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Abstract

We show that the size of the largest simple d-cycle in a simplicial d-complex K is at least a square
root of K’s density. This is a higher dimensional analogue of a classical result of Erdős and Gallai [7]
for graphs.

1 Introduction

Let G = (V,E) be a (finite) simple graph. A classical result of Erdős and Gallai [7] asserts that if |E| >
k(|V |−1)

2 , then G contains a simple cycle of length > k. In this paper we study the analogous question for
higher dimensional simplicial complexes.

A (homological) d-cycle in a d-dimensional simplicial complex is a set of d-faces with coefficients in
a ring R, whose boundary is 0. A d-cycle on a set of faces C is simple if every cycle that is supported on
C is either trivial, or has full support on C. In graphs the choice of the ring R is not important as far as
the structure of the simple cycles is concerned. In higher dimensions it is of importance. In this paper we
assume that R is an arbitrary field F. One advantage of working over a field is that it introduces a matroidal
structure on the set of d-faces of a complex, where a subset of d-faces is independent if it supports no
nontrivial d-cycles. Our results exploits the combinatorial structure of d-cycles, and does not dependent on
the choice of F.

Let c(G) denote the size of the maximum simple cycle in G. The graph-theoretic lower bound of Erdős
and Gallai [7] can be interpreted in two somewhat different ways. The first interpretation is that c(G) is linear
in D = 2|E|/|V |, the average degree of G. The second interpretation is that c(G) is linear in |E|/rank(G),
and even in maxG′⊆G |E(G′)|/rank(G′), where the rank of a graph is the size of a maximum acyclic subset
of edges in it. The latter interpretation is more suitable for a generalization, and we shall pursue it for the
most part of the paper. It will also imply a generalization of the former interpretation.

Let γ(G) = maxG′⊆G |E(G′)|/rank(G′), where the maximum is taken over all subgraphs of G. (To
avoid discussing degeneracies, we assume here 0/0 = 0.) γ(G) is a standard graph theoretic parame-
ter which measures the maximum local density of G. It appears e.g., in Nash-Williams Theorem (see [4]),
where it determines exactly the minimum number of subforests ofG required to coverE(G). Nash-Williams
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theorem states that this number is precisely dγ(G)e. This was generalizes to matroids, and hence to simpli-
cial complexes. A classical result of Rado (see e.g., [13]) asserts that the minimum number of independent
sets in a (loopless) matroid M required to cover M is dγ(M)e, where γ(M) = maxA⊂E(M) |A|/rank(A).
Moreover, γ(M) is efficiently computable.

In this paper we obtain lower bounds on c(M), the size of the largest simple cycle of M , in terms of
γ(M). Our main result is the following.

Theorem Let K be a simplicial complex containing nontrivial d-cycles. Let f`(K) be the number of
`-simplices in K. Then, K contains a simple d-cycle of size at least

√
2/(d+ 1) ·

√
fd(K)/fd−1(K)− 1.

The paper contributes to the rapidly evolving study of the combinatorics of simplicial complexes in the
context of their homological and homotopical properties. Let us mention, e.g., [1, 10, 11, 6]. The latter
elegant paper [6] deals with a higher dimensional analogue of another extremal problem from graph theory,
the Moore bound (see, e.g., [3]), and shows that dense simplicial complexes contain small cycles, providing
almost tight quantitative upper and lower bounds.

2 Preliminaries

We use here standard notations from the area of combinatorial simplicial complexes. We also need some
basic facts from Matroid theory. For completeness we presents these notations and fact here. The reader
feeling at home in these areas is advised to skip this section.

Simplicial complexes: A d-dimensional simplex, abbreviated as d-simplex, is a set σ ⊆ [n]. A simplicial
complex K is a collection of simplices over [n] that is closed under containment, i.e., if σ ∈ K, then so are
all the subsets of σ, aka the faces of σ. The dimension of K is the largest dimension over all its simplices.
Some of the complexes discussed in this paper are pure d-dimensional complexes, i.e., all the maximal faces
of K are all of the same dimension d. Maximal faces are called facets.

Let K be a finite d-dimensional simplicial complex on the vertex set V and let F be a field. Let ≺ be
a fixed linear order on V . We orient each simplex in K according to this order, i.e., σ = [v0, . . . , vi] if
v0 ≺ · · · ≺ vi. Let K(i) denote the set of oriented i-dimensional faces of K, and let fi(K) = |K(i)|. Let
Ci(K;F) be the space of i-chains of K, where a chain is a formal sum of F-weighted oriented i-simplices
in K(i). The boundary of d-simplex σ = [v0, . . . , vd] is ∂d(σ) =

∑d
j=0(−1)j [v0, . . . , vj−1, vj+1, . . . vd].

This linearly extends to the boundary map ∂d : Cd(K;F)→ Cd−1(K;F).
Having defined the linear map ∂d, define Zd(K;F) = ker ∂d to be the linear space of d-cycles in K, and

Bd−1(K;F) = Im ∂d to be the linear space of (d− 1)-boundaries in K.
Let C =

∑m
i=1 αiσi ∈ Zd(X;F) be a non-empty d-cycle in K, where for i = 1, . . . ,m, αi 6= 0, and

the σi’s are distinct d-simplices. The support of C is supp(C) = {σ1, . . . , σm}. A non-empty d-cycle
C =

∑m
i=1 αiσi is simple if the set {∂dσ1, . . . ∂dσm} \ {∂dσi} is linearly independent over F for every

i, 1 ≤ i ≤ m. Equivalently, C is simple if its support does not strictly contain the support of any other
non-trivial d-cycle in K.

Matroids: We only list here some of the notions of the matroid theory that are essential for the forthcoming
discussion. For a systematic and detailed exposition of the matroid theory see, e.g., [13].

Let M = (E, I) be a matroid on a finite ground set E, with I its collection of independent sets. The
independent sets are closed under inclusion and satisfy the exchange property, i.e., if I, J ∈ I and |J | > |I|,
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then there exists j ∈ J \ I such that I ∪ {j} ∈ I.
Some common examples of matroids are the graphic matroids and the linear matroids. Given an undi-

rected graph G, the corresponding graphic matroid is (E[G],F), where E[G] are the edges of G, and F are
the acyclic subsets of E[G]. A linear matroid (V,B) has as a ground set a finite subset V of some linear
space over a field F, and B is formed by all the linearly independent subsets of V .

The rank of A ⊆ E, denoted rank(A), is the size of the maximum independent set in it. The rank of M
is defined to be rank(E). A circuit is a minimally dependent set.

The span (also called the closure) ofA inM , denoted by span(A), is the maximal subset ofE containing
A, and satisfying rank(span(A)) = rank(A). In other words, in addition to A, span(A) contains all e ∈ E
such that there exists a circuit in A ∪ {e} containing e.

A matroid M is called loopless if for every e ∈ E(M), {e} is not a circuit. It has no double edges if for
every e, f ∈ E(M), {e, f} is not a circuit. A loopless matroid without double edges is called simple.

Let ∼ be the binary relation on E(M), where e ∼ f if there exists a circuit containing both. This
relation is an equivalence relation. The equivalence classes {Ei} of this relation are called the connected
components of M . It holds that

∑
i rank(Ei) = rank(E). Furthermore, for all i, span(Ei) = Ei. The

above properties can be summarized by saying that M is a direct sum of Mi’s, where Mi is the submatroid
of M on the connected component Ei. The Mi’s are called the components of M . The matroid M is called
connected if it has a single component.

A minor of a matroid M , just like a graph minor, is a matroid obtained from M by series of element
deletions and contractions. Deletion of e ∈ E = E(M) results in the matroid M \ e = (E \ {e}, I ′)
where I ′ = {I ⊆ E \ {e}| I ∈ I}. Contraction of e results in the matroid M/e = (E \ {e}, I ′) where
I ′ = {I ⊆ E \ {e} | I ∪ {e} ∈ I}.

Let A be a subset of E. Contracting A results in a matroid M/A on E \A, where for each circuit C of
M , the set C \ A ⊆ E(M/A) splits into a disjoint union of circuits, possibly loops, in M/A. In the other
direction, if C ′ is a circuit of M/A, then C ′ ∪ A contains a circuit in M . For any set A ⊂ E(M), it holds
that rank(M) = rank(A) + rank(M/A).

LetK be a simplicial complex. The simplicial matroid (K(d),A) with respect to a field F has the d-faces
of K as its ground set, and A is formed by all subsets A ⊆ K(d) that support no nontrivial d-cycles over F.
A simplicial matroid (K(d),A) over F is isomorphic to a linear matroid over F, and thus is F-representable.
The representation is given by φ : K(d) 7→ Ffd−1(K), where the vectors are indexed by the (d − 1)-faces
K(d−1), and, for a d-face σ and a (d − 1)-face τ in K, and the value of τ ’s coordinate of φ(σ) is the
coefficient of τ in ∂dσ.

3 Approaches and Results

We present in Section 3.2 a basic approach that bounds C(M) in terms of γ(M) for general matroids. Then,
in Section 4, we discuss simplicial complexes and prove our main result.

Let M be a matroid. Recall that c(M) denotes the size of a maximum circuit in M , and γ(M) =
maxA⊂E(M) |A|/rank(A). As before, we treat 0/0 as 0.

3.1 Using Forbidden Minors: Fq-representable Matroids

Observe that the class of graphs G with c(G) < k is precisely the class of graphs lacking Ck, the size-k
cycle, as a minor. Indeed, the deletion does not create new cycles, while the contraction only shrinks or
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leaves alone the existing ones. This observation could be employed to obtain a weaker version of [7] by
using classical results (see, e.g., [14]) about the density of graphs lacking a size-k minor.

As with graphs, and for the same reason, the class of matroids M with c(M) < k is precisely the class
of matroids lacking as minor(s) the matroids associated with size-k circuits. Observe that the latter are all
isomorphic to Uk−1k , a matroid on a ground set of size k, where all the subsets of size < k are independent.
It is also the graphic matroid associated with the graph Ck. This allows us to use the following hard result
of Geelen and Whittle [8] (see also [9]):

Theorem 1. [8] Let M be a simple Fq-representable matroid (equivalently, a linear matroid over a field of
size q) lacking a graphic minor of a graph on k vertices. Then,

γ(M) < qq
3k
.

Corollary 2. For M as above, c(M) > 1
3 logq logq γ(M) .

While this does establish a weak lower bound on c(M) in terms of γ(M) for, say, binary matroids, the
bound can be considerably strengthened; see below. For infinite fields like Q it yields nothing.

3.2 Using Seymour’s Lemma: General Matroids

The following theorem by Seymour will be used.

Theorem 3. (Th. 3.4 in [5]) LetM be a connected loopless matroid, |E(M)| > 1, and let C be a maximum
size circuit in M . Then, size of the maximum circuit in the matroid M/C obtained from M by contracting
C, is strictly less than |C|.

For matroids with loops, γ(M) is not interesting, as formally γ(M) =∞. For loopless matroids, as far
as proving lower bounds on c(M) in terms of γ(M) goes, we may restrict our attention to connected ma-
troids. Indeed, assume that M has connected components {Mi}`1. Then, it holds that γ(M) = maxi γ(Mi).
The direction ”≥” is obviously true. For the direction ”≤”, let K ⊆ M be the subset of elements on which
γ(M) is achieved, and let Ki = K ∩ E(Mi). One has

γ(M) =
|K|

rank(K)
=

∑
i |Ki|∑

i rank(Ki)
≤ max

i

|Ki|
rank(Ki)

≤ max
i

γ(Mi) .

Since a circuit of Mi is also a circuit of M , it trivially holds that c(M) ≥ c(Mi). Thus, a lower bound on
c(Mi) in terms of γ(Mi) is also a lower bound on c(M). In fact, c(M) = maxi c(Mi), since any circuit of
M lies entirely in some Mi.

Definition 1. Given a connected loopless matroid M with |E(M)| > 1, we define the following decompo-
sition process of M , described by a tree TM :

* Each vertex x of TM will have an associated pair (Mx, Cx), where Mx is a connected loopless minor
of M , and Cx is a maximum size circuit of Mx (an arbitrary choice is taken if there are several max-size
circuits).

* The matroid associated with the root vertex is the original M .

* The children of the vertex x in TM correspond to the components of Mx/Cx after the removal of the
loops. If there are no non-empty components, that is, rank(Mx/Cx) = 0, then x is a leaf of TM .

The following claim establishes some basic properties of TM .
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Claim 4.

(i) TM is well defined (given the choice of Cx at every vertex x).

(ii) For any x, y, where y is the parent of x in TM , it holds that |Cy| > |Cx|.
Consequently, the depth of TM is smaller than c(M)− 1 .

(iii)
∑

x∈TM (|Cx| − 1) = rank(M).

Proof.
(i) One needs to verify that for any vertex x created in the process of TM ’s generation, Mx has a circuit.

Observe that by the definition of TM , everyMx is nonempty, connected and loopless. Thus, the only concern
is that the ground set of Mx may consist of a single element. Call a vertex y ∈ TM good if |E(My)| > 1.
Let us show by induction that all x ∈ TM are good.

By the initial assumption, |E(M)| > 1, and so the root vertex is good. Let y be a good vertex, with a
child x in TM . The corresponding Mx is nonempty, and so it contains some element e. Then e ∈ E(My)
as well, and since y is good, and My is loopless and connected, there is a circuit C in My containing e and
some other elements. In My/Cy, the set C splits into disjoint circuits, possibly loops. Thus e is contained
in some circuit in My/Cy. Keeping in mind that Mx is a loopless component of My/Cy, the conclusion
follows.

(ii) An immediate consequence of Theorem 3, and the fact that |Cx| > 1 for all x ∈ TM .
(iii) We claim that for every vertex z of TM it holds that

∑
x∈TMz

(|Cx| − 1) = rank(Mz), where the
sum is taken over all the vertices of the subtree TMz of TM rooted at z. This extends the original statement,
which claims this only for the root of TM .

The proof is by a bottom-up induction on the structure of TM . When z is a leaf, the rank of Mz/Cz is 0,
or, equivalently, span(Cz) = E(Mz). Since Cz is minimally dependent, this implies rank(Mz) = |Cz|−1.
Consider now a vertex z ∈ TM with children {yi}`i=1. By inductive assumption, the statement holds for all
yi’s. Keeping in mind that Mz/Cz is a direct sum of its components, i.e., Myi’s and the removed loops.
Using the fact that for any set A, rank(M) = rank(A) + rank(M/A), we conclude that:

rank(Mz) = rank(Cz) + rank(Mz/Cz) = (|Cy| − 1) +
∑
i

rank(Myi)

= (|Cz| − 1) +
∑

x∈TMyi
(|Cy| − 1) =

∑
x∈TMz

(|Cx| − 1) .

Recall that our goal is to relate c(M) to γ(M), the maximum local density in M . The local density
profile {sM (i)} of M , that is defined below, will play a key role in the forthcoming discussion.

Definition 2. For a matroid M , and an integer i ≥ 0, let

sM (i) = max
{
|A| : A ⊂ E(M), rank(A) ≤ i

}
.

The following theorem is the central result of this section:

Theorem 5. Let M be a loopless matroid with c(M) = k > 1. Then,

γ(M) ≤ sM

(
(k − 1)k/ 2

)
.
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Proof. Let N be the submatroid of M on which γ(M) is achieved. That is, |E(N)| = γ(M) · rank(N). As
we have seen, N is w.l.o.g., connected, loopless, with |E(N)| > 1. Let r = c(N). We shall prove that

|E(N)| ≤ sN

(
(r − 1)r/ 2

)
· rank(N),

This would imply the original statement, as sM (∗) dominates sN (∗), r ≤ k, and sM (∗) is monotone
nondecreasing.

Let TN be the decomposition tree of N , and consider an element e ∈ E(N). Tracing its ”life” in TN ,
we conclude that the set of vertices x ∈ TN such that e ∈ E(Nx), constitutes a path Pz from the root to a
vertex z ∈ TN , such that e ∈ span(∪x∈PzCx). Indeed, since e made it to Nz but not to its children, it was
eliminated either as a part of Cz , or as a loop in Nz/Cz . This happens if and only if e ∈ span(Cz) in Nz .
Now, in general, (N/A)/B ∼= N/(A ∪ B), and thus Nz is a component of (N/ ∪x∈Pz\{z} Cx) containing
e. Hence, e ∈ span(Cz) in Nz implies that e ∈ span(∪x∈PzCx) in N .

Keeping in mind that all the elements of N get eventually eliminated during the decomposition process
described by TN , the previous discussion leads to the conclusion

⋃
z∈ leaves of TN

span

( ⋃
x∈Pz

Cx

)
= E(N) . (1)

Now, for any z ∈ TN ,

rank

(
span

( ⋃
x∈Pz

Cx

))
= rank

( ⋃
x∈Pz

Cx

)
=

∑
x∈Pz

|Cx| − 1 . (2)

By Theorem 3, the size of Cx drops down by at least 1 every time one moves down the tree. Therefore,
for any z ∈ TN , it holds that

∑
x∈Pz

(|Cx| − 1) ≤ (r− 1) + (r− 2) + . . .+ 2 < (r− 1)r/2. Keeping in
mind the definition of sM (∗), this implies that∣∣∣∣∣span

( ⋃
x∈Pz

Cx

)∣∣∣∣∣ ≤ sN

(
(r − 1)r/2

)
. (3)

In view of Claim 4 (iii), the number of vertices of TN , and in particular the number of leaves there, is at
most rank(N). Combining this with Equations (1) and (3) we conclude that

|E(N)| ≤
∑

z: leaves of TN

∣∣∣∣∣span

( ⋃
x∈Pz

Cx

)∣∣∣∣∣ ≤ rank(N) · sN
(

(r − 1)r/2
)
,

as desired.

For an application of Theorem 5, consider the case when M is a Fq-representable simple matroid, i.e.,
it is isomorphic to a linear matroid over Fq. In this case sM (r) ≤ qr. By Theorem 5,

Corollary 6. For a Fq-representable simple matroid M , γ(M) ≤ q(c(M)−1)·c(M)/2 .

Consequently, c(M) >
√

2 logq γ(M) .

This is a considerable improvement over Corollary 2. The lower bound on c(M) is tight up to a square
root and negligible additive terms. To see this, consider a k-dimensional linear space over Fq with 0 re-
moved. For the corresponding matroid M , γ(M) = (qk − 1)/k, while c(M) = k + 1.
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4 Back to Simplicial Complexes

The general results obtained in the previous section apply to simplicial complexes. Let us first relate the
matroidal notation used in the previous section to that of simplicial complexes.

Let K be a d-dimensional simplicial complex, and let F be a field. The boundary mapping ∂d :
Cd(K;F) → Cd−1(K;F) maps d-chains of K to (d − 1)-chains. Its kernel is Zd(K,F), the d-cycles,
and its image is Bd−1(K,F), the (d− 1)-boundaries. Both are linear spaces over F.

The rank function rankd that introduces a matroidal structure on K(d) is defined as follows. For A ⊆
K(d), its rank is:

rankd(A) = rankF {∂dσ | σ ∈ A} = dimF span {∂dσ | σ ∈ A} ,

where rankF is the usual linear-algebraic rank function of sets of vectors, and span above is the usual linear-
algebraic span. Note that this is consistent of writing for A ⊆ K(d), that its matroidal span is spanM (A) =
{σ ∈ K(d) | σ ∈ spanF {∂dσ | σ ∈ A} }. We will avoid using the subscript M in spanM in what follows,
as we do not use the linear algebraic span anymore. This results in an F-representable matroid M(K(d)). In
particular, I, the independent sets inM(K(d)), are the the sets of d-simplices inK that support no nontrivial
d-cycles, and equivalently A ⊆ K(d) is independent if rankd(A) = |A|.

We shall use cd(K) and γd(K) to denote the size of the largest circuit, and the value of the parameter γ
in the above matroid M(K(d)), respectively. Note that cd(K) coincides with the size of the largest simple
d-cycle in K, as defined in Section 2. Slightly abusing the notation, we shall use rankd(K) to denote
rankd(M(K(d))). It is the dimension of Bd−1(K,F). Recall that the f -vector of K is (fd, fd−1, . . . , f0)
where fi = |K(i)|.

In order to employ Theorem 5, we shall estimate sd(t), the maximum possible size of a familyA ⊆ K(d)

of d-simplices, with rankd(A) ≤ t. Let us first cite the Kruskal-Katona theorem in the relaxed form of
Lóvász:

Theorem 7. (Lóvász [12]) Among all simplicial complexes K with a fixed fd(K) on a finite ground set V
equipped with a total order, the minimum value of fd−1 is achieved on K0 whose d-faces compressed with
respect to the colexicographic order the subsets of V of size (d+ 1). Furthermore:

fd(K) =

(
x

d+ 1

)
=⇒ fd−1(K) ≥ fd−1(K0) ≥

(
x

d

)
.

Since removing the faces of K that are not subfaces of K(d) has no effect neither on fd, nor on
rankd(K), and since after such removal it trivially holds that rankd(K) ≥ 1

d+1 · fd−1(K), Theorem 7
yields an upper bound on fd in terms of rankd(K) that is already sufficient for our needs. A stronger result
is provided by:

Theorem 8. (implicit in [2] 1 ) Among all simplicial complexes K with a fixed fd(K) on a finite ground
set V equipped with a total order, the minimum value of rankd(K) over any field F is achieved on the same
K0 as in Theorem 7. Moreover, rankd(K0) is the number of d-simplices in K0 that contain the smallest
vertex v1 of V .

Further investigation of the combinatorial structure of the latter set based on Theorem 7, yields

fd(K) =

(
x

d+ 1

)
=⇒ rankd(K) ≥

(
x− 1

d

)
.

1This was also independently discovered by N. Linial and Y. Peled, private communication, by a direct argument involving the
combinatorial shifting technique.
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Corollary 9. sd(t) ≤ t1+
1
d .

Proof. The conclusion of Theorem 8 can be restated, given the monotonicity of the functions involved, in
the form

rankd(K) =

(
y

d

)
=⇒ fd(K) ≤

(
y + 1

d+ 1

)
.

Let t =
(
y
d

)
. Then, fd(K) ≤

(
y+1
d+1

)
= t · y+1

d+1 . By a standard estimation of binomial coefficients, it holds

that
(y
d

)d ≤ t ≤ ( eyd )d. Thus, fd(K) ≤ t · t1/d · d
d+1 ·

y+1
y ≤ t1+1/d.

Combining the above corollary with Theorem 5 yields:

Theorem 10. For any simplicial complex K containing nontrivial d-cycles, cd(K) ≥ (2γd(K))
1
2
− 1

2(d+1) .

The rest of this section is dedicated to strengthening this theorem. The goal is to establish the following:

Theorem 11. Let K be a simplicial complex containing nontrivial d-cycles. Then,

fd(K) >
d+ 1

2
· k(k + 1) · rankd(K) =⇒ K contains a simple d-cycle of size > k.

Consequently, cd(K) ≥
√

2/(d+ 1) · γd(K)− 1.

Proof. We shall use the tree TK = TM(K(d)) as in Definition 1, with the notation introduced in the proof
of Theorem 5. We warn the reader, however, that contraction of a cycle from a simplicial matroid does not
necessarily results in a simplicial matroid.

For A ⊆ K(d), let A(i) ⊆ K(i) denote the union of all the i-faces of the σ’s in A. The starred closure
cl∗(A) of A is defined as follows:

cl∗(A) = {σ ∈ K(d) | σ(d−1) ⊆ A(d−1) } .

Observe that span(A) ⊆ cl∗(A). The containment can be strict. For example, consider the set A =
{(1, x, y), (2, y, z), (3, z, x)}. Then, (x, y, z) belongs to cl∗(A), but not to span(A).

Let Px be, as before, the path from the root of TK to the vertex x in it. Define

Sx =
⋃

v∈Px\{x}

Cv ⊆ K(d) .

In particular, for the root vertex r, Sr = ∅.

Claim 12. The following holds:⋃
x∈TM

span(Sx ∪ Cx) \ span(Sx) = K(d) . (4)

∑
x∈TM

|cl∗(Sx ∪ Cx)| − |cl∗(Sx)| ≥ |K(d)| = fd(K) . (5)
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Proof. We start with (4). As we have seen earlier in the proof of Theorem 5, for every σ ∈ K(d), the set
of all vertices v such that σ ∈ E(Mv) forms a path Px from the root to some vertex x ∈ TK , where x,
the lowest vertex of Px, is the place where σ is terminated. Since every σ gets eventually terminated at a
uniquely defined vertex, and span(Sx ∪ Cx) \ span(Sx) contains precisely the set of all σ’s terminated at
x, the statement follows. Moreover, the outer union is disjoint.

We proceed with establishing (5). The left-hand-side of it can be rewritten in the following form:∑
x∈TM

|cl∗(Sx ∪ Cx)| − |cl∗(Sx)| =
∑

σ∈K(d)

∑
x∈TM

1σ(cl∗(Sx ∪ Cx))− 1σ(cl∗(Sx)) =

=
∑

σ∈K(d)

∑
x∈TM

1σ

(
cl∗(Sx ∪ Cx) \ cl∗(Sx)

)
,

where 1σ is the indicator function of σ. Consider a fixed σ ∈ K(d). From (4) we know that there exist
vertices v ∈ TK such that σ ∈ span(Sv ∪ Cv) ⊆ cl∗(Sv ∪ Cv). Let x be a topmost vertex (there could be
many) for which σ ∈ cl∗(Sx ∪ Cx). By definition of x, σ 6∈ cl∗(Sx), and thus x contributes 1 to the inner
sum of the above expression corresponding to the fixed σ. Hence, (5) follows.

Next, we bound the inner term |cl∗(Sx ∪ Cx)| − |cl∗(Cx)| from (5) in the following manner. Notice
that if σ ∈ cl∗(Sx ∪ Cx) \ cl∗(Sx), then there must exists a (d − 1)-face τ of σ, such that τ 6∈ S

(d−1)
x .

Consequently, τ ∈ C(d−1)
x . Since all the vertices of σ belong to (Sx ∪ Cx)(0), it follows that

|cl∗(Sx ∪ Cx)| − |cl∗(Cx)| ≤ |C(d−1)
x | · |(Sx ∪ Cx)(0)| . (6)

Since Cx is a d-cycle, every (d − 1)-face in it is adjacent to two or more d-faces of Cx, while every
d-face is adjacent to (d+ 1) d-faces. Thus, |C(d−1)

x | ≤ d+1
2 · |Cx|.

Consider now |(Sx ∪ Cx)(0)|. We claim that |(Sx ∪ Cx)(0)| ≤ |Sx ∪ Cx|. To see this, consider the
bipartite graph G = (L,R;E) where L = (Sx ∪ Cx)(0), R = (Sx ∪ Cx) and (v, σ) ∈ E if v is a vertex
of σ, i.e., v ∈ σ(0). The degree in G of every σ ∈ R is (d + 1) by definition of σ. We will show that the
degree of every v ∈ L is at least (d+ 1). This immediately implies that |L| ≤ |R|, as needed.

Clearly, a vertex of a d-cycle in K(d) must belong to at least (d + 1) d-simplices in it. Thus, it suffices
to show that every d-simplex of (Sx ∪ Cx) is contained in some d-cycle C ⊆ Sx ∪ Cx in K(d). Arguing by
induction (on the depth of x in T ), it suffices to show this for simplices in Cx.

Indeed, by definition, Cx is a circuit in K(d)/Sx. Let Ix be a maximal independent set in Sx. Since
span(Ix) = span(Sx), it follows thatCx is a circuit inK(d)/Ix as well. Thus, rank(Ix∪Cx) = rank(Ix)+
rank((Ix ∪ Cx)/Ix) = |Ix|+ (|Cx| − 1) = |(Ix ∪ Cx)| − 1, implying that (Ix ∪ Cx) is not acyclic, and so
it contains a d-cycle in K(d). The same argument implies that for any σ ∈ Cx, ((Ix ∪Cx) \ {σ}) is acyclic.

Let I∗x ⊆ Ix be the minimal subset of Ix such that (I∗x ∪ Cx) is not acyclic. Observe that removing any
σ from (I∗x ∪ Cx) makes it acyclic. Therefore (I∗x ∪ Cx) is a simple d-cycle in K(d). This shows that every
d-simplex in Cx is indeed contained in some d-cycle in (Cx ∪ Sx), concluding the argument establishing
|(Sx ∪ Cx)(0)| ≤ |Sx ∪ Cx|.

Finally, since Sx∪Cx =
⋃
v∈Px

Cv, Claim 4 implies that |Sx∪Cx| ≤ k+(k−1)+. . .+1 = k(k+1)/2,
where k = cd(K).

Combining (6) with the subsequent observations implies that:

|cl∗(Sx ∪ Cx)| − |cl∗(Sx)| ≤ d+ 1

2
· |Cx| · |(Sx ∪ Cx)| ≤ d+ 1

4
· (k + 1)k · |Cx| . (7)
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Combining (5), (7), and using Claim 4, one arrives at

fd(K) ≤
∑
x∈TM

|cl∗(Sx ∪ Cx)| − |cl∗(Sx)| ≤
∑
x∈TM

d+ 1

4
· k(k + 1) · |Cx| .

≤ d+ 1

2
· k(k + 1) ·

∑
x∈TM

(|Cx| − 1) ≤ d+ 1

2
· k(k + 1) · rankd(K) .

The contrapositive of this inequality is the desired statement. This completes the proof of the theorem.

Now let K be a simplicial complex with cd(K) > 0. Since fd−1 ≥ rankd(K), Theorem 11 implies the
following lower bound on cd(K) in terms of its density:

Theorem 13. For K as above,

cd(K) ≥

√
2

d+ 1
· fd(K)

fd−1(K)
− 1 .

Open Problems The most intriguing open problem raised by this paper is the tightness of the above lower
bounds. While cliques are extremal graphs for the Erdős-Gallai problem, in higher dimensions the complete
d-dimensional simplicial complex Kd

n on n vertices has cd(Kd
n) = (1 − o(1))

(
n−1
d

)
and γd(Kd

n) = n
d+1 ,

and so cd(Kd
n) = Θ(γd(K

d
n))d.

The situation is unclear for small γd(K)’s as well. Our lower bounds are trivial when 1 < γd(K) ≤ d3,
since if γd(K) > 1, i.e., K is not acyclic, then cd(K) ≥ d+ 1. What happens in this range?
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