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Abstract

Let G be a finite group of order n and for 1 ≤ i ≤ k + 1 let Vi = {i} × G. Viewing
each Vi as a 0-dimensional complex, let YG,k denote the simplicial join V1∗· · ·∗Vk+1. For
A ⊂ G let YA,k be the subcomplex of YG,k that contains the (k−1)-skeleton of YG,k and
whose k-simplices are all {(1, x1), . . . , (k + 1, xk+1)} ∈ YG,k such that x1 · · ·xk+1 ∈ A.
Let Lk−1 denote the reduced (k−1)-th Laplacian of YA,k, acting on the space Ck−1(YA,k)
of real valued (k − 1)-cochains of YA,k. The (k − 1)-th spectral gap µk−1(YA,k) of YA,k
is the minimal eigenvalue of Lk−1.
The following k-dimensional analogue of the Alon-Roichman theorem is proved: Let

k ≥ 1 and ε > 0 be fixed and let A be a random subset of G of size m =
⌈
9k2 logD

ε2

⌉
where D is the sum of the degrees of the complex irreducible representations of G. Then

Pr
[
µk−1(YA,k) < (1− ε)m

]
= O

(
1

n

)
.
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1 Introduction

The Laplacian L(C) of a graph C = (V,E) is the V × V positive semidefinite matrix whose
(u, v) entry is given by

L(C)uv =


degC(u) u = v,
−1 {u, v} ∈ E,
0 otherwise.

Let 0 = λ1(C) ≤ λ2(C) ≤ · · · ≤ λ|V |(C) be the eigenvalues of L(C). The second smallest
eigenvalue λ2(C), called the spectral gap of C, is a parameter of central importance in a variety
of problems. In particular it controls the expansion properties of C and the convergence rate
of a random walk on C (see e.g. chapters XIII and IX in [5]).

Throughout the paper, let G denote a finite group of order n and let Ĝ = {ρ} be the
set of irreducible unitary representations of G, where ρ : G→ U(dρ). Let D(G) =

∑
ρ∈Ĝ dρ.

Let 1 ∈ Ĝ denote the trivial representation of G and let Ĝ+ = Ĝ \ {1}.
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Let T ⊂ G be symmetric subset, i.e. T = T−1. The Cayley graph C(G,T ) of G with
respect to T is the graph on the vertex set G with edge set {{g, gt} : g ∈ G, t ∈ T}. The
seminal Alon-Roichman theorem [1] is concerned with the expansion of Cayley graphs with
respect to random sets of generators.

Theorem 1.1 (Alon-Roichman). For any ε > 0 there exists a constant c(ε) > 0 such that
for any group G, if S is a random subset of G of size dc(ε) log |G|e and m = |S ∪S−1|, then
λ2(C

(
G,S ∪ S−1)

)
is asymptotically almost surely (a.a.s.) at least (1− ε)m.

Remark 1.2. Landau and Russell [10] and independently Loh and Schulman [12] have
obtained an improvement on Theorem 1.1 by showing that the log |G| factor in the bound on
|S| can be replaced by logD(G). While this does not change the logarithmic dependence of
|S| on |G|, it does often lead to an improvement of the constant c(ε).

This paper is concerned with higher dimensional counterparts of Theorem 1.1. We
briefly recall the relevant terminology (see section 2 for details). For a simplicial complex
X and k ≥ −1 let X(k) denote the k-dimensional skeleton of X. For k ≥ −1 let Ck(X)
denote the space of real valued simplicial k-cochains of X and let dk : Ck(X) → Ck+1(X)
denote the coboundary operator. For k ≥ 0 define the reduced k-th Laplacian of X by
Lk(X) = dk−1d

∗
k−1 +d∗kdk. The minimal eigenvalue of Lk(X), denoted by µk(X), is the k-th

spectral gap of X.
The following k-dimensional abelian version of Theorem 1.1 was obtained in [3]. Let

H be an additively written abelian group of order h and let k ≤ h. Let ∆h−1 denote the
(h − 1)-simplex on the vertex set H. The Sum Complex XA,k associated with a subset
A ⊂ H is the k-dimensional simplicial complex obtained by taking the full (k − 1)-skeleton
of ∆h−1 together with all (k + 1)-subsets σ ⊂ H that satisfy

∑
x∈σ x ∈ A.

Theorem 1.3 ([3]). Let k ≥ 1 and ε > 0 be fixed and let A be a random subset of H of size

m =
⌈

4k2 log h
ε2

⌉
. Then

Pr
[
µk−1(XA,k) < (1− ε)m

]
= O

(
1

n

)
.

Remark 1.4. See [11, 15] for more on sum complexes and their cohomology.

In the present paper we study a different model of Cayley complexes associated with
subsets of general finite groups and obtain a new high dimensional analogue of Theorem
1.1. Recall that G is a finite group of order n and let k ≥ 1. For 1 ≤ i ≤ k + 1 let
Vi = {i} × G. Let YG,k denote the simplicial join V1 ∗ · · · ∗ Vk+1, where each Vi is viewed

as 0-dimensional complex. Thus YG,k is homotopy equivalent to an N -fold wedge
∨N Sk of

k-dimensional spheres, where N = (n− 1)k+1. The balanced k-dimensional Cayley Complex
associated with a subset ∅ 6= A ⊂ G is the subcomplex YA,k ⊂ YG,k whose k-simplices are

all {(1, y1), . . . , (k + 1, yk+1)} ∈ YG,k such that y1 · · · yk+1 ∈ A. Note that YA,k ⊃ Y
(k−1)
G,k .

Let 1A denote the indicator function of A ⊂ G, i.e. 1A(x) = 1 if x ∈ A and 1A(x) = 0
otherwise. For a representation ρ : G → GLd(C) let 1̂A(ρ) =

∑
x∈A ρ(x) ∈ Md(C) be

the Fourier transform of 1A at ρ (see section 4 for details). For a matrix T ∈ Md(C) let
‖T‖ = max‖v‖=1 ‖Tv‖ denote the spectral norm of T . Let ν(A) = max

ρ∈Ĝ+
‖1̂A(ρ)‖. Our

first result is a lower bound on µk−1(YA,k) in terms of ν(A).
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Theorem 1.5.
µk−1(YA,k) ≥ |A| − k · ν(A).

Our main result is the following k-dimensional analogue of the Alon-Roichman Theorem.

Theorem 1.6. Let k and ε > 0 be fixed. Let G be a finite group of order n and fix an integer

m such that 9k2 logD(G)
ε2

≤ m ≤
√
n. Let A be a random subset of G of size m. Then

Pr
[
µk−1(YA,k) < (1− ε)m

]
<

6

n
.

Remark 1.7. (i) It is straightforward to check that µk−1(YA,k) ≤ |A| + k for any A ⊂ G
(see Eq. (2) in [3]). Theorem 1.6 thus implies that if A is a random subset of G and
log |G| = o(|A|), then YA,k is a.a.s. a near optimal spectral expander. (ii) While there are
some similarities between sum complexes and balanced Cayley complexes, the analysis of
YA,k in the present paper requires some additional ideas, including the use of the non-abelian
Fourier transform and of Garland’s eigenvalue estimates [8].

Our final result concerns the homotopy type of YA,k when A is a subgroup of G. For
1 ≤ m let

γ0(m, k) = (n−m)nk +
( n
m

)k
(m− 1)k+1 − (n− 1)k+1,

γ1(m, k) =
( n
m

)k
(m− 1)k+1.

Theorem 1.8. Let A be a subgroup of G of order |A| = m. Then
(i)

YA,1 '
n/m∐ (m−1)2∨

S1. (1)

(ii) For k ≥ 2

YA,k '
γ0(m,k)∨

Sk−1 ∨
γ1(m,k)∨

Sk. (2)

Remark 1.9. As γ0(m, k) > 0 for all m < n, it follows from Theorem 1.8 that if A ⊂ G
generates a subgroup 〈A〉 of order m < n then

β̃k−1(YA,k) ≥ β̃k−1(Y〈A〉,k) = γ0(m, k) > 0

and therefore µk−1(YA,k) = 0. As there are families of groups G (e.g. elementary abelian
groups of fixed exponent) that cannot be generated by o(log |G|) elements, this implies that
the logD(G) = Θ(log n) factor in Theorem 1.6 cannot in general be improved.

The paper is organized as follows. In Section 2 we review some basic properties of
high dimensional Laplacians and their eigenvalues, including Garland’s lower bound for the
higher spectral gaps. In Section 3 we compute the spectra of various Laplacians of the
skeleta of YG,k and deduce a variational characterization (Proposition 3.1) of µk−1(Y ) for

subcomplexes Y
(k−1)
G,k ⊂ Y ⊂ YG,k. In Section 4 we briefly recall the definition and some

basic properties of the Fourier transform on finite groups. In Section 5 we prove Theorem
1.5. This bound is the key ingredient in the proof of Theorem 1.6 given in Section 6. In
Section 7 we prove Theorem 1.8. We conclude in Section 8 with some remarks and open
problems.

3



2 Laplacians and their Eigenvalues

Let X be a finite simplicial complex on the vertex set V . Let X(k) denote the set of k-
dimensional simplices in X, each taken with an arbitrary but fixed orientation. A simplicial
k-cochain is a real valued skew-symmetric function on all ordered k-simplices of X. For k ≥ 0
let Ck(X) denote the space of k-cochains on X. The i-face of an ordered (k + 1)-simplex
σ = [v0, . . . , vk+1] is the ordered k-simplex σi = [v0, . . . , v̂i, . . . , vk+1]. The coboundary
operator dk : Ck(X)→ Ck+1(X) is given by

dkφ(σ) =

k+1∑
i=0

(−1)iφ(σi) .

It will be convenient to augment the cochain complex {Ci(X)}i≥0 with the (−1)-degree term
C−1(X) = C with the coboundary map d−1 : C−1(X)→ C0(X) given by d−1(a)(v) = a for
a ∈ C , v ∈ V . Let Zk(X) = ker dk denote the space of k-cocycles and let Bk(X) = Im dk−1

denote the space of k-coboundaries. For k ≥ 0 let H̃k(X) = Zk(X)/Bk(X) denote the k-th
reduced cohomology group of X with real coefficients. For each k ≥ −1 endow Ck(X) with
the standard inner product (φ, ψ)X =

∑
σ∈X(k) φ(σ)ψ(σ) and the corresponding L2 norm

||φ||X = (φ, φ)
1/2
X . Let d∗k : Ck+1(X) → Ck(X) denote the adjoint of dk with respect to

these standard inner products. The reduced k-th lower and upper Laplacians of X are the
positive semidefinite self-adjoint maps of Ck(X) given respectively by L−k (X) = dk−1d

∗
k−1

and L+
k (X) = d∗kdk. The k-th Laplacian of X is Lk(X) = L−k (X) + L+

k (X). Let Hk(X) =
kerLk(X) = ker d∗k−1 ∩ ker dk denote the space of harmonic k-cochains. When there is no

ambiguity concerning X, we shall abbreviate Lk(X) = Lk and L±k (X) = L±k . Clearly

L−k (Im dk−1) ⊂ Im dk−1 , L+
k (Im d∗k) ⊂ Im d∗k .

For a self-adjoint map T on an inner product space W let S(W,T ) denote the set of eigen-
values of T and let s(W,T, λ) denote the multiplicity of an eigenvalue λ ∈ S(W,T ). Let
S̃(W,T ) denote the multiset consisting of s(W,T, λ) copies of each λ ∈ S(W,T ). The k-th
spectral gap of X is

µk(X) = minS
(
Ck(X), Lk

)
.

Remark 2.1. (i) If X is a graph then µ0(X) = λ2(X). (ii) µk(X) > 0 iff H̃k(X;R) = 0,
hence µk may be viewed as a robustness measure of the property of having vanishing k-
dimensional real cohomology.

The lower and upper k-th spectral gaps of X are defined respectively by

µ−k (X) = minS
(
Im dk−1, L

−
k

)
and

µ+
k (X) = minS

(
Im d∗k, L

+
k

)
.

In Section 3 we will use some well known facts concerning Laplacians and their eigenvalues.
For proofs, see e.g. [6].

Proposition 2.2. Let 0 ≤ k ≤ dimX. Then the following hold:
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(i) Hodge Decomposition: There is an orthogonal direct sum decomposition:

Ck(X) = Im dk−1 ⊕Hk(X)⊕ Im d∗k (3)

(ii)
kerL−k = Hk(X)⊕ Im d∗k , kerL+

k = Im dk−1 ⊕Hk(X). (4)

(iii) Hodge isomorphism:
Hk(X) ∼= H̃k(X). (5)

(iv) For all λ 6= 0

s
(
Ck(X), Lk, λ

)
= s

(
Im dk−1, L

−
k , λ

)
+ s

(
Im d∗k, L

+
k , λ

)
(6)

(v)
S̃
(
Im d∗k−1, L

+
k−1

)
= S̃

(
Im dk−1, L

−
k

)
. (7)

(vi) If Hk(X) = 0 then
µk(X) = min

{
µ−k (X), µ+

k (X)
}
.

In section 5 we shall use the following special case of Garland’s fundamental eigenvalue
estimate (see Section 5 of [8] and Theorem 1.12 of [2]). The link of a simplex τ ∈ X(`)
is Xτ = lk(X, τ) = {η ∈ X : τ ∩ η = ∅, τ ∪ η ∈ X}. For φ ∈ Cj(X) and τ ∈ X(`) let
φτ ∈ Cj−`−1(Xτ ) be defined by φτ (η) = φ(ητ), where ητ denotes the concatenation of η and
τ .

Theorem 2.3 (Garland [8]). Let X be a k-dimensional complex such that for all σ ∈ X(k−1)

degX(σ) := |{η ∈ X(k) : σ ⊂ η}| = m.

Let λ(X) = min {λ2(Xτ ) : τ ∈ X(k − 2)}. Then

min

{
‖dk−1φ‖2X
‖φ‖2X

: 0 6= φ ∈ ker d∗k−2

}
≥ kλ(X)− (k − 1)m.

For completeness we indicate the proof. We first establish the following identity.

Claim 2.4. For any φ ∈ Ck−1(X)

‖dk−1φ‖2X =
∑

τ∈X(k−2)

‖d0φτ‖2Xτ −m(k − 1)‖φ‖2X . (8)
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Proof.

‖dk−1φ‖2X =
∑

σ∈X(k)

|dk−1φ(σ)|2

=
∑

σ∈X(k)

(
k∑
i=0

(−1)iφ(σi)

) k∑
j=0

(−1)jφ(σj)


=

∑
σ∈X(k)

k∑
i=0

φ(σi)
2 + 2

∑
σ∈X(k)

∑
0≤i<j≤k

(−1)i+jφ(σi)φ(σj)

= m‖φ‖2X − 2
∑

τ∈X(k−2)

∑
uv∈Xτ (1)

φ(uτ)φ(vτ).

(9)

On the other hand∑
τ∈X(k−2)

‖d0φτ‖2Xτ =
∑

τ∈X(k−2)

∑
uv∈Xτ (1)

(φ(vτ)− φ(uτ))2

=
∑

τ∈X(k−2)

∑
uv∈Xτ (1)

(
φ(uτ)2 + φ(vτ)2

)
− 2

∑
τ∈X(k−2)

∑
uv∈Xτ (1)

φ(uτ)φ(vτ)

= mk‖φ‖2X − 2
∑

τ∈X(k−2)

∑
uv∈Xτ (1)

φ(uτ)φ(vτ).

(10)

Subtracting (10) from (9) we obtain (8).

2

Proof of Theorem 2.3. Let φ ∈ ker d∗k−2. Then for any τ ∈ X(k − 2)∑
v∈Xτ (0)

φτ (v) =
∑

v∈Xτ (0)

φ(vτ) = d∗k−2φ(τ) = 0.

Therefore, by the variational characterization of λ2(Xτ )

‖d0φτ‖2Xτ = (d∗0d0φτ , φτ )Xτ ≥ λ2(Xτ )‖φτ‖2Xτ ≥ λ(X)‖φτ‖2Xτ . (11)

Substituting (11) in (8) we obtain

‖dk−1φ‖2X =
∑

τ∈X(k−2)

‖d0φτ‖2Xτ −m(k − 1)‖φ‖2X

≥ λ(X)
∑

τ∈X(k−2)

‖φτ‖2Xτ −m(k − 1)‖φ‖2X

=
(
λ(X)k −m(k − 1)

)
‖φ‖2X .

2
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3 Laplacians Spectra on YG,k

In this section we prove the following characterization of the spectral gap of complexes that
contain the full (k − 1)-skeleton of balanced complexes.

Proposition 3.1. For any subcomplex Y
(k−1)
G,k ⊂ Y ⊂ YG,k

µk−1(Y ) = min

{
‖dk−1φ‖2Y
‖φ‖2Y

: 0 6= φ ∈ ker d∗k−2

}
.

We first record some facts concerning the Laplacian spectra of YG,k. We will use the
notation introduced in Section 2 with Laplacians Lj = Lj(YG,k).

Proposition 3.2.

(i) For 0 ≤ j ≤ k

S
(
Cj(YG,k), Lj

)
= {tn : k − j ≤ t ≤ k + 1},

s
(
Cj(YG,k), Lj , tn

)
=

(
k + 1

t

)(
t

k − j

)
· (n− 1)k+1−t.

(12)

(ii) For 0 ≤ j ≤ k

S
(

Im dj−1, L
−
j

)
= {tn : k − j + 1 ≤ t ≤ k + 1},

s
(

Im dj−1, L
−
j , tn

)
=

(
k + 1

t

)(
t− 1

k − j

)
· (n− 1)k+1−t.

(13)

For 0 ≤ j ≤ k − 1

S
(

Im d∗j , L
+
j

)
= {tn : k − j ≤ t ≤ k + 1},

s
(

Im d∗j , L
+
j , tn

)
=

(
k + 1

t

)(
t− 1

k − j − 1

)
· (n− 1)k+1−t.

(14)

Proof. (i) Recall that Vi is the n point space {i} ×G. For 0 ≤ j ≤ k let

Ek,j =
{
ε = (ε1, . . . , εk+1) ∈ {−1, 0}k+1 : ε1 + · · ·+ εk+1 = j − k

}
.

The formula for the spectra of the Laplacians of joins (see e.g. Section 4 in [6]) implies that
for 0 ≤ j ≤ k

S̃
(
Cj(YG,k), Lj

)
= S̃

(
Cj(V1 ∗ · · · ∗ Vk+1), Lj

)
=

⋃
ε=(ε1,...,εk+1)∈Ek,j

(
S̃ (Cε1(V1), Lε1) + · · ·+ S̃

(
Cεk+1(Vk+1), Lεk+1

))
. (15)

As L−1(Vi) is multiplication by n and L0(Vi) is the all ones n × n matrix, it follows that
S(C−1(Vi), L−1) = {n} and S(C0(Vi), L0) = {0, n} where s(C0(Vi), L0, 0) = n − 1 and
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s(C0(Vi), L0, n) = 1. Fix an ε = (ε1, . . . , εk+1) ∈ Ek,j . Then I = {1 ≤ i ≤ k + 1 : εi = −1}
satisfies |I| = k − j. The multiset corresponding to ε in (15) is therefore

Mε =

k−j︷ ︸︸ ︷
{n}+ · · ·+ {n}+

j+1︷ ︸︸ ︷
{0, . . . , 0, n}+ · · ·+ {0, . . . , 0, n} .

Clearly Mε consists of the elements {tn : k − j ≤ t ≤ k + 1}, where the multiplicity of tn is( j+1
t−(k−j)

)
(n− 1)k+1−t. Therefore

s
(
Cj(YG,k), Lj , tn

)
= |Ek,j | ·

(
j + 1

t− (k − j)

)
(n− 1)k+1−t

=

(
k + 1

k − j

)(
j + 1

t− (k − j)

)
(n− 1)k+1−t =

(
k + 1

t

)(
t

k − j

)
· (n− 1)k+1−t.

(ii) We argue by decreasing induction on j. For the base case j = k, first note that (4)
implies that 0 6∈ S(Im dk−1, L

−
k ). Moreover, as L+

k = 0 it follows by (6) that for λ 6= 0

s(Im dk−1, L
−
k , λ) = s(Ck(YG,k), Lk, λ).

Thus, by (12)

S
(
Im dk−1, L

−
k

)
= S

(
Ck(YG,k), Lk

)
\ {0} = {tn : 1 ≤ t ≤ k + 1}

and

s(Im dk−1, L
−
k , tn) = s(Ck(YG,k), Lk, tn) =

(
k + 1

t

)
· (n− 1)k+1−t.

For the induction step, let 1 ≤ j0 ≤ k− 1 and assume that (13) holds for all j0 < j′ ≤ k and
that (14) holds for all j0 < j′ ≤ k − 1. Then by (7)

S
(

Im d∗j0 , L
+
j0

)
= S

(
Im dj0 , L

−
j0+1

)
= {tn : k − (j0 + 1) + 1 ≤ t ≤ k + 1} = {tn : k − j0 ≤ t ≤ k + 1}

and

s
(

Im d∗j0 , L
+
j0
, tn
)

= s
(

Im dj0 , L
−
j0+1, tn

)
=

(
k + 1

t

)(
t− 1

k − (j0 + 1)

)
· (n− 1)k+1−t =

(
k + 1

t

)(
t− 1

k − j0 − 1

)
· (n− 1)k+1−t.

Thus (14) holds for j = j0. Furthermore, by (6)

{tn : k − j0 ≤ t ≤ k + 1} = S
(
Cj0(X), Lj0

)
= S

(
Im dj0−1, L

−
j0

)
∪ S

(
Im d∗j0 , L

+
j0

)

8



and for all k − j0 ≤ t ≤ k + 1

s
(

Im dj0−1, L
−
j0
, tn
)

= s
(
Cj0(YG,k), Lj0 , tn

)
− s

(
Im d∗j0 , L

+
j0
, tn
)

=

(
k + 1

t

)(
t

k − j0

)
· (n− 1)k+1−t −

(
k + 1

t

)(
t− 1

k − j0 − 1

)
· (n− 1)k+1−t

=

(
k + 1

t

)(
t− 1

k − j0

)
· (n− 1)k+1−t

=

{ (
k+1
t

)(
t−1
k−j0

)
· (n− 1)k+1−t k − j0 + 1 ≤ t ≤ k + 1,

0 t = k − j0.

Thus (13) holds for j = j0, thereby completing the inductive proof of (ii).

2

Proof of Proposition 3.1. Let Y
(k−1)
G,k ⊂ Y ⊂ YG,k. Note that if φ ∈ Ck−1(Y ) =

Ck−1(YA,k) then ‖φ‖Y = ‖φ‖YG,k , ‖dk−1φ‖Y ≤ ‖dk−1φ‖YG,k and ‖d∗k−2φ‖Y = ‖d∗k−2φ‖YG,k .
The cases j = k − 1 of (14) and (13) then imply respectively that

α+ : = min

{
‖dk−1φ‖2Y
‖φ‖2Y

: 0 6= φ ∈ ker d∗k−2

}
≤ min

{
‖dk−1φ‖2YG,k
‖φ‖2YG,k

: 0 6= φ ∈ ker d∗k−2

}

= min

{
‖dk−1φ‖2YG,k
‖φ‖2YG,k

: 0 6= φ ∈ d∗k−1

(
Ck(YG,k)

)}
= µ+

k−1(YG,k) = min{tn : 1 ≤ t ≤ k + 1} = n

and

α− : = min

{
‖d∗k−2φ‖2Y
‖φ‖2Y

: 0 6= φ ∈ Im dk−2

}

= min

{
‖d∗k−2φ‖2YG,k
‖φ‖2YG,k

: 0 6= φ ∈ Im dk−2

}
= µ−k−1(YG,k) = min{tn : 2 ≤ t ≤ k + 1} = 2n.

Therefore α+ < α−. Moreover, Hk−1(YG,k) = 0 together with (3) and (5) imply that there
is an orthogonal decomposition

Ck−1(Y ) = Ck−1(YG,k) = Im dk−2 ⊕ ker d∗k−2.

Let P1, P2 denote the orthogonal projections of Ck−1(Y ) onto Im dk−2 and ker d∗k−2 respec-
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tively. Then

µk−1(Y ) = min

{
(Lk−1φ, φ)Y

(φ, φ)Y
: 0 6= φ ∈ Ck−1(Y )

}
= min

{
‖d∗k−2φ‖2Y + ‖dk−1φ‖2Y

‖φ‖2Y
: 0 6= φ ∈ Ck−1(Y )

}

= min

{
‖d∗k−2P1φ‖2Y + ‖dk−1P2φ‖2Y
‖P1φ‖2Y + ‖P2φ‖2Y

: 0 6= φ ∈ Ck−1(Y )

}

= min

{
‖d∗k−2φ1‖2Y + ‖dk−1φ2‖2Y
‖φ1‖2Y + ‖φ2‖2Y

: (0, 0) 6= (φ1, φ2) ∈ Im dk−2 × ker d∗k−2

}

= min

{
α−‖φ1‖2Y + α+‖φ2‖2Y
‖φ1‖2Y + ‖φ2‖2Y

: (0, 0) 6= (φ1, φ2) ∈ Im dk−2 × ker d∗k−2

}
= min{α−, α+} = α+.

2

4 The Fourier Transform

Let L(G) denote the algebra of complex valued functions on G with the convolution product
φ ∗ ψ(x) =

∑
y∈G φ(y)ψ(y−1x). The inner product on L(G) is given by

〈φ, ψ〉 =
∑
x∈G

φ(x)ψ(x).

The Frobenius inner product and norm on Md(C) are given respectively by 〈S, T 〉 = tr(ST ∗)
and ‖T‖F =

√
〈T, T 〉 =

√
tr(TT ∗). The Frobenius norm of a product satisfies

‖ST‖F ≤ ‖S‖ · ‖T‖F . (16)

LetR(G) denote the algebra
∏
ρ∈ĜMdρ(C) with coordinate wise addition and multiplication.

Define an inner product on R(G) by〈(
Sρ : ρ ∈ Ĝ

)
,
(
Tρ : ρ ∈ Ĝ

)〉
=

1

n

∑
ρ

dρ〈Sρ, Tρ〉 =
1

n

∑
ρ

dρtr(SρT
∗
ρ ).

The associated norm is given by

∥∥∥(Tρ : ρ ∈ Ĝ
)∥∥∥

F
=

 1

n

∑
ρ∈Ĝ

dρ‖Tρ‖2F

 1
2

.

Definition 4.1. For φ ∈ L(G) and a representation ρ of G of degree d let

φ̂(ρ) =
∑
x∈G

φ(x)ρ(x) ∈Md(C).

The Fourier Transform F : L(G)→ R(G) is given by

F(φ) =
(
φ̂(ρ) : ρ ∈ Ĝ

)
.
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A basic result in representation theory (see e.g. exercise 3.32 in [7]) asserts that F is an
isomorphism of algebras and an isometry. In particular, F satisfies the Parseval identity:
For any φ, ψ ∈ L(G)

〈φ, ψ〉 = 〈F(φ),F(ψ)〉 =
1

n

∑
ρ∈Ĝ

dρ

〈
φ̂(ρ), ψ̂(ρ)

〉
. (17)

5 The (k − 1)-Spectral Gap of YA,k

In this section we prove Theorem 1.5. Let X = YA,k. We need two preliminary observations.
Let CA = YA,1, i.e. the graph on the vertex set V (CA) = {1, 2} ×G with edge set

E(CA) = {{(1, x1), (2, x2)} : x1 · x2 ∈ A} .

Claim 5.1. For any τ ∈ X(k − 2), the graph Xτ = lk(X, τ) is isomorphic to CA.

Proof. Let τ = {(j, yj)}j∈J where J ⊂ [k + 1] := {1, . . . , k + 1} and |J | = k − 1. Let
[k + 1] \ J = {i1 < i2}. Let z1 = y1 · · · yi1−1, z2 = yi1+1 · · · yi2−1 and z3 = yi2+1 · · · yk+1.
Then Xτ is the graph on the vertex set Vτ = {i1, i2} ×G with edge set

Eτ = {{(i1, xi1), (i2, xi2)} : z1xi1z2xi2z3 ∈ A} .

Let ϕ : Vτ → V (CA) be given by

ϕ ((it, xit)) =

{
(1, z1xi1z2) t = 1,
(2, xi2z3) t = 2.

Then ϕ is an isomorphism between Xτ and CA.

2

The next result gives a lower bound on the spectral gap of CA.

Proposition 5.2.
λ2(CA) ≥ |A| − ν(A).

Proof. Let φ ∈ C0 (V (CA)) such that
∑

v∈V (CA) φ(v) = 0. For i = 1, 2 let φi ∈ L(G)

be given by φi(x) = φ ((i, x)). Define ψ ∈ L(G) by ψ(x) = φ2(x−1) and for a ∈ A let
ψa(x) = ψ(a−1x) = φ2(x−1a). Then

φ̂1(1) + ψ̂a(1) =

(∑
x∈G

φ1(x)

)
+

(∑
x∈G

ψa(x)

)

=

(∑
x∈G

φ1(x)

)
+

(∑
x∈G

φ2(x)

)
=

∑
v∈V (CA)

φ(v) = 0.

Hence
φ̂1(1) · ψ̂a(1) = −φ̂1(1)2 ≤ 0. (18)

11



For any ρ ∈ Ĝ

ψ̂a(ρ) =
∑
x∈G

ψa(x)ρ(x) =
∑
x∈G

φ2(x−1a)ρ(x)

=
∑
y∈G

φ2(y)ρ(ay−1) = ρ(a)
∑
y∈G

φ2(y)ρ(y−1) = ρ(a)ψ̂(ρ).
(19)

Using the Parseval identity (17) together with (18), (19) and (16) we obtain∑
a∈A
〈φ1, ψa〉 =

∑
a∈A
〈F(φ1),F(ψa)〉

=
1

n

∑
a∈A

∑
ρ∈Ĝ

dρ

〈
φ̂1(ρ), ψ̂a(ρ)

〉
=

1

n

∑
a∈A

φ̂1(1) · ψ̂a(1) +
∑
ρ∈Ĝ+

dρ

〈
φ̂1(ρ), ψ̂a(ρ)

〉
= −|A|

n
φ̂1(1)2 +

1

n

∑
a∈A

∑
ρ∈Ĝ+

dρ

〈
φ̂1(ρ), ρ(a)ψ̂(ρ)

〉
= −|A|

n
φ̂1(1)2 +

1

n

∑
ρ∈Ĝ+

dρ

〈
φ̂1(ρ), 1̂A(ρ)ψ̂(ρ)

〉
≤ 1

n

∑
ρ∈Ĝ+

dρ‖φ̂1(ρ)‖F · ‖1̂A(ρ) · ψ̂(ρ)‖F

≤ 1

n

∑
ρ∈Ĝ+

dρ‖φ̂1(ρ)‖F · ‖1̂A(ρ)‖ · ‖ψ̂(ρ)‖F

≤ ν(A)
∑
ρ∈Ĝ

(√
dρ
n
‖φ̂1(ρ)‖F

)
·

(√
dρ
n
‖ψ̂(ρ)‖F

)

≤ ν(A)

 1

n

∑
ρ∈Ĝ

dρ‖φ̂1(ρ)‖2F

 1
2
 1

n

∑
ρ∈Ĝ

dρ‖ψ̂(ρ)‖2F

 1
2

= ν(A) · ‖φ1‖ · ‖ψ‖ = ν(A) · ‖φ1‖ · ‖φ2‖.

(20)
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Finally by (20)

‖d0φ‖2CA =
∑

{(x1,x2)∈G2:x1x2∈A}

d0φ ([(1, x1), (2, x2)])2

=
∑

{(x1,x2)∈G2:x1x2∈A}

(φ2(x2)− φ1(x1))2

=
∑
a∈A

∑
x∈G

(
φ2(x−1a)− φ1(x)

)2
=
∑
a∈A

∑
x∈G

(
φ1(x)2 + φ2(x−1a)2 − 2φ1(x)ψa(x)

)
= |A|

(
‖φ1‖2 + ‖φ2‖2

)
− 2

∑
a∈A
〈φ1, ψa〉

≥ |A| · ‖φ‖2CA − 2ν(A) · ‖φ1‖ · ‖φ2‖
≥ |A| · ‖φ‖2CA − ν(A)

(
‖φ1‖2 + ‖φ2‖2

)
= (|A| − ν(A)) ‖φ‖2CA .

Therefore λ2(CA) ≥ |A| − ν(A).

2

Proof of Theorem 1.5. Clearly degX(σ) = |A| for all σ ∈ X(k − 1). By Claim 5.1 and
Proposition 5.2

λ(X) = min {λ2(Xτ ) : τ ∈ X(k − 2)} = λ2(CA) ≥ |A| − ν(A). (21)

Using Proposition 3.1, Garland’s Theorem 2.3 and (21) it follows that

µk−1(X) = min

{
‖dk−1φ‖2X
‖φ‖2X

: 0 6= φ ∈ ker d∗k−2

}
≥ kλ(X)− (k − 1)|A| ≥ k(|A| − ν(A))− (k − 1)|A|
= |A| − k · ν(A).

2

6 The Spectral Gap of a Random YA,k

In this section we prove Theorem 1.6. We will use the following matrix version of Bernstein’s
large deviation inequality due to Tropp (Theorem 1.6 in [16]).

Theorem 6.1 ([16]). Let {Xi}mi=1 be independent random variables taking values in Md(C)
such that E[Xi] = 0 and ‖Xi‖ ≤ R for all 1 ≤ i ≤ m, and let

σ2 = max

{∥∥∥∥∥
m∑
i=1

E[XiX
∗
i ]

∥∥∥∥∥ ,
∥∥∥∥∥
m∑
i=1

E[X∗iXi]

∥∥∥∥∥
}
.

Then for any λ ≥ 0

Pr

[∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥ ≥ λ
]
≤ 2d exp

(
− 3λ2

6σ2 + 2Rλ

)
.
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Proof of Theorem 1.6. Let k ≥ 1 and 0 < ε < 1 be fixed and let m be an integer such

that 9k2 logD(G)
ε2

≤ m ≤
√
n. Let Ω denote the uniform probability space of all m-subsets of

G. Suppose that A ∈ Ω satisfies ν(A) ≤ εk−1m. Then by Theorem 1.5

µk−1(XA,k) ≥ |A| − k · ν(A)

≥ m− k · εk−1m = (1− ε)m.

Theorem 1.6 will therefore follow from

Proposition 6.2.

PrΩ

[
A ∈ Ω : max

ρ∈Ĝ+

‖1̂A(ρ)‖ > εk−1m

]
<

6

n
.

Proof. Let ρ ∈ Ĝ+ be fixed and let λ = εk−1m. Let Ω′ denote the uniform probability space
Gm, and for 1 ≤ i ≤ m let Xi be the random variable defined on ω′ = (a1, . . . , am) ∈ Ω′

by Xi(ω
′) = ρ(ai) ∈ U(dρ). As ρ ∈ Ĝ+, it follows by Schur’s Lemma that E[Xi] = 0. It is

straightforward to check the Xi’s also satisfy the additional conditions of Theorem 6.1 with
σ2 = m and R = 1. Hence

PrΩ′

[
ω′ ∈ Ω′ :

∥∥∥∥∥
m∑
i=1

Xi(ω
′)

∥∥∥∥∥ ≥ λ
]
≤ 2dρ exp

(
− 3λ2

6σ2 + 2Rλ

)
= 2dρ exp

(
− 3(εk−1m)2

6m+ 2εk−1m

)
< 2dρ exp

(
−ε

2m

3k2

)
≤ 2dρ exp (−3 logD(G)) = 2dρD(G)−3.

(22)

Let Ω′′ = {(a1, . . . , am) ∈ Gm : ai 6= aj for i 6= j} ⊂ Ω′ denote the uniform probability space
consisting of all sequences in Gm with distinct elements. The assumption m ≤

√
n implies

that (
PrΩ′ [ Ω′′ ]

)−1
=

m∏
i=1

n

n− i+ 1
≤
(

n

n−m+ 1

)m
≤ exp

(
(m− 1)m

n−m+ 1

)
≤ e. (23)

Combining (22) and (23) we obtain

PrΩ

[
A ∈ Ω : ‖1̂A(ρ)‖ ≥ εk−1m

]
= PrΩ′′

[
ω′′ ∈ Ω′′ :

∥∥∥∥∥
m∑
i=1

Xi(ω
′′)

∥∥∥∥∥ ≥ εk−1m

]

≤ PrΩ′

[
ω′ ∈ Ω′ :

∥∥∥∥∥
m∑
i=1

Xi(ω
′)

∥∥∥∥∥ ≥ εk−1m

]
·
(
PrΩ′ [ Ω′′ ]

)−1

< 6dρD(G)−3.

(24)

Note that

D(G)2 =

∑
ρ∈Ĝ

dρ

2

≥
∑
ρ∈Ĝ

d2
ρ = n.
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Using the union bound and (24) it thus follows that

PrΩ

[
ν(A) ≥ εk−1m

]
< 6

∑
ρ∈Ĝ

dρD(G)−3 = 6D(G)−2 ≤ 6

n
.

2

7 YA,k for a Subgroup A

In this section we prove Theorem 1.8. Our main tool will be the Wedge Lemma of Ziegler
and Živaljević (Lemma 1.8 in [17]). The version below appears in [9]. For a poset (P,≺)
and p ∈ P let P≺p = {q ∈ P : q ≺ p}. Let ∆(P ) denote the order complex of P . Let Y be

a regular CW-complex and let {Zi}`i=1 be subcomplexes of Y such that
⋃`
i=1 Zi = Y . Let

(P,≺) be the poset whose elements index all distinct partial intersections
⋂
j∈J Zj , where

∅ 6= J ⊂ [`]. Let Up denote the partial intersection indexed by p ∈ P , and let ≺ denote
reverse inclusion, i.e. p ≺ q if Uq $ Up. Note {∅} ∗ Up = Up.

Wedge Lemma ([17, 9]). Suppose that for any p ∈ P there exists a cp ∈ Up such that the
inclusion

⋃
q�p Uq ↪→ Up is homotopic to the constant map to cp. Then

Y '
∨
p∈P

∆(P≺p) ∗ Up.

Proof of Theorem 1.8. Let A be a subgroup of G of size |A| = m and let ` = n
m . Let

g1, . . . , g` ∈ G be coset representatives of A, i.e. G =
⋃`
i=1 giA. (i) The graph YA,1 is

isomorphic to the disjoint union
∐`
i=1Ag

−1
i ∗ giA. This implies (1) since each Ag−1

i ∗ giA is
a complete m by m bipartite graph and hence homotopic to a wedge of (m− 1)2 circles.
(ii) Let k ≥ 2. For 1 ≤ i ≤ ` let Wk,i = {k + 1} × giA ⊂ Vk+1 and let

Zk,i = YAg−1
i ,k−1 ∗Wk,i

∼= YA,k−1 ∗ [m]. (25)

Then
⋃`
i=1 Zk,i = YA,k. Indeed, let x1, . . . , xk+1 ∈ G, and suppose that xk+1 ∈ giA. Then

σ = {(1, x1), . . . , (k, xk), (k + 1, xk+1)} ∈ YA,k ⇐⇒ x1 · · ·xk+1 ∈ A
⇐⇒ x1 · · ·xk ∈ Ag−1

i ⇐⇒ σ ∈ Zk,i(k).

Moreover, for any 1 ≤ j 6= j′ ≤ t

Zk,j ∩ Zk,j′ =
⋂̀
i=1

Zk,i = Y
(k−2)
G,k−1. (26)

The reduced Euler characteristic of YG,k−1 satisfies χ̃ (YG,k−1) = (−1)k−1(n− 1)k. Hence

Nk := (−1)k−2χ̃
(
Y

(k−2)
G,k−1

)
= (−1)k−2

(
χ̃ (YG,k−1)− (−1)k−1nk

)
= nk − (n− 1)k.
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As Y
(k−2)
G,k−1 is a matroidal complex of rank k − 1, it follows (see e.g. Theorem 7.8.1 in [4])

that

Y
(k−2)
G,k−1 '

Nk∨
Sk−2. (27)

Eq. (26) implies that the intersection poset (P,≺) of the cover {Zk,i}`i=1 is P = [`] ∪ {1̂},
where i ∈ [`] represents Zk,i, 1̂ represents Y

(k−2)
G,k−1, [`] is an antichain and i ≺ 1̂ for all i ∈ [`].

Note that ∆(P≺i) = ∅ for all i ∈ [m] and ∆(P≺1̂) is the discrete space [`]. We proceed to
prove (2) by induction on k. We first establish the induction step. Let k ≥ 3 and assume
that (2) holds for k − 1. Then Zk,i ∼= YA,k−1 ∗ [m] is homotopy equivalent to a wedge of

spheres of dimensions k − 1 and k. As Y
(k−2)
G,k−1 is a wedge of (k − 2)-spheres, it follows that

the inclusion Y
(k−2)
G,k−1 ↪→ Zk,i is null homotopic. Applying the Wedge Lemma together with

(25), (27) and the induction hypothesis, we obtain

YA,k '

∨
i∈[`]

∆(P≺i) ∗ Zk,i

 ∨ (∆(P≺1̂) ∗ Y (k−2)
G,k−1

)

=

∨
i∈[`]

Zk,i

 ∨ ([`] ∗ Y (k−2)
G,k−1

)

∼=

∨
i∈[`]

YA,k−1 ∗ [m]

 ∨([`] ∗
Nk∨

Sk−2

)

'

∨
i∈[`]

γ0(m,k−1)∨
Sk−2 ∨

γ1(m,k−1)∨
Sk−1

 ∗ [m]

 ∨([`] ∗
Nk∨

Sk−2

)

'
∨
i∈[`]

(m−1)γ0(m,k−1)∨
Sk−1 ∨

(m−1)γ1(m,k−1)∨
Sk

 ∨
(`−1)Nk∨

Sk−1


'

t0∨
Sk−1 ∨

t1∨
Sk,

(28)

where

t0 = `(m− 1)γ0(m, k − 1) + (`− 1)Nk

= `(m− 1)
(

(n−m)nk−1 + `k−1(m− 1)k − (n− 1)k
)

+ (`− 1)
(
nk − (n− 1)k

)
= (n−m)nk + `k(m− 1)k+1 − (n− 1)k+1 = γ0(m, k)

and

t1 = `(m− 1)γ1(m, k − 1) = `(m− 1)
(
`k−1(m− 1)k

)
= `k(m− 1)k+1 = γ1(m, k).

This completes the induction step. To prove (2) for k = 2, first note that assumptions of
the Wedge lemma hold for the decomposition YA,2 =

⋃`
i=1 Z2,i. Arguing as in (28), it thus

16



follows that

YA,2 '

∨
i∈[`]

YA,1 ∗ [m]

 ∨([`] ∗
N2∨

S0

)

'

∨
i∈[`]

∐̀ (m−1)2∨
S1

 ∗ [m]

 ∨([`] ∗
2n−1∨

S0

)

'
∨̀m−1∨ `(m−1)2∨

S2 ∨
`−1∨

S1

 ∨ (`−1)(2n−1)∨
S1

=

t0∨
S1 ∨

t1∨
S2,

where

t0 = `(m− 1)(`− 1) + (`− 1)(2n− 1)

= (n−m)n2 + `2(m− 1)3 − (n− 1)3 = γ0(m, 2)

and

t1 = `2(m− 1)3 = γ1(m, k).

This completes the proof of the base case k = 2 and of the Theorem.

2

8 Concluding Remarks

In this paper we studied the (k − 1)-spectral gap of complexes YA,k where A is a subset of
a finite group G. Our main results included a lower bound on µk−1(YA,k) in terms of the
Fourier transform of 1A and a proof that for a sufficiently large constant c(k, ε), if A is a
random subset of G of size at least c(k, ε) logD(G), then YA,k has a nearly optimal (k−1)-th
spectral gap. In view of Remark 2.1(ii) it would be interesting to find suitable counterparts
of Theorems 1.5 and 1.6 for other robustness measures of cohomological triviality, e.g. for
coboundary expansion. We briefly recall the relevant definitions. For a simplicial complex
X and a binary k-cochain φ ∈ Ck(X;F2), let

‖φ‖H = |{σ ∈ X(k) : φ(σ) 6= 0}|

denote the Hamming norm of φ and let

‖φ‖csy = min
{
‖φ+ dk−1ψ‖H : ψ ∈ Ck−1(X;F2)

}
denote the cosystolic norm of φ. The k-th coboundary expansion constant of X (see e.g.
[13]) is given by

hk(X) = min

{
‖dkφ‖H
‖φ‖csy

: φ ∈ Ck(X;F2) \Bk(X;F2)

}
.

In light of Theorem 1.6 we suggest the following
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Conjecture 8.1. For any fixed k ≥ 1 there exist constants C(k) < ∞ and ε(k) > 0 such
that for any group G, the random balanced Cayley complexes YA,k with |A| = C(k) logD(G)
satisfy hk−1(YA,k) ≥ ε(k) a.a.s. as |G| → ∞.

In a different direction, consider the following example of balanced Cayley complexes.

Let p, q be distinct odd primes such that q > 2
√
p and

(
p
q

)
= 1, and let Gq = PSL2(Fq). The

celebrated construction of Ramanujan graphs by Lubotzky, Phillips and Sarnak [14] implies
that there exists a subset Sp,q ⊂ Gq of cardinality |Sp,q| = p+ 1 such that ν(Sp,q) ≤ 2

√
p. If

p ≥ 4k2 then by Theorem 1.5

µk−1

(
YSp,q ,k

)
≥ |Sp,q| − k · ν (Sp,q) ≥ (p+ 1)− 2k

√
p ≥ 1. (29)

The following conjecture may be viewed as a coboundary expansion analogue of (29).

Conjecture 8.2. For any fixed k ≥ 1 there exist constants p0(k) < ∞ and ε0(k) > 0 such

that if p > p0(k), q > 2
√
p and

(
p
q

)
= 1 then hk−1

(
YSp,q ,k

)
≥ ε0(k).
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