G}^{\prime}\right|: \mathcal{G}^{\prime} \subset \mathcal{G}, \nu\left(\mathcal{G}^{\prime}\right) \leq k\right\} .
$$

Thus (2) follows from (4).
The paper is organized as follows. In Section 2 we prove Theorem 1.5. Our main tool is a combinatorial lower bound on the maximal ω-rank in a subspace of matrices given in Proposition 2.2. In Section 3 we prove Theorem 1.8. In Section 4 we use a result from [9] to establish Theorem 1.9. We conclude in Section 5 with some remarks and open problems.

2 Maximal ω-Rank in Subspaces of $M_{\mathcal{B}}(\mathbb{F})$

In this section we prove Theorem 1.5. We will need the following facts.
Claim 2.1. For any $\mathcal{B} \subset[n]^{2}$

$$
\begin{equation*}
\rho_{\omega}\left(M_{\mathcal{B}}(\mathbb{F})\right)=\nu_{b}(\mathcal{B}) . \tag{5}
\end{equation*}
$$

Proof. Let $\rho_{\omega}\left(M_{\mathcal{B}}(\mathbb{F})\right)=k$ and $\nu_{b}(\mathcal{B})=\ell$. Then there exists a matrix $A \in M_{\mathcal{B}}(\mathbb{F})$ and a $k \times k$ submatrix $A^{\prime}=A[I \mid J]$ such that $D_{\omega}\left(A^{\prime}\right) \neq 0$. Let $I=\left\{i_{1}<\cdots<i_{k}\right\}$ and $J=\left\{j_{1}<\cdots<j_{k}\right\}$. Then

$$
0 \neq D_{\omega}\left(A^{\prime}\right)=\sum_{\pi \in \mathbb{S}_{k}} \omega(\pi) \prod_{t=1}^{k} A\left(i_{t}, j_{\pi(t)}\right) .
$$

It follows that there exists $\pi \in \mathbb{S}_{k}$ such that $A\left(i_{t}, j_{\pi(t)}\right) \neq 0$ for all $1 \leq t \leq k$. Thus $\mathcal{B}_{0}=\left\{\left(i_{t}, j_{\pi(t)}\right)\right\}_{t=1}^{k}$ is a bipartite matching of size k in \mathcal{B} and therefore $\ell \geq k$. For the other direction, let $\mathcal{B}_{0}=\left\{\left(i_{t}, j_{t}\right)\right\}_{t=1}^{\ell}$ be a bipartite matching of size ℓ in \mathcal{B}. By reordering we may assume that $i_{1}<\cdots<i_{\ell}$. Let $\pi \in \mathbb{S}_{\ell}$ be such that $j_{\pi(1)}<\cdots<j_{\pi(\ell)}$. Let $I=\left\{i_{1}, \ldots, i_{\ell}\right\}, J=\left\{j_{1}, \ldots, j_{\ell}\right\}$, and let $A=\sum_{t=1}^{\ell} e_{i_{t}} \otimes e_{j_{t}} \in M_{\mathcal{B}}(\mathbb{F})$. Then $A^{\prime}=A[I \mid J]$ satisfies $D_{\omega}\left(A^{\prime}\right)=\omega\left(\pi^{-1}\right) \neq 0$ and therefore $k \geq \operatorname{rk}_{\omega}(A)=\ell$.

Let \prec be the lexicographic order on $[n]^{2}$, i.e. $(i, j) \prec\left(i^{\prime}, j^{\prime}\right)$ if either $i<i^{\prime}$ or $i=i^{\prime}$ and $j<j^{\prime}$. For $0 \neq A \in M_{n}(\mathbb{F})$ let $q(A)=\min _{\swarrow}\{(i, j): A(i, j) \neq 0\}$. For $S \subset M_{n}(\mathbb{F})$ let $\mathbb{B}(S)=\{q(A): A \in S\}$. Note that if $W \leq M_{n}(\mathbb{F})$ is a d-dimensional linear subspace then $|\mathbb{B}(W)|=d=\operatorname{dim} W$. Indeed, performing Gaussian elimination on a arbitrary basis of W according the order \prec, we obtain another basis $\left\{A_{1}, \ldots, A_{d}\right\}$ such that $q\left(A_{1}\right), \ldots, q\left(A_{d}\right)$ are distinct and then $\mathbb{B}(W)=\left\{q\left(A_{1}\right), \ldots, q\left(A_{d}\right)\right\}$. The main tool in the proof of Theorem 1.5 is the following

Proposition 2.2. Let $W \leq M_{n}(\mathbb{F})$ be a linear subspace. Then

$$
\begin{equation*}
\rho_{\omega}(W) \geq \nu_{b}(\mathbb{B}(W)) . \tag{6}
\end{equation*}
$$

Remark 2.3. The case $\omega=$ sgn of Proposition 2.2 is equivalent to Theorem 1 in [8]. The proof for general weight functions given below requires an additional idea.

Proof of Proposition 2.2. Let $k=\nu_{b}(\mathbb{B}(W))$. Then there exist $A_{1}, \ldots, A_{k} \in W$ with $q\left(A_{t}\right)=\left(i_{t}, j_{t}\right)$ such that $\left\{\left(i_{t}, j_{t}\right)\right\}_{t=1}^{k}$ is a bipartite matching of size k. Let $I=$ $\left\{i_{1}, \ldots, i_{k}\right\}, J=\left\{j_{1}, \ldots, j_{k}\right\}$. By reordering and rescaling the matrices A_{t} 's, we may assume that $i_{1}<\cdots<i_{k}$ and that $A_{t}\left(i_{t}, j_{t}\right)=1$. Let $\pi \in \mathbb{S}_{k}$ be such that $j_{\pi(1)}<\cdots<j_{\pi(k)}$. For $1 \leq t \leq k$ let $C_{t}=A_{t}[I \mid J] \in M_{k}(\mathbb{F})$. Note that

$$
\begin{align*}
C_{t}(\alpha, \beta) & =0 \text { if } \alpha<t \tag{7}\\
C_{t}(t, \beta) & =0 \text { if } \beta<\pi^{-1}(t) \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
C_{t}\left(t, \pi^{-1}(t)\right)=1 \tag{9}
\end{equation*}
$$

Let $x=\left(x_{1}, \ldots, x_{k}\right)$. Let $G(x)=\sum_{t=1}^{k} x_{t} C_{t}$ and consider the polynomial

$$
g(x)=D_{\omega}(G(x))=\sum_{\sigma \in \mathbb{S}_{k}} \omega(\sigma) \prod_{\ell=1}^{k} G(x)(\ell, \sigma(\ell)) \in \mathbb{F}\left[x_{1}, \ldots, x_{k}\right]
$$

Claim 2.4. There exists $a \lambda \in \mathbb{F}^{k}$ such that $g(\lambda) \neq 0$.
We will use Alon's Combinatorial Nullstellensatz (Theorem 1.2 in [1]).
Theorem 2.5 (Alon [1]). Let \mathbb{F} be an be an arbitrary field and let $g=g\left(x_{1}, \ldots, x_{k}\right) \in$ $\mathbb{F}\left[x_{1} \ldots, x_{k}\right]$. Suppose the total degree $\operatorname{deg}(g)$ of g is $\sum_{t=1}^{k} d_{t}$ where each d_{t} is a nonnegative integer, and suppose the coefficient of $\prod_{t=1}^{k} x_{t}^{d_{t}}$ in g is nonzero. Then, if $\Lambda_{1}, \ldots, \Lambda_{k}$ are subsets of \mathbb{F} with $\left|\Lambda_{t}\right|>d_{t}$, there exist $\lambda_{1} \in \Lambda_{1}, \ldots, \lambda_{k} \in \Lambda_{t}$ such that $g\left(\lambda_{1}, \ldots, \lambda_{k}\right) \neq 0$.

Proof of Claim 2.4: We will show that the monomial $x_{1} \cdots x_{k}$ appears with a nonzero coefficient in $g(x)$. Indeed, let $\sigma \in \mathbb{S}_{k}$. By (7), for any $1 \leq t \leq k$ the variable x_{t} does not appear in $\prod_{\ell<t} G(x)(\ell, \sigma(\ell))$. It follows that the coefficient of $x_{1} \cdots x_{k}$ in $\prod_{\ell=1}^{k} G(x)(\ell, \sigma(\ell))$ is

$$
\gamma(\sigma):=\prod_{\ell=1}^{k} C_{\ell}(\ell, \sigma(\ell))
$$

Let $1 \leq \ell \leq k$. If $\sigma(\ell)<\pi^{-1}(\ell)$ then $C_{\ell}(\ell, \sigma(\ell))=0$ by (8). Therefore if $\gamma(\sigma) \neq 0$ then $\sigma(\ell) \geq \pi^{-1}(\ell)$ for all $1 \leq \ell \leq k$, i.e. $\sigma=\pi^{-1}$. Together with (9), it follows that the coefficient of $x_{1} \cdots x_{k}$ in $g(x)$ is

$$
\omega\left(\pi^{-1}\right) \gamma\left(\pi^{-1}\right)=\omega\left(\pi^{-1}\right) \prod_{\ell=1}^{k} C_{\ell}\left(\ell, \pi^{-1}(\ell)\right)=\omega\left(\pi^{-1}\right) \neq 0
$$

Applying Theorem 2.5 for the degree k polynomial g, with $d_{1}=\cdots=d_{k}=1$ and $\Lambda_{1}=$ $\cdots=\Lambda_{k}=\{0,1\}$, it follows that there exists $\lambda \in\{0,1\}^{k}$ such that $D_{\omega}(G(\lambda))=g(\lambda) \neq 0$. As $G(\lambda)$ is a $k \times k$ submatrix of $\sum_{t=1}^{k} \lambda_{t} A_{t} \in W$ it follows that $\rho_{\omega}(W) \geq k$.

Proof of Theorem 1.5. The \geq direction of (3) follows from Claim 2.1. Indeed, if $\mathcal{B}^{\prime} \subset \mathcal{B}$ satisfies $\nu_{b}\left(\mathcal{B}^{\prime}\right) \leq k$, then $W=M_{\mathcal{B}^{\prime}}(\mathbb{F}) \leq M_{\mathcal{B}}(\mathbb{F})$ satisfies $\rho_{\omega}(W)=\nu_{b}\left(\mathcal{B}^{\prime}\right) \leq k$ and $\operatorname{dim} W=$ $\left|\mathcal{B}^{\prime}\right|$. For the \leq direction, suppose $W \leq M_{\mathcal{B}}(\mathbb{F})$ satisfies $\rho_{\omega}(W) \leq k$. Let $\mathcal{B}^{\prime}=\mathbb{B}(W) \subset \mathcal{B}$. Then $\left|\mathcal{B}^{\prime}\right|=\operatorname{dim} W$ and Proposition 2.2 implies that $\nu_{b}\left(\mathcal{B}^{\prime}\right) \leq \rho_{\omega}(W) \leq k$.

3 Maximal Dimensional Spaces of Bounded Permanental Rank

In this section we prove Theorem 1.8. The main ingredient of the argument is the following
Proposition 3.1. Let $k \geq 2$ and suppose that char $\mathbb{F} \neq 2$ and $U \leq M_{k+1}(\mathbb{F})$ satisfies $\mathbb{B}(U)=[k] \times[k+1]$ and $\rho_{\mathbb{1}}(U)=k$. Then $U=\operatorname{span}\left\{e_{i}\right\}_{i \in[k]} \otimes \mathbb{F}^{k+1}$.
Proof. The assumption $\mathbb{B}(U)=[k] \times[k+1]$ implies that U has a basis

$$
\left\{A_{i j}:(i, j) \in[k] \times[k+1]\right\}
$$

such that

$$
A_{i j}=e_{i} \otimes e_{j}+\sum_{\ell=1}^{k+1} \lambda_{i j \ell}\left(e_{k+1} \otimes e_{\ell}\right)
$$

for some $\lambda_{i j \ell} \in \mathbb{F}$.
Claim 3.2. $\lambda_{i j \ell}=0$ for any $1 \leq i \leq k$ and $1 \leq j \neq \ell \leq k+1$.
Proof. Suppose for contradiction that $\lambda_{i j \ell} \neq 0$ for some $1 \leq i \leq k$ and $1 \leq j \neq \ell \leq k+1$. Let

$$
[k] \backslash\{i\}=\left\{i_{1}, \ldots, i_{k-1}\right\} \quad, \quad[k+1] \backslash\{\ell, j\}=\left\{j_{1}, \ldots, j_{k-1}\right\},
$$

and for $\theta \in \mathbb{F}$ let

$$
C_{\theta}=\theta A_{i j}+\sum_{t=1}^{k-1} A_{i_{t j} j_{t}} \in U
$$

Clearly, the only permutation $\pi \in \mathbb{S}_{k+1}$ that corresponds to a nonzero term in the expansion of per C_{θ} is that given by $\pi(i)=j, \pi(k+1)=\ell$ and $\pi\left(i_{t}\right)=j_{t}$ for $1 \leq t \leq k-1$. Therefore

$$
\begin{align*}
\operatorname{per} C_{\theta} & =C_{\theta}(i, j) \cdot C_{\theta}(k+1, \ell) \cdot \prod_{t=1}^{k-1} C_{\theta}\left(i_{t}, j_{t}\right) \\
& =C_{\theta}(i, j) \cdot C_{\theta}(k+1, \ell) \\
& =\theta\left(\theta A_{i j}(k+1, \ell)+\sum_{t=1}^{k-1} A_{i t j_{t}}(k+1, \ell)\right) \tag{10}\\
& =\theta\left(\theta \lambda_{i j \ell}+\sum_{t=1}^{k-1} \lambda_{i_{t} j_{t} \ell}\right) .
\end{align*}
$$

Eq. (10) and the assumption $\lambda_{i j \ell} \neq 0$ imply that per C_{θ} is a nonzero polynomial of degree 2 in θ. As $|\mathbb{F}| \geq 3$ there exists $\theta \in \mathbb{F}$ such that per $C_{\theta} \neq 0$, contradicting $\rho_{\mathbb{1}}(U)=k$.

For $(i, j) \in[k] \times[k+1]$ let $\mu_{i j}=\lambda_{i j j}$. Claim 3.2 implies that $A_{i j}=e_{i} \otimes e_{j}+\mu_{i j} e_{k+1} \otimes e_{j}$.
Claim 3.3. $\mu_{i j}=0$ for all $(i, j) \in[k] \times[k+1]$.
Proof. Fix $i \in[k]$ and $j^{\prime} \neq j^{\prime \prime} \in[k+1]$. Let

$$
[k] \backslash\{i\}=\left\{i_{1}, \ldots, i_{k-1}\right\}, \quad[k+1] \backslash\left\{j^{\prime}, j^{\prime \prime}\right\}=\left\{j_{1}, \ldots, j_{k-1}\right\},
$$

and let

$$
C=A_{i j^{\prime}}+A_{i j^{\prime \prime}}+\sum_{t=1}^{k-1} A_{i t j_{t}} .
$$

Clearly, if $\pi \in \mathbb{S}_{k+1}$ corresponds to a nonzero term in the expansion of per C then $\pi\left(i_{t}\right)=j_{t}$ for $1 \leq t \leq k-1$ and either $(\pi(i), \pi(k+1))=\left(j^{\prime}, j^{\prime \prime}\right)$ or $(\pi(i), \pi(k+1))=\left(j^{\prime \prime}, j^{\prime}\right)$. It follows that

$$
\begin{aligned}
\operatorname{per} C & =\left(C\left(i, j^{\prime}\right) \cdot C\left(k+1, j^{\prime \prime}\right)+C\left(i, j^{\prime \prime}\right) \cdot C\left(k+1, j^{\prime}\right)\right) \cdot \prod_{t=1}^{k-1} C\left(i_{t}, j_{t}\right) \\
& =C\left(k+1, j^{\prime \prime}\right)+C\left(k+1, j^{\prime}\right)=\mu_{i j^{\prime \prime}}+\mu_{i j^{\prime}} .
\end{aligned}
$$

Together with the assumption that $\rho_{\mathbb{1}}(U)=k$ this implies that

$$
\begin{equation*}
\mu_{i j^{\prime \prime}}+\mu_{i j^{\prime}}=\operatorname{per} C=0 \tag{11}
\end{equation*}
$$

As (11) holds for all $1 \leq j^{\prime} \neq j^{\prime \prime} \leq k+1$ and $k \geq 2$, the assumption $\operatorname{char}(\mathbb{F}) \neq 2$ implies that $\mu_{i j}=0$ for all $(i, j) \in[k] \times[k+1]$, thereby completing the proof of Claim 3.2 and of Proposition 3.1.

Proof of Theorem 1.8. We may assume that $k<n$. Let $W \leq M_{n}(\mathbb{F})$ satisfy $\rho_{\mathbb{1}}(W)=k$ and $\operatorname{dim} W=k n$. Proposition 2.2 implies that

$$
\nu(\mathbb{B}(W)) \leq \rho_{\mathbb{1}}(W)=k .
$$

As $|\mathbb{B}(W)|=\operatorname{dim} W=k n$, it follows by Kőnig's theorem that $\mathbb{B}(W)$ is either $I \times[n]$ or $[n] \times I$ for some $I \in\binom{[n]}{k}$. Consider the first case $\mathbb{B}(W)=I \times[n]$ and let $I=\left\{i_{1}, \ldots, i_{k}\right\}$ where $1 \leq i_{1}<\cdots<i_{k} \leq n$. We have to show that $W=\operatorname{span}\left\{e_{i}: i \in I\right\} \otimes \mathbb{F}^{n}$. Fix a pair $\left(i^{\prime}, j^{\prime}\right) \in([n] \backslash I) \times[n]$. Define $i_{k+1}=i^{\prime}$ and choose $J=\left\{j_{1}, \ldots, j_{k+1}\right\} \subset[n]$ such that $j_{1}<\cdots<j_{k+1}$ and $j^{\prime}=j_{\beta^{\prime}}$ for some $1 \leq \beta^{\prime} \leq k+1$. For $A \in W$ let $\tilde{A} \in M_{k+1}(\mathbb{F})$ be given by $\tilde{A}(\alpha, \beta)=A\left(i_{\alpha}, j_{\beta}\right)$ for $(\alpha, \beta) \in[k+1]^{2}$. Let $U=\{\tilde{A}: A \in W\}$. Clearly $\mathbb{B}(U)=[k] \times[k+1]$ and $\rho_{\mathbb{1}}(U)=k$. Proposition 3.1 then implies that $U=\operatorname{span}\left\{e_{\alpha}\right\}_{\alpha \in[k]} \otimes \mathbb{F}^{k+1}$. In particular $A\left(i^{\prime}, j^{\prime}\right)=\tilde{A}\left(k+1, \beta^{\prime}\right)=0$ for all $A \in W$. Therefore

$$
\begin{equation*}
W \leq \operatorname{span}\left\{e_{i}\right\}_{i \in I} \otimes \mathbb{F}^{n} \tag{12}
\end{equation*}
$$

As $\operatorname{dim} W=k n$ it follows that there is equality in (12). The case $\mathbb{B}(W)=[n] \times I$ for some $|I|=k$ is handled similarly.

4 Maximal Rank in Subspaces of $A_{\mathcal{G}}(\mathbb{F})$

In this section we prove Theorem 1.9. We first recall the definition of the Pfaffian of an alternating matrix of even order $A \in A_{2 k}(\mathbb{F})$. A perfect matching in $K_{2 k}$ is a matching of size k. Let $\mathcal{M}_{2 k}$ denote the set of all perfect matchings in $K_{2 k}$. For $M=\left\{f_{1}, \ldots, f_{k}\right\} \in \mathcal{M}_{2 k}$ such that $f_{t}=\left\{i_{t}<j_{t}\right\}$ for $1 \leq t \leq k$ and $i_{1}<\cdots<i_{k}$, let

$$
\theta(M)=\operatorname{sgn}\left(\begin{array}{ccccc}
1 & 2 & \cdots & 2 k-1 & 2 k \\
i_{1} & j_{1} & \cdots & i_{k} & j_{k}
\end{array}\right)
$$

and let

$$
\mu(A, M)=\prod_{t=1}^{k} A\left(i_{t}, j_{t}\right)
$$

The Pfaffian of A is defined by

$$
\operatorname{Pf}(A)=\sum_{M \in \mathcal{M}_{2 k}} \theta(M) \mu(A, M)
$$

It is well known that $\operatorname{det}(A)=\operatorname{Pf}(A)^{2}$ (see e.g. Exercise 4.24 in [7]). We will need the following facts.
Claim 4.1. For any $\mathcal{G} \subset\binom{[n]}{2}$

$$
\begin{equation*}
\rho\left(A_{\mathcal{G}}(\mathbb{F})\right)=2 \nu(\mathcal{G}) \tag{13}
\end{equation*}
$$

Proof. Let $\rho\left(A_{\mathcal{G}}(\mathbb{F})\right)=2 k$ and $\nu(\mathcal{G})=\ell$. Let $\left\{\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{\ell}, j_{\ell}\right\}\right\}$ be a matching in \mathcal{G}. Then $A=\sum_{t=1}^{\ell} e_{i_{t}} \wedge e_{j_{t}} \in A_{\mathcal{G}}(\mathbb{F})$ and $\operatorname{rk}(A)=2 \ell$. Therefore $k \geq \ell$. For the other direction, let $A \in A_{\mathcal{G}}(\mathbb{F})$ such that $\operatorname{rk}(A)=2 k$. Then there exists $I=\left\{\alpha_{1}<\cdots<\alpha_{2 k}\right\}$ such that $B=A[I \mid I] \in A_{2 k}(\mathbb{F})$ is nonsingular. Thus

$$
0 \neq \operatorname{det}(B)=\operatorname{Pf}(B)^{2}=\left(\sum_{M \in \mathcal{M}_{2 k}} \theta(M) \mu(B, M)\right)^{2}
$$

Hence there exists a matching $M=\left\{f_{1}, \ldots, f_{k}\right\} \in \mathcal{M}_{2 k}$ such that $\mu(B, M) \neq 0$. Writing $f_{t}=\left\{i_{t}<j_{t}\right\}$ for $1 \leq t \leq k$ it follows that

$$
0 \neq \mu(B, M)=\prod_{t=1}^{k} B\left(i_{t}, j_{t}\right)=\prod_{t=1}^{k} A\left(\alpha_{i_{t}}, \alpha_{j_{t}}\right)
$$

Thus $\left\{\left\{\alpha_{i_{t}}, \alpha_{j_{t}}\right\}: 1 \leq t \leq k\right\}$ is a matching of size k in \mathcal{G} and therefore $\ell=\nu(\mathcal{G}) \geq k$.

For $A \in A_{n}(\mathbb{F})$ with $q(A)=(i, j)$ define $\tilde{q}(A)=\{i, j\}$. For $S \subset A_{n}(\mathbb{F})$ let $\mathbb{G}(S)=$ $\{\tilde{q}(A): A \in S\}$. Note that if $U \leq A_{n}(\mathbb{F})$ is a linear subspace then $|\mathbb{G}(U)|=\operatorname{dim} U$. The key ingredient in the proof of Theorem 1.9 is the following result (Theorem 1.2 in [9]).
Theorem $4.2([9])$. Let $U \leq A_{n}(\mathbb{F})$ be a linear subspace. Then $\rho(U) \geq 2 \nu(\mathbb{G}(U))$.
Proof of Theorem 1.9. The \geq direction of (4) follows from Claim 4.1. Indeed, if $\mathcal{G}^{\prime} \subset \mathcal{G}$ satisfies $\nu\left(\mathcal{G}^{\prime}\right) \leq k$, then $U=A_{\mathcal{G}^{\prime}}(\mathbb{F}) \leq A_{\mathcal{G}}(\mathbb{F})$ satisfies $\rho(U)=2 \nu\left(\mathcal{G}^{\prime}\right) \leq 2 k$ and $\operatorname{dim} U=\left|\mathcal{G}^{\prime}\right|$. For the \leq direction, suppose $U \leq A_{\mathcal{G}}(\mathbb{F})$ satisfies $\rho(U) \leq 2 k$. Let $\mathcal{G}^{\prime}=\mathbb{G}(U) \subset \mathcal{G}$. Then $\left|\mathcal{G}^{\prime}\right|=\operatorname{dim} U$ and Theorem 4.2 implies that $\nu\left(\mathcal{G}^{\prime}\right) \leq \frac{\rho(U)}{2} \leq k$.

5 Concluding Remarks

In this note we proved two extensions of the combinatorial characterization due to Li, Qiao, Wigderson, Wigderson and Zhang [6] of the maximal dimension of bounded rank subspaces of the graphical matrix space $M_{\mathcal{B}}(\mathbb{F})$ associated with a bipartite graph \mathcal{B}. Theorem 1.5 shows that the above characterization remains valid for a wide class of generalized rank functions, including e.g. the permanental rank. In a different direction, Theorem 1.9 extends the characterization to bounded rank subspaces of the graphical matrix space $A_{\mathcal{G}}(\mathbb{F})$ associated with a general graph \mathcal{G}. We conclude with the following two remarks.

- Theorem 1.1 provides a classification of the spaces $W \leq M_{n}(\mathbb{F})$ such that $\rho(W)=k$ and $\operatorname{dim} W=k n$. The analogous (but different) classification of spaces $W \leq M_{n}(\mathbb{F})$ such that $\rho_{\mathbb{1}}(W)=k$ and $\operatorname{dim} W=k n$ is given in Theorem 1.8. It would be interesting to extend these results to bounded rank subspaces of $M_{\mathcal{B}}(\mathbb{F})$ and of $A_{\mathcal{G}}(\mathbb{F})$ for various $\mathcal{B} \subset[n]^{2}$ and $\mathcal{G} \subset\binom{[n]}{2}$.
- For an element u in the p-th exterior power $\bigwedge^{p} \mathbb{F}^{n}$, let $E(u)$ denote the minimal subspace $U \leq \mathbb{F}^{n}$ such that $u \in \bigwedge^{p} U$. The rank of u is $\operatorname{rk}(u)=\operatorname{dim} E(u)$. For sufficiently large fields, Theorem 4.2 is the case $p=2$ of Theorem 2.1 in [3] that gives a lower bound on $\rho(U)$ for $U \leq \bigwedge^{p} \mathbb{F}^{n}$ in terms of the weak matching number of a certain p-uniform hypergraph associated to U. It seems likely that this lower bound may be useful in obtaining extensions of Theorem 1.9 to structured subspaces of $\bigwedge^{p} \mathbb{F}^{n}$ for general p.

References

[1] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput., 8(1999) 7-29.
[2] C. de Seguins Pazzis, On the linear preservers of Schur matrix functionals, Linear Algebra Appl., 567(2019) 63-117.
[3] B. Gelbord and R. Meshulam, Spaces of p-vectors of bounded rank, Israel J. of Math., 126(2001) 129-139.
[4] H. Flanders, On spaces of linear transformations with bounded rank, J. London Math. Soc., 37(1962) 10-16.
[5] A. E. Guterman and I. A. Spiridonov, Permanent Polya problem for additive surjective maps, Linear Algebra Appl., 599(2020) 140-155.
[6] Y. Li, Y. Qiao, A. Wigderson, Y. Wigderson and C. Zhang, Connections between graphs and matrix spaces, arXiv:2206.04815.
[7] L. Lovász, Combinatorial problems and exercises, Corrected reprint of the 1993 second edition. AMS Chelsea Publishing, Providence, RI, 2007.
[8] R. Meshulam, On the maximal rank in a subspace of matrices, Quarterly Journal of Mathematics Oxford, 36(1985) 225-229.
[9] R. Meshulam, Maximal rank in matrix spaces via graph matchings, Linear Algebra and Appl., 529(2017) 1-11.
[10] D. B. West, Introduction to graph theory. Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

[^0]: *Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel. e-mail: alexander.guterman@biu.ac.il
 ${ }^{\dagger}$ Department of Mathematics, Technion, Haifa 32000, Israel. e-mail: meshulam@technion.ac.il . Supported by ISF grant 686/20.
 ${ }^{\ddagger}$ Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia; National Research University Higher School of Economics, Moscow 119048, Russia; Moscow Center for Fundamental and Applied Mathematics, Moscow 119991, Russia. e-mail: spiridonovia@yandex.ru

