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Abstract

Let Mn(F) be the space of n × n matrices over a field F. For a subset B ⊂ [n]2

let MB(F) = {A ∈ Mn(F) : A(i, j) = 0 for (i, j) 6∈ B}. Let νb(B) denote the matching
number of the n by n bipartite graph determined by B. For S ⊂ Mn(F) let ρ(S) =
max{rk(A) : A ∈ S}. Li, Qiao, Wigderson, Wigderson and Zhang (arXiv:2206.04815,
2022) have recently proved the following characterization of the maximal dimension of
bounded rank subspaces of MB(F).

Theorem (Li, Qiao, Wigderson, Wigderson, Zhang). For any B ⊂ [n]2

max {dimW : W ≤MB(F) , ρ(W ) ≤ k} = max {|B′| : B′ ⊂ B , νb(B′) ≤ k} . (1)

The main results of this note are two extensions of (1). Let Sn denote the symmetric
group on [n]. For ω :

∐∞
n=1 Sn → F∗ = F \ {0} define a function Dω on each Mn(F)

by Dω(A) =
∑
σ∈Sn ω(σ)

∏n
i=1A(i, σ(i)). Let rkω(A) be the maximal k such that there

exists a k × k submatrix B of A with Dω(B) 6= 0. For S ⊂ Mn(F) let ρω(S) =
max{rkω(A) : A ∈ S}. The first extension of (1) concerns general weight functions.

Theorem. For any ω as above and B ⊂ [n]2

max {dimW : W ≤MB(F) , ρω(W ) ≤ k} = max {|B′| : B′ ⊂ B , νb(B′) ≤ k} .

Let An(F) denote the space of alternating matrices in Mn(F). For a graph G ⊂
(
[n]
2

)
let

AG(F) = {A ∈ An(F) : A(i, j) = 0 if {i, j} 6∈ G}. Let ν(G) denote the matching number
of G. The second extension of (1) concerns general graphs.

Theorem. For any G ⊂
(
[n]
2

)
max {dimU : U ≤ AG(F) , ρ(U) ≤ 2k} = max {|G′| : G′ ⊂ G , ν(G′) ≤ k} .
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1 Introduction

Let Mn(F) denote the space of n × n matrices over a field F. For A ∈ Mn(F) and subsets
∅ 6= I = {i1, . . . , ik}, J = {j1, . . . , jk} ⊂ [n] := {1, . . . , n} such that i1 < · · · < ik and
j1 < · · · < jk let B = A[I|J ] ∈ Mk(F) be given by B(α, β) = A(iα, jβ) for 1 ≤ α, β ≤ k.

For a vector space W we write V ≤ W if V is a linear subspace of W . Let
([n]
k

)
denote the

family of all k-element subsets of [n]. For column vectors u1, u2 ∈ Fn let u1 ⊗ u2 = u1 · ut2 ∈
Mn(F). The tensor product of two linear subspaces U1, U2 ≤ Fn is given by U1 ⊗ U2 =
span {u1 ⊗ u2 : u1 ∈ U1, u2 ∈ U2} . For a subset S ⊂Mn(F) let ρ(S) = max{rk (A) : A ∈ S}
denote the maximal rank of a matrix in S. The following result was proved by Flanders [4]
under the assumption |F| ≥ k + 1, and in [8] for all fields.

Theorem 1.1 ([4, 8]). Let W ≤ Mn(F) be a linear subspace such that ρ(W ) ≤ k. Then:
(i) dimW ≤ kn. (ii) dimW = kn iff W = U ⊗ Fn or W = Fn ⊗ U for some k-dimensional
linear subspace U ≤ Fn.

For i ∈ [n] let ei denote the i-th unit vector in Fn. For a subset B ⊂ [n]2 let

MB(F) = span {ei ⊗ ej : (i, j) ∈ B} .

A bipartite matching in B is a subset B0 ⊂ B such that if (i, j) 6= (i′, j′) ∈ B0 then i 6= i′ and
j 6= j′. The bipartite matching number of B is

νb(B) := max {|B0| : B0 is a bipartite matching in B} .

Li, Qiao, Wigderson, Wigderson and Zhang [6] have recently established the following

Theorem 1.2 ([6]). For any B ⊂ [n]2

max {dimW : W ≤MB(F) , ρ(W ) ≤ k} = max
{
|B′| : B′ ⊂ B , νb(B′) ≤ k

}
. (2)

Remark 1.3. When B = [n]2 Theorem 1.2 specializes to Theorem 1.1(i). Indeed, Kőnig’s
Theorem (see e.g. Theorem 3.1.11 in [10]) implies that max

{
|B′| : B′ ⊂ [n]2, νb(B′) ≤ k

}
=

kn.

In this paper we give some extensions of Theorems 1.1 and 1.2. Let Sn denote the symmetric
group on [n]. For a weight function ω :

∐∞
n=1 Sn → F∗ = F \ {0} let Dω :

∐∞
n=1Mn(F)→ F

be defined on A = (A(i, j))ni,j=1 ∈Mn(F) by

Dω(A) =
∑
σ∈Sn

ω(σ)
n∏
i=1

A(i, σ(i)).

Remark 1.4. The functions Dω were considered by de Seguins Pazzis under the name of
Schur matrix functionals. See his paper [2] for an in-depth study of the linear preservers of
various Dω’s.

The ω-rank rkω(A) of a matrix A ∈Mn(F) is the maximal k such that there exist I, J ∈
([n]
k

)
such that Dω (A[I|J ]) 6= 0. For S ⊂ Mn(F) let ρω(S) = max{rkω(A) : A ∈ S}. Note that
for the sign function Dsgn(A) = detA and rksgn(A) = rk(A). Let 1 be the constant function
1(σ) ≡ 1. Then D1(A) = perA is the permanent of A, and prk(A) := rk1(A) is the
permanental rank of A. See [5] for applications of permanental rank to linear preserver
problems. Our first result is an extension of Theorem 1.2 to general weight functions.
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Theorem 1.5. For any ω :
∐∞
n=1 Sn → F∗ and any B ⊂ [n]2

max {dimW : W ≤MB(F) , ρω(W ) ≤ k} = max
{
|B′| : B′ ⊂ B , νb(B′) ≤ k

}
. (3)

Remark 1.6. As with Theorems 1.1 and 1.2, Theorem 1.5 holds for spaces of rectangular
matrices as well. This can be shown e.g. by embedding a subspace of m × n matrices with
m ≤ n into Mn(F) and then using the present square version of the theorem.

Specializing Theorem 1.5 to B = [n]2 and ω = 1 we obtain the following permanental
counterpart of Theorem 1.1(i).

Corollary 1.7. Let W ≤Mn(F) be a linear subspace such that prk(A) ≤ k for all A ∈ W .
Then dimW ≤ kn.

For the fields of characteristic 2, we have det = per and thus the equality cases in Corollary
1.7 are those given in Theorem 1.1(ii). For (k, n) = (1, 2) it can be checked that the only
2-dimensional subspaces W ≤ M2(F) such that dimW = 2 and ρ1(W ) = 1 are Wu and its
transpose, where for 0 6= u = (a, b) ∈ F2

Wu =

{(
ax ay
−bx by

)
: x, y ∈ F

}
.

In general we have the following

Theorem 1.8. Suppose that charF 6= 2, k ≤ n and n ≥ 3. Then W ≤ Mn(F) satisfies
ρ1(W ) = k and dimW = kn iff W = span{ei}i∈I ⊗ Fn or W = Fn ⊗ span{ei}i∈I for some

I ∈
([n]
k

)
.

A matrix A =
(
A(i, j)

)n
i,j=1

∈ Mn(F) is alternating if A = −At and A(i, i) = 0 for

1 ≤ i ≤ n. Let An(F) denote the space of alternating matrices in Mn(F). Recall that rk(A)

is even for all A ∈ An(F), and that rk(A) = 2k iff there exists a subset I ∈
([n]
2k

)
such that the

principal submatrix A[I|I] is nonsingular. For u, v ∈ Fn let u ∧ v = u⊗ v − v ⊗ u ∈ An(F).
For a subset G ⊂

(
[n]
2

)
let

AG(F) = span {ei ∧ ej : {i, j} ∈ G} .

A matching in G is a subset G0 ⊂ G such that f ∩ f ′ = ∅ for all f 6= f ′ ∈ G0. The matching
number of G is

ν(G) := max {|G0| : G0 is a matching in G} .

Our final result is an extension of Theorem 1.2 to spaces of alternating matrices supported
on general graphs.

Theorem 1.9. For any G ⊂ Kn :=
(
[n]
2

)
max {dimU : U ≤ AG(F) , ρ(U) ≤ 2k} = max

{
|G′| : G′ ⊂ G , ν(G′) ≤ k

}
. (4)

Remark 1.10. Theorem 1.9 implies Theorem 1.2. Indeed, given B ⊂ [n]2 let G denote the
bipartite graph with sides {1, . . . , n} and {n+ 1, . . . , 2n} corresponding to B, i.e.

G = {{i, j + n} : (i, j) ∈ B} ⊂
(

[2n]

2

)
.
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It is straightforward to check that

max {dimW : W ≤MB(F) , ρ(W ) ≤ k} = max {dimU : U ≤ AG(F) , ρ(U) ≤ 2k}

and
max

{
|B′| : B′ ⊂ B , νb(B′) ≤ k

}
= max

{
|G′| : G′ ⊂ G , ν(G′) ≤ k

}
.

Thus (2) follows from (4).

The paper is organized as follows. In Section 2 we prove Theorem 1.5. Our main tool
is a combinatorial lower bound on the maximal ω-rank in a subspace of matrices given in
Proposition 2.2. In Section 3 we prove Theorem 1.8. In Section 4 we use a result from [9]
to establish Theorem 1.9. We conclude in Section 5 with some remarks and open problems.

2 Maximal ω-Rank in Subspaces of MB(F)

In this section we prove Theorem 1.5. We will need the following facts.

Claim 2.1. For any B ⊂ [n]2

ρω(MB(F)) = νb(B). (5)

Proof. Let ρω(MB(F)) = k and νb(B) = `. Then there exists a matrix A ∈ MB(F) and
a k × k submatrix A′ = A[I|J ] such that Dω(A′) 6= 0. Let I = {i1 < · · · < ik} and
J = {j1 < · · · < jk}. Then

0 6= Dω(A′) =
∑
π∈Sk

ω(π)

k∏
t=1

A(it, jπ(t)).

It follows that there exists π ∈ Sk such that A(it, jπ(t)) 6= 0 for all 1 ≤ t ≤ k. Thus

B0 =
{

(it, jπ(t))
}k
t=1

is a bipartite matching of size k in B and therefore ` ≥ k. For the

other direction, let B0 = {(it, jt)}`t=1 be a bipartite matching of size ` in B. By reordering
we may assume that i1 < · · · < i`. Let π ∈ S` be such that jπ(1) < · · · < jπ(`). Let

I = {i1, . . . , i`}, J = {j1, . . . , j`}, and let A =
∑`

t=1 eit ⊗ ejt ∈ MB(F). Then A′ = A[I|J ]
satisfies Dω(A′) = ω(π−1) 6= 0 and therefore k ≥ rkω(A) = `.

2

Let ≺ be the lexicographic order on [n]2, i.e. (i, j) ≺ (i′, j′) if either i < i′ or i = i′ and
j < j′. For 0 6= A ∈ Mn(F) let q(A) = min≺{(i, j) : A(i, j) 6= 0}. For S ⊂ Mn(F) let
B(S) = {q(A) : A ∈ S}. Note that if W ≤ Mn(F) is a d-dimensional linear subspace then
|B(W )| = d = dimW . Indeed, performing Gaussian elimination on a arbitrary basis of W
according the order ≺, we obtain another basis {A1, . . . , Ad} such that q(A1), . . . , q(Ad) are
distinct and then B(W ) = {q(A1), . . . , q(Ad)}. The main tool in the proof of Theorem 1.5
is the following

Proposition 2.2. Let W ≤Mn(F) be a linear subspace. Then

ρω(W ) ≥ νb(B(W )). (6)
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Remark 2.3. The case ω = sgn of Proposition 2.2 is equivalent to Theorem 1 in [8]. The
proof for general weight functions given below requires an additional idea.

Proof of Proposition 2.2. Let k = νb(B(W )). Then there exist A1, . . . , Ak ∈ W
with q(At) = (it, jt) such that {(it, jt)}kt=1 is a bipartite matching of size k. Let I =
{i1, . . . , ik}, J = {j1, . . . , jk}. By reordering and rescaling the matrices At’s, we may assume
that i1 < · · · < ik and that At(it, jt) = 1. Let π ∈ Sk be such that jπ(1) < · · · < jπ(k). For
1 ≤ t ≤ k let Ct = At[I|J ] ∈Mk(F). Note that

Ct(α, β) = 0 if α < t, (7)

Ct(t, β) = 0 if β < π−1(t), (8)

and
Ct(t, π

−1(t)) = 1. (9)

Let x = (x1, . . . , xk). Let G(x) =
∑k

t=1 xtCt and consider the polynomial

g(x) = Dω (G(x)) =
∑
σ∈Sk

ω(σ)
k∏
`=1

G(x)(`, σ(`)) ∈ F[x1, . . . , xk].

Claim 2.4. There exists a λ ∈ Fk such that g(λ) 6= 0.

We will use Alon’s Combinatorial Nullstellensatz (Theorem 1.2 in [1]).

Theorem 2.5 (Alon [1]). Let F be an be an arbitrary field and let g = g(x1, . . . , xk) ∈
F[x1 . . . , xk]. Suppose the total degree deg(g) of g is

∑k
t=1 dt where each dt is a nonnegative

integer, and suppose the coefficient of
∏k
t=1 x

dt
t in g is nonzero. Then, if Λ1, . . . ,Λk are

subsets of F with |Λt| > dt, there exist λ1 ∈ Λ1, . . . , λk ∈ Λt such that g(λ1, . . . , λk) 6= 0.

Proof of Claim 2.4: We will show that the monomial x1 · · ·xk appears with a nonzero
coefficient in g(x). Indeed, let σ ∈ Sk. By (7), for any 1 ≤ t ≤ k the variable xt does not
appear in

∏
`<tG(x) (`, σ(`)). It follows that the coefficient of x1 · · ·xk in

∏k
`=1G(x) (`, σ(`))

is

γ(σ) :=

k∏
`=1

C`(`, σ(`)).

Let 1 ≤ ` ≤ k. If σ(`) < π−1(`) then C`(`, σ(`)) = 0 by (8). Therefore if γ(σ) 6= 0 then
σ(`) ≥ π−1(`) for all 1 ≤ ` ≤ k, i.e. σ = π−1. Together with (9), it follows that the
coefficient of x1 · · ·xk in g(x) is

ω(π−1)γ(π−1) = ω(π−1)

k∏
`=1

C`(`, π
−1(`)) = ω(π−1) 6= 0.

Applying Theorem 2.5 for the degree k polynomial g, with d1 = · · · = dk = 1 and Λ1 =
· · · = Λk = {0, 1}, it follows that there exists λ ∈ {0, 1}k such that Dω (G(λ)) = g(λ) 6= 0.
As G(λ) is a k × k submatrix of

∑k
t=1 λtAt ∈W it follows that ρω(W ) ≥ k.

2
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Proof of Theorem 1.5. The ≥ direction of (3) follows from Claim 2.1. Indeed, if B′ ⊂ B
satisfies νb(B′) ≤ k, then W = MB′(F) ≤MB(F) satisfies ρω(W ) = νb(B′) ≤ k and dimW =
|B′|. For the ≤ direction, suppose W ≤ MB(F) satisfies ρω(W ) ≤ k. Let B′ = B(W ) ⊂ B.
Then |B′| = dimW and Proposition 2.2 implies that νb(B′) ≤ ρω(W ) ≤ k.

2

3 Maximal Dimensional Spaces of Bounded Permanental Rank

In this section we prove Theorem 1.8. The main ingredient of the argument is the following

Proposition 3.1. Let k ≥ 2 and suppose that charF 6= 2 and U ≤ Mk+1(F) satisfies
B(U) = [k]× [k + 1] and ρ1(U) = k. Then U = span{ei}i∈[k] ⊗ Fk+1.

Proof. The assumption B(U) = [k]× [k + 1] implies that U has a basis

{Aij : (i, j) ∈ [k]× [k + 1]}

such that

Aij = ei ⊗ ej +

k+1∑
`=1

λij`(ek+1 ⊗ e`)

for some λij` ∈ F.

Claim 3.2. λij` = 0 for any 1 ≤ i ≤ k and 1 ≤ j 6= ` ≤ k + 1.

Proof. Suppose for contradiction that λij` 6= 0 for some 1 ≤ i ≤ k and 1 ≤ j 6= ` ≤ k + 1.
Let

[k] \ {i} = {i1, . . . , ik−1} , [k + 1] \ {`, j} = {j1, . . . , jk−1},

and for θ ∈ F let

Cθ = θAij +
k−1∑
t=1

Aitjt ∈ U.

Clearly, the only permutation π ∈ Sk+1 that corresponds to a nonzero term in the expansion
of perCθ is that given by π(i) = j, π(k + 1) = ` and π(it) = jt for 1 ≤ t ≤ k − 1. Therefore

perCθ = Cθ(i, j) · Cθ(k + 1, `) ·
k−1∏
t=1

Cθ(it, jt)

= Cθ(i, j) · Cθ(k + 1, `)

= θ

(
θAij(k + 1, `) +

k−1∑
t=1

Aitjt(k + 1, `)

)

= θ

(
θλij` +

k−1∑
t=1

λitjt`

)
.

(10)

Eq. (10) and the assumption λij` 6= 0 imply that perCθ is a nonzero polynomial of degree
2 in θ. As |F| ≥ 3 there exists θ ∈ F such that perCθ 6= 0, contradicting ρ1(U) = k.
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2

For (i, j) ∈ [k]× [k + 1] let µij = λijj . Claim 3.2 implies that Aij = ei ⊗ ej + µijek+1 ⊗ ej .

Claim 3.3. µij = 0 for all (i, j) ∈ [k]× [k + 1].

Proof. Fix i ∈ [k] and j′ 6= j′′ ∈ [k + 1]. Let

[k] \ {i} = {i1, . . . , ik−1} , [k + 1] \ {j′, j′′} = {j1, . . . , jk−1},

and let

C = Aij′ +Aij′′ +
k−1∑
t=1

Aitjt .

Clearly, if π ∈ Sk+1 corresponds to a nonzero term in the expansion of perC then π(it) = jt
for 1 ≤ t ≤ k− 1 and either (π(i), π(k+ 1)) = (j′, j′′) or (π(i), π(k+ 1)) = (j′′, j′). It follows
that

perC =
(
C(i, j′) · C(k + 1, j′′) + C(i, j′′) · C(k + 1, j′)

)
·
k−1∏
t=1

C(it, jt)

= C(k + 1, j′′) + C(k + 1, j′) = µij′′ + µij′ .

Together with the assumption that ρ1(U) = k this implies that

µij′′ + µij′ = perC = 0. (11)

As (11) holds for all 1 ≤ j′ 6= j′′ ≤ k + 1 and k ≥ 2, the assumption char(F) 6= 2 implies
that µij = 0 for all (i, j) ∈ [k] × [k + 1], thereby completing the proof of Claim 3.2 and of
Proposition 3.1.

2

Proof of Theorem 1.8. We may assume that k < n. Let W ≤Mn(F) satisfy ρ1(W ) = k
and dimW = kn. Proposition 2.2 implies that

ν(B(W )) ≤ ρ1(W ) = k.

As |B(W )| = dimW = kn, it follows by Kőnig’s theorem that B(W ) is either I × [n] or

[n] × I for some I ∈
([n]
k

)
. Consider the first case B(W ) = I × [n] and let I = {i1, . . . , ik}

where 1 ≤ i1 < · · · < ik ≤ n. We have to show that W = span{ei : i ∈ I} ⊗ Fn. Fix a
pair (i′, j′) ∈ ([n] \ I) × [n]. Define ik+1 = i′ and choose J = {j1, . . . , jk+1} ⊂ [n] such that
j1 < · · · < jk+1 and j′ = jβ′ for some 1 ≤ β′ ≤ k+1. For A ∈W let Ã ∈Mk+1(F) be given by
Ã(α, β) = A(iα, jβ) for (α, β) ∈ [k+ 1]2. Let U = {Ã : A ∈W}. Clearly B(U) = [k]× [k+ 1]
and ρ1(U) = k. Proposition 3.1 then implies that U = span{eα}α∈[k] ⊗ Fk+1. In particular

A(i′, j′) = Ã(k + 1, β′) = 0 for all A ∈W . Therefore

W ≤ span{ei}i∈I ⊗ Fn. (12)

As dimW = kn it follows that there is equality in (12). The case B(W ) = [n]× I for some
|I| = k is handled similarly.

2
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4 Maximal Rank in Subspaces of AG(F)

In this section we prove Theorem 1.9. We first recall the definition of the Pfaffian of an
alternating matrix of even order A ∈ A2k(F). A perfect matching in K2k is a matching of
size k. LetM2k denote the set of all perfect matchings in K2k. For M = {f1, . . . , fk} ∈ M2k

such that ft = {it < jt} for 1 ≤ t ≤ k and i1 < · · · < ik, let

θ(M) = sgn

(
1 2 · · · 2k − 1 2k
i1 j1 · · · ik jk

)
and let

µ(A,M) =

k∏
t=1

A(it, jt).

The Pfaffian of A is defined by

Pf(A) =
∑

M∈M2k

θ(M)µ(A,M).

It is well known that det(A) = Pf(A)2 (see e.g. Exercise 4.24 in [7]). We will need the
following facts.

Claim 4.1. For any G ⊂
(
[n]
2

)
ρ(AG(F)) = 2ν(G). (13)

Proof. Let ρ(AG(F)) = 2k and ν(G) = `. Let {{i1, j1}, . . . , {i`, j`}} be a matching in G.
Then A =

∑`
t=1 eit ∧ ejt ∈ AG(F) and rk(A) = 2`. Therefore k ≥ `. For the other direction,

let A ∈ AG(F) such that rk(A) = 2k. Then there exists I = {α1 < · · · < α2k} such that
B = A[I|I] ∈ A2k(F) is nonsingular. Thus

0 6= det(B) = Pf(B)2 =

 ∑
M∈M2k

θ(M)µ(B,M)

2

.

Hence there exists a matching M = {f1, . . . , fk} ∈ M2k such that µ(B,M) 6= 0. Writing
ft = {it < jt} for 1 ≤ t ≤ k it follows that

0 6= µ(B,M) =

k∏
t=1

B(it, jt) =
k∏
t=1

A(αit , αjt).

Thus {{αit , αjt} : 1 ≤ t ≤ k} is a matching of size k in G and therefore ` = ν(G) ≥ k.

2

For A ∈ An(F) with q(A) = (i, j) define q̃(A) = {i, j}. For S ⊂ An(F) let G(S) =
{q̃(A) : A ∈ S}. Note that if U ≤ An(F) is a linear subspace then |G(U)| = dimU . The key
ingredient in the proof of Theorem 1.9 is the following result (Theorem 1.2 in [9]).

Theorem 4.2 ([9]). Let U ≤ An(F) be a linear subspace. Then ρ(U) ≥ 2ν(G(U)).

Proof of Theorem 1.9. The ≥ direction of (4) follows from Claim 4.1. Indeed, if G′ ⊂ G
satisfies ν(G′) ≤ k, then U = AG′(F) ≤ AG(F) satisfies ρ(U) = 2ν(G′) ≤ 2k and dimU = |G′|.
For the ≤ direction, suppose U ≤ AG(F) satisfies ρ(U) ≤ 2k. Let G′ = G(U) ⊂ G. Then

|G′| = dimU and Theorem 4.2 implies that ν(G′) ≤ ρ(U)
2 ≤ k.

2
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5 Concluding Remarks

In this note we proved two extensions of the combinatorial characterization due to Li, Qiao,
Wigderson, Wigderson and Zhang [6] of the maximal dimension of bounded rank subspaces
of the graphical matrix space MB(F) associated with a bipartite graph B. Theorem 1.5 shows
that the above characterization remains valid for a wide class of generalized rank functions,
including e.g. the permanental rank. In a different direction, Theorem 1.9 extends the
characterization to bounded rank subspaces of the graphical matrix space AG(F) associated
with a general graph G. We conclude with the following two remarks.

• Theorem 1.1 provides a classification of the spaces W ≤ Mn(F) such that ρ(W ) = k
and dimW = kn. The analogous (but different) classification of spaces W ≤ Mn(F)
such that ρ1(W ) = k and dimW = kn is given in Theorem 1.8. It would be interesting
to extend these results to bounded rank subspaces of MB(F) and of AG(F) for various
B ⊂ [n]2 and G ⊂

(
[n]
2

)
.

• For an element u in the p-th exterior power
∧p
Fn, let E(u) denote the minimal

subspace U ≤ Fn such that u ∈
∧p U . The rank of u is rk(u) = dimE(u). For

sufficiently large fields, Theorem 4.2 is the case p = 2 of Theorem 2.1 in [3] that gives
a lower bound on ρ(U) for U ≤

∧p
Fn in terms of the weak matching number of a

certain p-uniform hypergraph associated to U . It seems likely that this lower bound
may be useful in obtaining extensions of Theorem 1.9 to structured subspaces of

∧p
Fn

for general p.
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